ReactOS 0.4.16-dev-106-g10b08aa
rpc_transport.c
Go to the documentation of this file.
1/*
2 * RPC transport layer
3 *
4 * Copyright 2001 Ove Kåven, TransGaming Technologies
5 * Copyright 2003 Mike Hearn
6 * Copyright 2004 Filip Navara
7 * Copyright 2006 Mike McCormack
8 * Copyright 2006 Damjan Jovanovic
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
23 *
24 */
25
26#include "ntstatus.h"
27#define WIN32_NO_STATUS
28#ifdef __REACTOS__
29#define NONAMELESSUNION
30#endif
31#include "ws2tcpip.h"
32
33#include <stdarg.h>
34#include <stdio.h>
35#include <string.h>
36#include <assert.h>
37
38#include "windef.h"
39#include "winbase.h"
40#include "winnls.h"
41#include "winerror.h"
42#include "wininet.h"
43#include "wine/winternl.h"
44#include "winioctl.h"
45
46#include "rpc.h"
47#include "rpcndr.h"
48
49#include "wine/debug.h"
50
51#include "rpc_binding.h"
52#include "rpc_assoc.h"
53#include "rpc_message.h"
54#include "rpc_server.h"
55#include "epm_towers.h"
56
57#define DEFAULT_NCACN_HTTP_TIMEOUT (60 * 1000)
58
60
61#ifdef __REACTOS__ /* FIXME: Inspect */
63{
65
67 if (io_status.u.Status)
68 {
70 return FALSE;
71 }
72 return TRUE;
73}
74#endif
75
77
78/**** ncacn_np support ****/
79
80typedef struct _RpcConnection_np
81{
90
92{
94 return &npc->common;
95}
96
98{
100 return event ? event : CreateEventW(NULL, TRUE, FALSE, NULL);
101}
102
104{
105 event = InterlockedExchangePointer(&connection->event_cache, event);
106 if (event)
108}
109
110#ifdef __REACTOS__
128static DWORD rpcrt4_create_pipe_security(PSECURITY_DESCRIPTOR *SecDesc)
129{
130 DWORD ErrCode;
131 PACL Dacl;
132 ULONG DaclSize, RelSDSize = 0;
133 PSID EveryoneSid = NULL, AnonymousSid = NULL, AdminsSid = NULL;
134 PSECURITY_DESCRIPTOR AbsSD = NULL, RelSD = NULL;
137
139 1,
141 0, 0, 0, 0, 0, 0, 0,
142 &EveryoneSid))
143 {
144 ERR("rpcrt4_create_pipe_security(): Failed to allocate Everyone SID (error code %d)\n", GetLastError());
145 return GetLastError();
146 }
147
149 1,
151 0, 0, 0, 0, 0, 0, 0,
152 &AnonymousSid))
153 {
154 ERR("rpcrt4_create_pipe_security(): Failed to allocate Anonymous SID (error code %d)\n", GetLastError());
155 ErrCode = GetLastError();
156 goto Quit;
157 }
158
160 2,
163 0, 0, 0, 0, 0, 0,
164 &AdminsSid))
165 {
166 ERR("rpcrt4_create_pipe_security(): Failed to allocate Admins SID (error code %d)\n", GetLastError());
167 ErrCode = GetLastError();
168 goto Quit;
169 }
170
172 if (AbsSD == NULL)
173 {
174 ERR("rpcrt4_create_pipe_security(): Failed to allocate absolute SD!\n");
175 ErrCode = ERROR_OUTOFMEMORY;
176 goto Quit;
177 }
178
180 {
181 ERR("rpcrt4_create_pipe_security(): Failed to create absolute SD (error code %d)\n", GetLastError());
182 ErrCode = GetLastError();
183 goto Quit;
184 }
185
186 DaclSize = sizeof(ACL) +
187 sizeof(ACCESS_ALLOWED_ACE) + RtlLengthSid(EveryoneSid) +
188 sizeof(ACCESS_ALLOWED_ACE) + RtlLengthSid(AnonymousSid) +
189 sizeof(ACCESS_ALLOWED_ACE) + RtlLengthSid(AdminsSid);
190
191
193 if (Dacl == NULL)
194 {
195 ERR("rpcrt4_create_pipe_security(): Failed to allocate DACL!\n");
196 ErrCode = ERROR_OUTOFMEMORY;
197 goto Quit;
198 }
199
201 {
202 ERR("rpcrt4_create_pipe_security(): Failed to create DACL (error code %d)\n", GetLastError());
203 ErrCode = GetLastError();
204 goto Quit;
205 }
206
210 EveryoneSid))
211 {
212 ERR("rpcrt4_create_pipe_security(): Failed to set up ACE for Everyone SID (error code %d)\n", GetLastError());
213 ErrCode = GetLastError();
214 goto Quit;
215 }
216
220 AnonymousSid))
221 {
222 ERR("rpcrt4_create_pipe_security(): Failed to set up ACE for Anonymous SID (error code %d)\n", GetLastError());
223 ErrCode = GetLastError();
224 goto Quit;
225 }
226
230 AdminsSid))
231 {
232 ERR("rpcrt4_create_pipe_security(): Failed to set up ACE for Admins SID (error code %d)\n", GetLastError());
233 ErrCode = GetLastError();
234 goto Quit;
235 }
236
238 {
239 ERR("rpcrt4_create_pipe_security(): Failed to set DACL to absolute SD (error code %d)\n", GetLastError());
240 ErrCode = GetLastError();
241 goto Quit;
242 }
243
244 if (!SetSecurityDescriptorOwner(AbsSD, AdminsSid, FALSE))
245 {
246 ERR("rpcrt4_create_pipe_security(): Failed to set SD owner (error code %d)\n", GetLastError());
247 ErrCode = GetLastError();
248 goto Quit;
249 }
250
251 if (!SetSecurityDescriptorGroup(AbsSD, AdminsSid, FALSE))
252 {
253 ERR("rpcrt4_create_pipe_security(): Failed to set SD group (error code %d)\n", GetLastError());
254 ErrCode = GetLastError();
255 goto Quit;
256 }
257
258 if (!MakeSelfRelativeSD(AbsSD, NULL, &RelSDSize) && GetLastError() != ERROR_INSUFFICIENT_BUFFER)
259 {
260 ERR("rpcrt4_create_pipe_security(): Unexpected error code (error code %d -- must be ERROR_INSUFFICIENT_BUFFER)\n", GetLastError());
261 ErrCode = GetLastError();
262 goto Quit;
263 }
264
265 RelSD = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, RelSDSize);
266 if (RelSD == NULL)
267 {
268 ERR("rpcrt4_create_pipe_security(): Failed to allocate relative SD!\n");
269 ErrCode = ERROR_OUTOFMEMORY;
270 goto Quit;
271 }
272
273 if (!MakeSelfRelativeSD(AbsSD, RelSD, &RelSDSize) && GetLastError() == ERROR_INSUFFICIENT_BUFFER)
274 {
275 ERR("rpcrt4_create_pipe_security(): Failed to allocate relative SD, buffer too smal (expected size %lu)\n", RelSDSize);
277 goto Quit;
278 }
279
280 TRACE("rpcrt4_create_pipe_security(): Success!\n");
281 *SecDesc = RelSD;
282 ErrCode = ERROR_SUCCESS;
283
284Quit:
285 if (ErrCode != ERROR_SUCCESS)
286 {
287 if (RelSD != NULL)
288 {
289 HeapFree(GetProcessHeap(), 0, RelSD);
290 }
291 }
292
293 if (EveryoneSid != NULL)
294 {
295 FreeSid(EveryoneSid);
296 }
297
298 if (AnonymousSid != NULL)
299 {
300 FreeSid(AnonymousSid);
301 }
302
303 if (AdminsSid != NULL)
304 {
305 FreeSid(AdminsSid);
306 }
307
308 if (Dacl != NULL)
309 {
311 }
312
313 if (AbsSD != NULL)
314 {
315 HeapFree(GetProcessHeap(), 0, AbsSD);
316 }
317
318 return ErrCode;
319}
320#endif
321
323{
324 RpcConnection_np *connection = (RpcConnection_np *) conn;
325#ifdef __REACTOS__
326 DWORD ErrCode;
327 SECURITY_ATTRIBUTES SecurityAttributes;
328 PSECURITY_DESCRIPTOR PipeSecDesc;
329#endif
330
331 TRACE("listening on %s\n", connection->listen_pipe);
332
333#ifdef __REACTOS__
334 ErrCode = rpcrt4_create_pipe_security(&PipeSecDesc);
335 if (ErrCode != ERROR_SUCCESS)
336 {
337 ERR("rpcrt4_conn_create_pipe(): Pipe security descriptor creation failed!\n");
339 }
340
341 SecurityAttributes.nLength = sizeof(SECURITY_ATTRIBUTES);
342 SecurityAttributes.lpSecurityDescriptor = PipeSecDesc;
343 SecurityAttributes.bInheritHandle = FALSE;
344
348 RPC_MAX_PACKET_SIZE, RPC_MAX_PACKET_SIZE, 5000, &SecurityAttributes);
349 HeapFree(GetProcessHeap(), 0, PipeSecDesc);
350#else
355#endif
356 if (connection->pipe == INVALID_HANDLE_VALUE)
357 {
358 WARN("CreateNamedPipe failed with error %d\n", GetLastError());
360 {
362 }
363 else
364 {
366 }
367 }
368
369 return RPC_S_OK;
370}
371
373{
374 RpcConnection_np *npc = (RpcConnection_np *) Connection;
375 HANDLE pipe;
376 DWORD err, dwMode;
377
378 TRACE("connecting to %s\n", pname);
379
380 while (TRUE) {
381 DWORD dwFlags = 0;
382 if (Connection->QOS)
383 {
385 switch (Connection->QOS->qos->ImpersonationType)
386 {
388 /* FIXME: what to do here? */
389 break;
392 break;
395 break;
398 break;
401 break;
402 }
405 }
408 if (pipe != INVALID_HANDLE_VALUE) break;
409 err = GetLastError();
410 if (err == ERROR_PIPE_BUSY) {
412 TRACE("retrying busy server\n");
413 continue;
414 }
415 TRACE("connection failed, error=%x\n", err);
417#ifdef __REACTOS__
418 } else if (err == ERROR_BAD_NETPATH) {
419 TRACE("connection failed, error=%x\n", err);
421#endif
422 }
423 if (!wait || !WaitNamedPipeA(pname, NMPWAIT_WAIT_FOREVER)) {
424 err = GetLastError();
425 WARN("connection failed, error=%x\n", err);
427 }
428 }
429
430 /* success */
431 /* pipe is connected; change to message-read mode. */
432 dwMode = PIPE_READMODE_MESSAGE;
433 SetNamedPipeHandleState(pipe, &dwMode, NULL, NULL);
434 npc->pipe = pipe;
435
436 return RPC_S_OK;
437}
438
439static char *ncalrpc_pipe_name(const char *endpoint)
440{
441 static const char prefix[] = "\\\\.\\pipe\\lrpc\\";
442 char *pipe_name;
443
444 /* protseq=ncalrpc: supposed to use NT LPC ports,
445 * but we'll implement it with named pipes for now */
446 pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(endpoint));
447 strcat(strcpy(pipe_name, prefix), endpoint);
448 return pipe_name;
449}
450
452{
453 RpcConnection_np *npc = (RpcConnection_np *) Connection;
455 LPSTR pname;
456
457 /* already connected? */
458 if (npc->pipe)
459 return RPC_S_OK;
460
461 pname = ncalrpc_pipe_name(Connection->Endpoint);
462 r = rpcrt4_conn_open_pipe(Connection, pname, TRUE);
464
465 return r;
466}
467
469{
471 RpcConnection *Connection;
472 char generated_endpoint[22];
473
474 if (!endpoint)
475 {
476 static LONG lrpc_nameless_id;
477 DWORD process_id = GetCurrentProcessId();
478 ULONG id = InterlockedIncrement(&lrpc_nameless_id);
479 snprintf(generated_endpoint, sizeof(generated_endpoint),
480 "LRPC%08x.%08x", process_id, id);
481 endpoint = generated_endpoint;
482 }
483
484 r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL,
486 if (r != RPC_S_OK)
487 return r;
488
489 ((RpcConnection_np*)Connection)->listen_pipe = ncalrpc_pipe_name(Connection->Endpoint);
490 r = rpcrt4_conn_create_pipe(Connection);
491
492 EnterCriticalSection(&protseq->cs);
493 list_add_head(&protseq->listeners, &Connection->protseq_entry);
494 Connection->protseq = protseq;
495 LeaveCriticalSection(&protseq->cs);
496
497 return r;
498}
499
500#ifdef __REACTOS__
501static char *ncacn_pipe_name(const char *server, const char *endpoint)
502#else
503static char *ncacn_pipe_name(const char *endpoint)
504#endif
505{
506#ifdef __REACTOS__
507 static const char prefix[] = "\\\\";
508 static const char local[] = ".";
509 char ComputerName[MAX_COMPUTERNAME_LENGTH + 1];
510 DWORD bufLen = ARRAY_SIZE(ComputerName);
511#else
512 static const char prefix[] = "\\\\.";
513#endif
514 char *pipe_name;
515
516#ifdef __REACTOS__
517 if (server != NULL && *server != 0)
518 {
519 /* Trim any leading UNC server prefix. */
520 if (server[0] == '\\' && server[1] == '\\')
521 server += 2;
522
523 /* If the server represents the local computer, use instead
524 * the local prefix to avoid a round in UNC name resolution. */
525 if (GetComputerNameA(ComputerName, &bufLen) &&
526 (stricmp(ComputerName, server) == 0))
527 {
528 server = local;
529 }
530 }
531 else
532 {
533 server = local;
534 }
535#endif
536
537 /* protseq=ncacn_np: named pipes */
538#ifdef __REACTOS__
539 pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(server) + strlen(endpoint));
540 strcpy(pipe_name, prefix);
541 strcat(pipe_name, server);
542 strcat(pipe_name, endpoint);
543#else
544 pipe_name = I_RpcAllocate(sizeof(prefix) + strlen(endpoint));
545 strcat(strcpy(pipe_name, prefix), endpoint);
546#endif
547 return pipe_name;
548}
549
551{
552 RpcConnection_np *npc = (RpcConnection_np *) Connection;
554 LPSTR pname;
555
556 /* already connected? */
557 if (npc->pipe)
558 return RPC_S_OK;
559
560#ifdef __REACTOS__
561 pname = ncacn_pipe_name(Connection->NetworkAddr, Connection->Endpoint);
562#else
563 pname = ncacn_pipe_name(Connection->Endpoint);
564#endif
565 r = rpcrt4_conn_open_pipe(Connection, pname, FALSE);
567
568 return r;
569}
570
572{
574 RpcConnection *Connection;
575 char generated_endpoint[26];
576
577 if (!endpoint)
578 {
579 static LONG np_nameless_id;
580 DWORD process_id = GetCurrentProcessId();
581 ULONG id = InterlockedExchangeAdd(&np_nameless_id, 1 );
582 snprintf(generated_endpoint, sizeof(generated_endpoint),
583 "\\\\pipe\\\\%08x.%03x", process_id, id);
584 endpoint = generated_endpoint;
585 }
586
587 r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL,
589 if (r != RPC_S_OK)
590 return r;
591
592#ifdef __REACTOS__
593 ((RpcConnection_np*)Connection)->listen_pipe = ncacn_pipe_name(NULL, Connection->Endpoint);
594#else
595 ((RpcConnection_np*)Connection)->listen_pipe = ncacn_pipe_name(Connection->Endpoint);
596#endif
597 r = rpcrt4_conn_create_pipe(Connection);
598
599 EnterCriticalSection(&protseq->cs);
600 list_add_head(&protseq->listeners, &Connection->protseq_entry);
601 Connection->protseq = protseq;
602 LeaveCriticalSection(&protseq->cs);
603
604 return r;
605}
606
608{
609 /* because of the way named pipes work, we'll transfer the connected pipe
610 * to the child, then reopen the server binding to continue listening */
611
612 new_npc->pipe = old_npc->pipe;
613 old_npc->pipe = 0;
614 assert(!old_npc->listen_event);
615}
616
618{
621
624
625 /* Store the local computer name as the NetworkAddr for ncacn_np as long as
626 * we don't support named pipes over the network. */
627 new_conn->NetworkAddr = HeapAlloc(GetProcessHeap(), 0, len);
628 if (!GetComputerNameA(new_conn->NetworkAddr, &len))
629 {
630 ERR("Failed to retrieve the computer name, error %u\n", GetLastError());
632 }
633
634 return status;
635}
636
637static RPC_STATUS is_pipe_listening(const char *pipe_name)
638{
639 return WaitNamedPipeA(pipe_name, 1) ? RPC_S_OK : RPC_S_NOT_LISTENING;
640}
641
643{
644 char *pipe_name;
646
647#ifdef __REACTOS__
648 pipe_name = ncacn_pipe_name(NULL, endpoint);
649#else
650 pipe_name = ncacn_pipe_name(endpoint);
651#endif
652 status = is_pipe_listening(pipe_name);
653 I_RpcFree(pipe_name);
654 return status;
655}
656
658{
659 char *pipe_name;
661
662 pipe_name = ncalrpc_pipe_name(endpoint);
663 status = is_pipe_listening(pipe_name);
664 I_RpcFree(pipe_name);
665 return status;
666}
667
669{
672
673 TRACE("%s\n", old_conn->Endpoint);
674
677
678 /* Store the local computer name as the NetworkAddr for ncalrpc. */
679 new_conn->NetworkAddr = HeapAlloc(GetProcessHeap(), 0, len);
680 if (!GetComputerNameA(new_conn->NetworkAddr, &len))
681 {
682 ERR("Failed to retrieve the computer name, error %u\n", GetLastError());
684 }
685
686 return status;
687}
688
689static int rpcrt4_conn_np_read(RpcConnection *conn, void *buffer, unsigned int count)
690{
691 RpcConnection_np *connection = (RpcConnection_np *) conn;
694
695 event = get_np_event(connection);
696 if (!event)
697 return -1;
698
699 if (connection->read_closed)
701 else
702 status = NtReadFile(connection->pipe, event, NULL, NULL, &connection->io_status, buffer, count, NULL, NULL);
703 if (status == STATUS_PENDING)
704 {
705 /* check read_closed again before waiting to avoid a race */
706 if (connection->read_closed)
707 {
709#ifdef __REACTOS__ /* FIXME: We should also cancel I/O for other threads */
710 NtCancelIoFile(connection->pipe, &io_status);
711#else
712 NtCancelIoFileEx(connection->pipe, &connection->io_status, &io_status);
713#endif
714 }
716 status = connection->io_status.u.Status;
717 }
718 release_np_event(connection, event);
719 return status && status != STATUS_BUFFER_OVERFLOW ? -1 : connection->io_status.Information;
720}
721
722static int rpcrt4_conn_np_write(RpcConnection *conn, const void *buffer, unsigned int count)
723{
724 RpcConnection_np *connection = (RpcConnection_np *) conn;
728
729 event = get_np_event(connection);
730 if (!event)
731 return -1;
732
734 if (status == STATUS_PENDING)
735 {
737 status = io_status.u.Status;
738 }
739 release_np_event(connection, event);
740 if (status)
741 return -1;
742
743 assert(io_status.Information == count);
744 return count;
745}
746
748{
749 RpcConnection_np *connection = (RpcConnection_np *) conn;
750 if (connection->pipe)
751 {
752 FlushFileBuffers(connection->pipe);
753 CloseHandle(connection->pipe);
754 connection->pipe = 0;
755 }
756 if (connection->listen_event)
757 {
758 CloseHandle(connection->listen_event);
759 connection->listen_event = 0;
760 }
761 if (connection->event_cache)
762 {
763 CloseHandle(connection->event_cache);
764 connection->event_cache = 0;
765 }
766 return 0;
767}
768
770{
771 RpcConnection_np *connection = (RpcConnection_np*)conn;
773
774 connection->read_closed = TRUE;
775#ifdef __REACTOS__ /* FIXME: We should also cancel I/O for other threads */
776 NtCancelIoFile(connection->pipe, &io_status);
777#else
778 NtCancelIoFileEx(connection->pipe, &connection->io_status, &io_status);
779#endif
780}
781
783{
784 RpcConnection_np *connection = (RpcConnection_np *)conn;
785 CancelIoEx(connection->pipe, NULL);
786}
787
789{
790 return rpcrt4_conn_np_read(conn, NULL, 0);
791}
792
793static size_t rpcrt4_ncacn_np_get_top_of_tower(unsigned char *tower_data,
794 const char *networkaddr,
795 const char *endpoint)
796{
797 twr_empty_floor_t *smb_floor;
798 twr_empty_floor_t *nb_floor;
799 size_t size;
800 size_t networkaddr_size;
801 size_t endpoint_size;
802
803 TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint);
804
805 networkaddr_size = networkaddr ? strlen(networkaddr) + 1 : 1;
806 endpoint_size = endpoint ? strlen(endpoint) + 1 : 1;
807 size = sizeof(*smb_floor) + endpoint_size + sizeof(*nb_floor) + networkaddr_size;
808
809 if (!tower_data)
810 return size;
811
812 smb_floor = (twr_empty_floor_t *)tower_data;
813
814 tower_data += sizeof(*smb_floor);
815
816 smb_floor->count_lhs = sizeof(smb_floor->protid);
817 smb_floor->protid = EPM_PROTOCOL_SMB;
818 smb_floor->count_rhs = endpoint_size;
819
820 if (endpoint)
821 memcpy(tower_data, endpoint, endpoint_size);
822 else
823 tower_data[0] = 0;
824 tower_data += endpoint_size;
825
826 nb_floor = (twr_empty_floor_t *)tower_data;
827
828 tower_data += sizeof(*nb_floor);
829
830 nb_floor->count_lhs = sizeof(nb_floor->protid);
831 nb_floor->protid = EPM_PROTOCOL_NETBIOS;
832 nb_floor->count_rhs = networkaddr_size;
833
834 if (networkaddr)
835 memcpy(tower_data, networkaddr, networkaddr_size);
836 else
837 tower_data[0] = 0;
838
839 return size;
840}
841
842static RPC_STATUS rpcrt4_ncacn_np_parse_top_of_tower(const unsigned char *tower_data,
843 size_t tower_size,
844 char **networkaddr,
845 char **endpoint)
846{
847 const twr_empty_floor_t *smb_floor = (const twr_empty_floor_t *)tower_data;
848 const twr_empty_floor_t *nb_floor;
849
850 TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint);
851
852 if (tower_size < sizeof(*smb_floor))
854
855 tower_data += sizeof(*smb_floor);
856 tower_size -= sizeof(*smb_floor);
857
858 if ((smb_floor->count_lhs != sizeof(smb_floor->protid)) ||
859 (smb_floor->protid != EPM_PROTOCOL_SMB) ||
860 (smb_floor->count_rhs > tower_size) ||
861 (tower_data[smb_floor->count_rhs - 1] != '\0'))
863
864 if (endpoint)
865 {
866 *endpoint = I_RpcAllocate(smb_floor->count_rhs);
867 if (!*endpoint)
869 memcpy(*endpoint, tower_data, smb_floor->count_rhs);
870 }
871 tower_data += smb_floor->count_rhs;
872 tower_size -= smb_floor->count_rhs;
873
874 if (tower_size < sizeof(*nb_floor))
876
877 nb_floor = (const twr_empty_floor_t *)tower_data;
878
879 tower_data += sizeof(*nb_floor);
880 tower_size -= sizeof(*nb_floor);
881
882 if ((nb_floor->count_lhs != sizeof(nb_floor->protid)) ||
883 (nb_floor->protid != EPM_PROTOCOL_NETBIOS) ||
884 (nb_floor->count_rhs > tower_size) ||
885 (tower_data[nb_floor->count_rhs - 1] != '\0'))
887
888 if (networkaddr)
889 {
890 *networkaddr = I_RpcAllocate(nb_floor->count_rhs);
891 if (!*networkaddr)
892 {
893 if (endpoint)
894 {
896 *endpoint = NULL;
897 }
899 }
900 memcpy(*networkaddr, tower_data, nb_floor->count_rhs);
901 }
902
903 return RPC_S_OK;
904}
905
907{
908 RpcConnection_np *npc = (RpcConnection_np *)conn;
909 BOOL ret;
910
911 TRACE("(%p)\n", conn);
912
913 if (conn->AuthInfo && SecIsValidHandle(&conn->ctx))
915
917 if (!ret)
918 {
920 WARN("ImpersonateNamedPipeClient failed with error %u\n", error);
921 switch (error)
922 {
925 }
926 }
927 return RPC_S_OK;
928}
929
931{
932 BOOL ret;
933
934 TRACE("(%p)\n", conn);
935
936 if (conn->AuthInfo && SecIsValidHandle(&conn->ctx))
938
939 ret = RevertToSelf();
940 if (!ret)
941 {
942 WARN("RevertToSelf failed with error %u\n", GetLastError());
944 }
945 return RPC_S_OK;
946}
947
949{
953
955{
957 if (ps)
959 return &ps->common;
960}
961
963{
965 SetEvent(npps->mgr_event);
966}
967
968static void *rpcrt4_protseq_np_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count)
969{
970 HANDLE *objs = prev_array;
971 RpcConnection_np *conn;
973
974 EnterCriticalSection(&protseq->cs);
975
976 /* open and count connections */
977 *count = 1;
978 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry)
979 {
980 if (!conn->pipe && rpcrt4_conn_create_pipe(&conn->common) != RPC_S_OK)
981 continue;
982 if (!conn->listen_event)
983 {
986
987 event = get_np_event(conn);
988 if (!event)
989 continue;
990
992 switch (status)
993 {
994 case STATUS_SUCCESS:
996 conn->io_status.u.Status = status;
998 break;
999 case STATUS_PENDING:
1000 break;
1001 default:
1002 ERR("pipe listen error %x\n", status);
1003 continue;
1004 }
1005
1006 conn->listen_event = event;
1007 }
1008 (*count)++;
1009 }
1010
1011 /* make array of connections */
1012 if (objs)
1013 objs = HeapReAlloc(GetProcessHeap(), 0, objs, *count*sizeof(HANDLE));
1014 else
1015 objs = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(HANDLE));
1016 if (!objs)
1017 {
1018 ERR("couldn't allocate objs\n");
1019 LeaveCriticalSection(&protseq->cs);
1020 return NULL;
1021 }
1022
1023 objs[0] = npps->mgr_event;
1024 *count = 1;
1025 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry)
1026 {
1027 if (conn->listen_event)
1028 objs[(*count)++] = conn->listen_event;
1029 }
1030 LeaveCriticalSection(&protseq->cs);
1031 return objs;
1032}
1033
1035{
1037}
1038
1039static int rpcrt4_protseq_np_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array)
1040{
1041 HANDLE b_handle;
1042 HANDLE *objs = wait_array;
1043 DWORD res;
1044 RpcConnection *cconn = NULL;
1045 RpcConnection_np *conn;
1046
1047 if (!objs)
1048 return -1;
1049
1050 do
1051 {
1052 /* an alertable wait isn't strictly necessary, but due to our
1053 * overlapped I/O implementation in Wine we need to free some memory
1054 * by the file user APC being called, even if no completion routine was
1055 * specified at the time of starting the async operation */
1057 } while (res == WAIT_IO_COMPLETION);
1058
1059 if (res == WAIT_OBJECT_0)
1060 return 0;
1061 else if (res == WAIT_FAILED)
1062 {
1063 ERR("wait failed with error %d\n", GetLastError());
1064 return -1;
1065 }
1066 else
1067 {
1068 b_handle = objs[res - WAIT_OBJECT_0];
1069 /* find which connection got a RPC */
1070 EnterCriticalSection(&protseq->cs);
1071 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_np, common.protseq_entry)
1072 {
1073 if (b_handle == conn->listen_event)
1074 {
1075 release_np_event(conn, conn->listen_event);
1076 conn->listen_event = NULL;
1078 cconn = rpcrt4_spawn_connection(&conn->common);
1079 else
1080 ERR("listen failed %x\n", conn->io_status.u.Status);
1081 break;
1082 }
1083 }
1084 LeaveCriticalSection(&protseq->cs);
1085 if (!cconn)
1086 {
1087 ERR("failed to locate connection for handle %p\n", b_handle);
1088 return -1;
1089 }
1090 RPCRT4_new_client(cconn);
1091 return 1;
1092 }
1093}
1094
1095static size_t rpcrt4_ncalrpc_get_top_of_tower(unsigned char *tower_data,
1096 const char *networkaddr,
1097 const char *endpoint)
1098{
1099 twr_empty_floor_t *pipe_floor;
1100 size_t size;
1101 size_t endpoint_size;
1102
1103 TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint);
1104
1105 endpoint_size = strlen(endpoint) + 1;
1106 size = sizeof(*pipe_floor) + endpoint_size;
1107
1108 if (!tower_data)
1109 return size;
1110
1111 pipe_floor = (twr_empty_floor_t *)tower_data;
1112
1113 tower_data += sizeof(*pipe_floor);
1114
1115 pipe_floor->count_lhs = sizeof(pipe_floor->protid);
1116 pipe_floor->protid = EPM_PROTOCOL_PIPE;
1117 pipe_floor->count_rhs = endpoint_size;
1118
1119 memcpy(tower_data, endpoint, endpoint_size);
1120
1121 return size;
1122}
1123
1124static RPC_STATUS rpcrt4_ncalrpc_parse_top_of_tower(const unsigned char *tower_data,
1125 size_t tower_size,
1126 char **networkaddr,
1127 char **endpoint)
1128{
1129 const twr_empty_floor_t *pipe_floor = (const twr_empty_floor_t *)tower_data;
1130
1131 TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint);
1132
1133 if (tower_size < sizeof(*pipe_floor))
1134 return EPT_S_NOT_REGISTERED;
1135
1136 tower_data += sizeof(*pipe_floor);
1137 tower_size -= sizeof(*pipe_floor);
1138
1139 if ((pipe_floor->count_lhs != sizeof(pipe_floor->protid)) ||
1140 (pipe_floor->protid != EPM_PROTOCOL_PIPE) ||
1141 (pipe_floor->count_rhs > tower_size) ||
1142 (tower_data[pipe_floor->count_rhs - 1] != '\0'))
1143 return EPT_S_NOT_REGISTERED;
1144
1145 if (networkaddr)
1146 *networkaddr = NULL;
1147
1148 if (endpoint)
1149 {
1150 *endpoint = I_RpcAllocate(pipe_floor->count_rhs);
1151 if (!*endpoint)
1153 memcpy(*endpoint, tower_data, pipe_floor->count_rhs);
1154 }
1155
1156 return RPC_S_OK;
1157}
1158
1160{
1161 return FALSE;
1162}
1163
1165 unsigned char *in_buffer,
1166 unsigned int in_size,
1167 unsigned char *out_buffer,
1168 unsigned int *out_size)
1169{
1170 /* since this protocol is local to the machine there is no need to
1171 * authenticate the caller */
1172 *out_size = 0;
1173 return RPC_S_OK;
1174}
1175
1178 RpcPktHdr *hdr, unsigned int hdr_size,
1179 unsigned char *stub_data, unsigned int stub_data_size,
1180 RpcAuthVerifier *auth_hdr,
1181 unsigned char *auth_value, unsigned int auth_value_size)
1182{
1183 /* since this protocol is local to the machine there is no need to secure
1184 * the packet */
1185 return RPC_S_OK;
1186}
1187
1189 RpcConnection *conn, RPC_AUTHZ_HANDLE *privs, RPC_WSTR *server_princ_name,
1190 ULONG *authn_level, ULONG *authn_svc, ULONG *authz_svc, ULONG flags)
1191{
1192 TRACE("(%p, %p, %p, %p, %p, %p, 0x%x)\n", conn, privs,
1193 server_princ_name, authn_level, authn_svc, authz_svc, flags);
1194
1195 if (privs)
1196 {
1197 FIXME("privs not implemented\n");
1198 *privs = NULL;
1199 }
1200 if (server_princ_name)
1201 {
1202 FIXME("server_princ_name not implemented\n");
1203 *server_princ_name = NULL;
1204 }
1205 if (authn_level) *authn_level = RPC_C_AUTHN_LEVEL_PKT_PRIVACY;
1206 if (authn_svc) *authn_svc = RPC_C_AUTHN_WINNT;
1207 if (authz_svc)
1208 {
1209 FIXME("authorization service not implemented\n");
1210 *authz_svc = RPC_C_AUTHZ_NONE;
1211 }
1212 if (flags)
1213 FIXME("flags 0x%x not implemented\n", flags);
1214
1215 return RPC_S_OK;
1216}
1217
1218/**** ncacn_ip_tcp support ****/
1219
1220static size_t rpcrt4_ip_tcp_get_top_of_tower(unsigned char *tower_data,
1221 const char *networkaddr,
1222 unsigned char tcp_protid,
1223 const char *endpoint)
1224{
1225 twr_tcp_floor_t *tcp_floor;
1226 twr_ipv4_floor_t *ipv4_floor;
1227 struct addrinfo *ai;
1228 struct addrinfo hints;
1229 int ret;
1230 size_t size = sizeof(*tcp_floor) + sizeof(*ipv4_floor);
1231
1232 TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint);
1233
1234 if (!tower_data)
1235 return size;
1236
1237 tcp_floor = (twr_tcp_floor_t *)tower_data;
1238 tower_data += sizeof(*tcp_floor);
1239
1240 ipv4_floor = (twr_ipv4_floor_t *)tower_data;
1241
1242 tcp_floor->count_lhs = sizeof(tcp_floor->protid);
1243 tcp_floor->protid = tcp_protid;
1244 tcp_floor->count_rhs = sizeof(tcp_floor->port);
1245
1246 ipv4_floor->count_lhs = sizeof(ipv4_floor->protid);
1247 ipv4_floor->protid = EPM_PROTOCOL_IP;
1248 ipv4_floor->count_rhs = sizeof(ipv4_floor->ipv4addr);
1249
1250 hints.ai_flags = AI_NUMERICHOST;
1251 /* FIXME: only support IPv4 at the moment. how is IPv6 represented by the EPM? */
1252 hints.ai_family = PF_INET;
1253 hints.ai_socktype = SOCK_STREAM;
1254 hints.ai_protocol = IPPROTO_TCP;
1255 hints.ai_addrlen = 0;
1256 hints.ai_addr = NULL;
1257 hints.ai_canonname = NULL;
1258 hints.ai_next = NULL;
1259
1260#ifdef __REACTOS__
1261 static BOOL wsa_inited;
1262 if (!wsa_inited)
1263 {
1264 WSADATA wsadata;
1265 WSAStartup(MAKEWORD(2, 2), &wsadata);
1266 /* Note: WSAStartup can be called more than once so we don't bother with
1267 * making accesses to wsa_inited thread-safe */
1268 wsa_inited = TRUE;
1269 }
1270#endif
1271
1272 ret = getaddrinfo(networkaddr, endpoint, &hints, &ai);
1273 if (ret)
1274 {
1275 ret = getaddrinfo("0.0.0.0", endpoint, &hints, &ai);
1276 if (ret)
1277 {
1278 ERR("getaddrinfo failed: %s\n", gai_strerror(ret));
1279 return 0;
1280 }
1281 }
1282
1283 if (ai->ai_family == PF_INET)
1284 {
1285 const struct sockaddr_in *sin = (const struct sockaddr_in *)ai->ai_addr;
1286 tcp_floor->port = sin->sin_port;
1287 ipv4_floor->ipv4addr = sin->sin_addr.s_addr;
1288 }
1289 else
1290 {
1291 ERR("unexpected protocol family %d\n", ai->ai_family);
1292 freeaddrinfo(ai);
1293 return 0;
1294 }
1295
1296 freeaddrinfo(ai);
1297
1298 return size;
1299}
1300
1301static RPC_STATUS rpcrt4_ip_tcp_parse_top_of_tower(const unsigned char *tower_data,
1302 size_t tower_size,
1303 char **networkaddr,
1304 unsigned char tcp_protid,
1305 char **endpoint)
1306{
1307 const twr_tcp_floor_t *tcp_floor = (const twr_tcp_floor_t *)tower_data;
1308 const twr_ipv4_floor_t *ipv4_floor;
1309 struct in_addr in_addr;
1310
1311 TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint);
1312
1313 if (tower_size < sizeof(*tcp_floor))
1314 return EPT_S_NOT_REGISTERED;
1315
1316 tower_data += sizeof(*tcp_floor);
1317 tower_size -= sizeof(*tcp_floor);
1318
1319 if (tower_size < sizeof(*ipv4_floor))
1320 return EPT_S_NOT_REGISTERED;
1321
1322 ipv4_floor = (const twr_ipv4_floor_t *)tower_data;
1323
1324 if ((tcp_floor->count_lhs != sizeof(tcp_floor->protid)) ||
1325 (tcp_floor->protid != tcp_protid) ||
1326 (tcp_floor->count_rhs != sizeof(tcp_floor->port)) ||
1327 (ipv4_floor->count_lhs != sizeof(ipv4_floor->protid)) ||
1328 (ipv4_floor->protid != EPM_PROTOCOL_IP) ||
1329 (ipv4_floor->count_rhs != sizeof(ipv4_floor->ipv4addr)))
1330 return EPT_S_NOT_REGISTERED;
1331
1332 if (endpoint)
1333 {
1334 *endpoint = I_RpcAllocate(6 /* sizeof("65535") + 1 */);
1335 if (!*endpoint)
1337 sprintf(*endpoint, "%u", ntohs(tcp_floor->port));
1338 }
1339
1340 if (networkaddr)
1341 {
1342 *networkaddr = I_RpcAllocate(INET_ADDRSTRLEN);
1343 if (!*networkaddr)
1344 {
1345 if (endpoint)
1346 {
1348 *endpoint = NULL;
1349 }
1351 }
1352 in_addr.s_addr = ipv4_floor->ipv4addr;
1353 if (!inet_ntop(AF_INET, &in_addr, *networkaddr, INET_ADDRSTRLEN))
1354 {
1355 ERR("inet_ntop: %u\n", WSAGetLastError());
1356 I_RpcFree(*networkaddr);
1357 *networkaddr = NULL;
1358 if (endpoint)
1359 {
1361 *endpoint = NULL;
1362 }
1363 return EPT_S_NOT_REGISTERED;
1364 }
1365 }
1366
1367 return RPC_S_OK;
1368}
1369
1371{
1373 int sock;
1377
1379{
1380 static BOOL wsa_inited;
1381 if (!wsa_inited)
1382 {
1383 WSADATA wsadata;
1384 WSAStartup(MAKEWORD(2, 2), &wsadata);
1385 /* Note: WSAStartup can be called more than once so we don't bother with
1386 * making accesses to wsa_inited thread-safe */
1387 wsa_inited = TRUE;
1388 }
1391 if (!tcpc->sock_event || !tcpc->cancel_event)
1392 {
1393 ERR("event creation failed\n");
1394 if (tcpc->sock_event) CloseHandle(tcpc->sock_event);
1395 return FALSE;
1396 }
1397 return TRUE;
1398}
1399
1401{
1402 HANDLE wait_handles[2];
1403 DWORD res;
1405 {
1406 ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError());
1407 return FALSE;
1408 }
1409 wait_handles[0] = tcpc->sock_event;
1410 wait_handles[1] = tcpc->cancel_event;
1411 res = WaitForMultipleObjects(2, wait_handles, FALSE, INFINITE);
1412 switch (res)
1413 {
1414 case WAIT_OBJECT_0:
1415 return TRUE;
1416 case WAIT_OBJECT_0 + 1:
1417 return FALSE;
1418 default:
1419 ERR("WaitForMultipleObjects() failed with error %d\n", GetLastError());
1420 return FALSE;
1421 }
1422}
1423
1425{
1426 DWORD res;
1428 {
1429 ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError());
1430 return FALSE;
1431 }
1433 switch (res)
1434 {
1435 case WAIT_OBJECT_0:
1436 return TRUE;
1437 default:
1438 ERR("WaitForMultipleObjects() failed with error %d\n", GetLastError());
1439 return FALSE;
1440 }
1441}
1442
1444{
1445 RpcConnection_tcp *tcpc;
1447 if (tcpc == NULL)
1448 return NULL;
1449 tcpc->sock = -1;
1450 if (!rpcrt4_sock_wait_init(tcpc))
1451 {
1452 HeapFree(GetProcessHeap(), 0, tcpc);
1453 return NULL;
1454 }
1455 return &tcpc->common;
1456}
1457
1459{
1460 RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection;
1461 int sock;
1462 int ret;
1463 struct addrinfo *ai;
1464 struct addrinfo *ai_cur;
1465 struct addrinfo hints;
1466
1467 TRACE("(%s, %s)\n", Connection->NetworkAddr, Connection->Endpoint);
1468
1469 if (tcpc->sock != -1)
1470 return RPC_S_OK;
1471
1472 hints.ai_flags = 0;
1473 hints.ai_family = PF_UNSPEC;
1474 hints.ai_socktype = SOCK_STREAM;
1475 hints.ai_protocol = IPPROTO_TCP;
1476 hints.ai_addrlen = 0;
1477 hints.ai_addr = NULL;
1478 hints.ai_canonname = NULL;
1479 hints.ai_next = NULL;
1480
1481 ret = getaddrinfo(Connection->NetworkAddr, Connection->Endpoint, &hints, &ai);
1482 if (ret)
1483 {
1484 ERR("getaddrinfo for %s:%s failed: %s\n", Connection->NetworkAddr,
1485 Connection->Endpoint, gai_strerror(ret));
1487 }
1488
1489 for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next)
1490 {
1491 int val;
1492 u_long nonblocking;
1493
1494 if (ai_cur->ai_family != AF_INET && ai_cur->ai_family != AF_INET6)
1495 {
1496 TRACE("skipping non-IP/IPv6 address family\n");
1497 continue;
1498 }
1499
1500 if (TRACE_ON(rpc))
1501 {
1502 char host[256];
1503 char service[256];
1504 getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen,
1505 host, sizeof(host), service, sizeof(service),
1507 TRACE("trying %s:%s\n", host, service);
1508 }
1509
1510 sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol);
1511 if (sock == -1)
1512 {
1513 WARN("socket() failed: %u\n", WSAGetLastError());
1514 continue;
1515 }
1516
1517 if (0>connect(sock, ai_cur->ai_addr, ai_cur->ai_addrlen))
1518 {
1519 WARN("connect() failed: %u\n", WSAGetLastError());
1521 continue;
1522 }
1523
1524 /* RPC depends on having minimal latency so disable the Nagle algorithm */
1525 val = 1;
1526 setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1527 nonblocking = 1;
1528 ioctlsocket(sock, FIONBIO, &nonblocking);
1529
1530 tcpc->sock = sock;
1531
1532 freeaddrinfo(ai);
1533 TRACE("connected\n");
1534 return RPC_S_OK;
1535 }
1536
1537 freeaddrinfo(ai);
1538 ERR("couldn't connect to %s:%s\n", Connection->NetworkAddr, Connection->Endpoint);
1540}
1541
1543{
1545 int sock;
1546 int ret;
1547 struct addrinfo *ai;
1548 struct addrinfo *ai_cur;
1549 struct addrinfo hints;
1550
1551 TRACE("(%p, %s)\n", protseq, endpoint);
1552
1553 hints.ai_flags = AI_PASSIVE /* for non-localhost addresses */;
1554 hints.ai_family = PF_UNSPEC;
1555 hints.ai_socktype = SOCK_STREAM;
1556 hints.ai_protocol = IPPROTO_TCP;
1557 hints.ai_addrlen = 0;
1558 hints.ai_addr = NULL;
1559 hints.ai_canonname = NULL;
1560 hints.ai_next = NULL;
1561
1562 ret = getaddrinfo(NULL, endpoint ? endpoint : "0", &hints, &ai);
1563 if (ret)
1564 {
1565 ERR("getaddrinfo for port %s failed: %s\n", endpoint,
1566 gai_strerror(ret));
1567 if ((ret == EAI_SERVICE) || (ret == EAI_NONAME))
1570 }
1571
1572 for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next)
1573 {
1574 RpcConnection_tcp *tcpc;
1575 RPC_STATUS create_status;
1576 struct sockaddr_storage sa;
1577 socklen_t sa_len;
1578 char service[NI_MAXSERV];
1579 u_long nonblocking;
1580
1581 if (ai_cur->ai_family != AF_INET && ai_cur->ai_family != AF_INET6)
1582 {
1583 TRACE("skipping non-IP/IPv6 address family\n");
1584 continue;
1585 }
1586
1587 if (TRACE_ON(rpc))
1588 {
1589 char host[256];
1590 getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen,
1591 host, sizeof(host), service, sizeof(service),
1593 TRACE("trying %s:%s\n", host, service);
1594 }
1595
1596 sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol);
1597 if (sock == -1)
1598 {
1599 WARN("socket() failed: %u\n", WSAGetLastError());
1601 continue;
1602 }
1603
1604 ret = bind(sock, ai_cur->ai_addr, ai_cur->ai_addrlen);
1605 if (ret < 0)
1606 {
1607 WARN("bind failed: %u\n", WSAGetLastError());
1611 else
1613 continue;
1614 }
1615
1616 sa_len = sizeof(sa);
1617 if (getsockname(sock, (struct sockaddr *)&sa, &sa_len))
1618 {
1619 WARN("getsockname() failed: %u\n", WSAGetLastError());
1622 continue;
1623 }
1624
1625 ret = getnameinfo((struct sockaddr *)&sa, sa_len,
1626 NULL, 0, service, sizeof(service),
1628 if (ret)
1629 {
1630 WARN("getnameinfo failed: %s\n", gai_strerror(ret));
1633 continue;
1634 }
1635
1636 create_status = RPCRT4_CreateConnection((RpcConnection **)&tcpc, TRUE,
1637 protseq->Protseq, NULL,
1638 service, NULL, NULL, NULL, NULL);
1639 if (create_status != RPC_S_OK)
1640 {
1642 status = create_status;
1643 continue;
1644 }
1645
1646 tcpc->sock = sock;
1647 ret = listen(sock, protseq->MaxCalls);
1648 if (ret < 0)
1649 {
1650 WARN("listen failed: %u\n", WSAGetLastError());
1653 continue;
1654 }
1655 /* need a non-blocking socket, otherwise accept() has a potential
1656 * race-condition (poll() says it is readable, connection drops,
1657 * and accept() blocks until the next connection comes...)
1658 */
1659 nonblocking = 1;
1660 ret = ioctlsocket(sock, FIONBIO, &nonblocking);
1661 if (ret < 0)
1662 {
1663 WARN("couldn't make socket non-blocking, error %d\n", ret);
1666 continue;
1667 }
1668
1669 EnterCriticalSection(&protseq->cs);
1670 list_add_tail(&protseq->listeners, &tcpc->common.protseq_entry);
1671 tcpc->common.protseq = protseq;
1672 LeaveCriticalSection(&protseq->cs);
1673
1674 freeaddrinfo(ai);
1675
1676 /* since IPv4 and IPv6 share the same port space, we only need one
1677 * successful bind to listen for both */
1678 TRACE("listening on %s\n", endpoint);
1679 return RPC_S_OK;
1680 }
1681
1682 freeaddrinfo(ai);
1683 ERR("couldn't listen on port %s\n", endpoint);
1684 return status;
1685}
1686
1688{
1689 int ret;
1690 struct sockaddr_in address;
1691 socklen_t addrsize;
1694 u_long nonblocking;
1695
1696 addrsize = sizeof(address);
1697 ret = accept(server->sock, (struct sockaddr*) &address, &addrsize);
1698 if (ret < 0)
1699 {
1700 ERR("Failed to accept a TCP connection: error %d\n", ret);
1702 }
1703
1704 nonblocking = 1;
1705 ioctlsocket(ret, FIONBIO, &nonblocking);
1706 client->sock = ret;
1707
1708 client->common.NetworkAddr = HeapAlloc(GetProcessHeap(), 0, INET6_ADDRSTRLEN);
1709 ret = getnameinfo((struct sockaddr*)&address, addrsize, client->common.NetworkAddr, INET6_ADDRSTRLEN, NULL, 0, NI_NUMERICHOST);
1710 if (ret != 0)
1711 {
1712 ERR("Failed to retrieve the IP address, error %d\n", ret);
1714 }
1715
1716 TRACE("Accepted a new TCP connection from %s\n", client->common.NetworkAddr);
1717 return RPC_S_OK;
1718}
1719
1721 void *buffer, unsigned int count)
1722{
1723 RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection;
1724 int bytes_read = 0;
1725 while (bytes_read != count)
1726 {
1727 int r = recv(tcpc->sock, (char *)buffer + bytes_read, count - bytes_read, 0);
1728 if (!r)
1729 return -1;
1730 else if (r > 0)
1731 bytes_read += r;
1732 else if (WSAGetLastError() == WSAEINTR)
1733 continue;
1734 else if (WSAGetLastError() != WSAEWOULDBLOCK)
1735 {
1736 WARN("recv() failed: %u\n", WSAGetLastError());
1737 return -1;
1738 }
1739 else
1740 {
1741 if (!rpcrt4_sock_wait_for_recv(tcpc))
1742 return -1;
1743 }
1744 }
1745 TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_read);
1746 return bytes_read;
1747}
1748
1750 const void *buffer, unsigned int count)
1751{
1752 RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection;
1753 int bytes_written = 0;
1754 while (bytes_written != count)
1755 {
1756 int r = send(tcpc->sock, (const char *)buffer + bytes_written, count - bytes_written, 0);
1757 if (r >= 0)
1758 bytes_written += r;
1759 else if (WSAGetLastError() == WSAEINTR)
1760 continue;
1761 else if (WSAGetLastError() != WSAEWOULDBLOCK)
1762 return -1;
1763 else
1764 {
1765 if (!rpcrt4_sock_wait_for_send(tcpc))
1766 return -1;
1767 }
1768 }
1769 TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_written);
1770 return bytes_written;
1771}
1772
1774{
1775 RpcConnection_tcp *connection = (RpcConnection_tcp *) conn;
1776
1777 TRACE("%d\n", connection->sock);
1778
1779 if (connection->sock != -1)
1780 closesocket(connection->sock);
1781 connection->sock = -1;
1782 CloseHandle(connection->sock_event);
1783 CloseHandle(connection->cancel_event);
1784 return 0;
1785}
1786
1788{
1789 RpcConnection_tcp *connection = (RpcConnection_tcp *) conn;
1790 shutdown(connection->sock, SD_RECEIVE);
1791}
1792
1794{
1795 RpcConnection_tcp *connection = (RpcConnection_tcp *) conn;
1796
1797 TRACE("%p\n", connection);
1798
1799 SetEvent(connection->cancel_event);
1800}
1801
1803{
1804 FIXME("\n");
1805 return RPC_S_ACCESS_DENIED;
1806}
1807
1809{
1810 RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection;
1811
1812 TRACE("%p\n", Connection);
1813
1814 if (!rpcrt4_sock_wait_for_recv(tcpc))
1815 return -1;
1816 return 0;
1817}
1818
1819static size_t rpcrt4_ncacn_ip_tcp_get_top_of_tower(unsigned char *tower_data,
1820 const char *networkaddr,
1821 const char *endpoint)
1822{
1823 return rpcrt4_ip_tcp_get_top_of_tower(tower_data, networkaddr,
1825}
1826
1828{
1832
1834{
1836 if (ps)
1837 {
1838 static BOOL wsa_inited;
1839 if (!wsa_inited)
1840 {
1841 WSADATA wsadata;
1842 WSAStartup(MAKEWORD(2, 2), &wsadata);
1843 /* Note: WSAStartup can be called more than once so we don't bother with
1844 * making accesses to wsa_inited thread-safe */
1845 wsa_inited = TRUE;
1846 }
1848 }
1849 return &ps->common;
1850}
1851
1853{
1855 SetEvent(sockps->mgr_event);
1856}
1857
1858static void *rpcrt4_protseq_sock_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count)
1859{
1860 HANDLE *objs = prev_array;
1861 RpcConnection_tcp *conn;
1863
1864 EnterCriticalSection(&protseq->cs);
1865
1866 /* open and count connections */
1867 *count = 1;
1868 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry)
1869 {
1870 if (conn->sock != -1)
1871 (*count)++;
1872 }
1873
1874 /* make array of connections */
1875 if (objs)
1876 objs = HeapReAlloc(GetProcessHeap(), 0, objs, *count*sizeof(HANDLE));
1877 else
1878 objs = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(HANDLE));
1879 if (!objs)
1880 {
1881 ERR("couldn't allocate objs\n");
1882 LeaveCriticalSection(&protseq->cs);
1883 return NULL;
1884 }
1885
1886 objs[0] = sockps->mgr_event;
1887 *count = 1;
1888 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry)
1889 {
1890 if (conn->sock != -1)
1891 {
1892 int res = WSAEventSelect(conn->sock, conn->sock_event, FD_ACCEPT);
1893 if (res == SOCKET_ERROR)
1894 ERR("WSAEventSelect() failed with error %d\n", WSAGetLastError());
1895 else
1896 {
1897 objs[*count] = conn->sock_event;
1898 (*count)++;
1899 }
1900 }
1901 }
1902 LeaveCriticalSection(&protseq->cs);
1903 return objs;
1904}
1905
1907{
1909}
1910
1911static int rpcrt4_protseq_sock_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array)
1912{
1913 HANDLE b_handle;
1914 HANDLE *objs = wait_array;
1915 DWORD res;
1916 RpcConnection *cconn = NULL;
1917 RpcConnection_tcp *conn;
1918
1919 if (!objs)
1920 return -1;
1921
1922 do
1923 {
1924 /* an alertable wait isn't strictly necessary, but due to our
1925 * overlapped I/O implementation in Wine we need to free some memory
1926 * by the file user APC being called, even if no completion routine was
1927 * specified at the time of starting the async operation */
1929 } while (res == WAIT_IO_COMPLETION);
1930
1931 if (res == WAIT_OBJECT_0)
1932 return 0;
1933 if (res == WAIT_FAILED)
1934 {
1935 ERR("wait failed with error %d\n", GetLastError());
1936 return -1;
1937 }
1938
1939 b_handle = objs[res - WAIT_OBJECT_0];
1940
1941 /* find which connection got a RPC */
1942 EnterCriticalSection(&protseq->cs);
1943 LIST_FOR_EACH_ENTRY(conn, &protseq->listeners, RpcConnection_tcp, common.protseq_entry)
1944 {
1945 if (b_handle == conn->sock_event)
1946 {
1947 cconn = rpcrt4_spawn_connection(&conn->common);
1948 break;
1949 }
1950 }
1951 LeaveCriticalSection(&protseq->cs);
1952 if (!cconn)
1953 {
1954 ERR("failed to locate connection for handle %p\n", b_handle);
1955 return -1;
1956 }
1957
1958 RPCRT4_new_client(cconn);
1959 return 1;
1960}
1961
1962static RPC_STATUS rpcrt4_ncacn_ip_tcp_parse_top_of_tower(const unsigned char *tower_data,
1963 size_t tower_size,
1964 char **networkaddr,
1965 char **endpoint)
1966{
1967 return rpcrt4_ip_tcp_parse_top_of_tower(tower_data, tower_size,
1968 networkaddr, EPM_PROTOCOL_TCP,
1969 endpoint);
1970}
1971
1972/**** ncacn_http support ****/
1973
1974/* 60 seconds is the period native uses */
1975#define HTTP_IDLE_TIME 60000
1976
1977/* reference counted to avoid a race between a cancelled call's connection
1978 * being destroyed and the asynchronous InternetReadFileEx call being
1979 * completed */
1980typedef struct _RpcHttpAsyncData
1981{
1988
1990{
1991 return InterlockedIncrement(&data->refs);
1992}
1993
1995{
1996 ULONG refs = InterlockedDecrement(&data->refs);
1997 if (!refs)
1998 {
1999 TRACE("destroying async data %p\n", data);
2000 CloseHandle(data->completion_event);
2001 HeapFree(GetProcessHeap(), 0, data->inet_buffers.lpvBuffer);
2002 data->cs.DebugInfo->Spare[0] = 0;
2005 }
2006 return refs;
2007}
2008
2010{
2011 ResetEvent(async_data->completion_event);
2012 RpcHttpAsyncData_AddRef(async_data);
2013}
2014
2015static RPC_STATUS wait_async_request(RpcHttpAsyncData *async_data, BOOL call_ret, HANDLE cancel_event)
2016{
2017 HANDLE handles[2] = { async_data->completion_event, cancel_event };
2018 DWORD res;
2019
2020 if(call_ret) {
2021 RpcHttpAsyncData_Release(async_data);
2022 return RPC_S_OK;
2023 }
2024
2026 RpcHttpAsyncData_Release(async_data);
2027 ERR("Request failed with error %d\n", GetLastError());
2029 }
2030
2032 if(res != WAIT_OBJECT_0) {
2033 TRACE("Cancelled\n");
2034 return RPC_S_CALL_CANCELLED;
2035 }
2036
2037 if(async_data->async_result) {
2038 ERR("Async request failed with error %d\n", async_data->async_result);
2040 }
2041
2042 return RPC_S_OK;
2043}
2044
2046{
2053 char *data;
2054 unsigned int data_len;
2055 BOOL finished; /* finished authenticating */
2056};
2057
2059{
2070 ULONG flow_control_mark; /* send a control packet to the server when this many bytes received */
2071 ULONG flow_control_increment; /* number of bytes to increment flow_control_mark by */
2077
2079{
2080 RpcConnection_http *httpc;
2081 httpc = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*httpc));
2082 if (!httpc) return NULL;
2084 if (!httpc->async_data)
2085 {
2086 HeapFree(GetProcessHeap(), 0, httpc);
2087 return NULL;
2088 }
2089 TRACE("async data = %p\n", httpc->async_data);
2091 httpc->async_data->refs = 1;
2094 httpc->async_data->cs.DebugInfo->Spare[0] = (DWORD_PTR)(__FILE__ ": RpcHttpAsyncData.cs");
2095 return &httpc->common;
2096}
2097
2099{
2104
2106{
2107 HINTERNET in_request = param;
2108 RpcPktHdr *idle_pkt;
2109
2111 0, 0);
2112 if (idle_pkt)
2113 {
2114 DWORD bytes_written;
2115 InternetWriteFile(in_request, idle_pkt, idle_pkt->common.frag_len, &bytes_written);
2116 RPCRT4_FreeHeader(idle_pkt);
2117 }
2118}
2119
2120static inline DWORD rpcrt4_http_timer_calc_timeout(DWORD *last_sent_time)
2121{
2123 DWORD cached_last_sent_time = *last_sent_time;
2124 return HTTP_IDLE_TIME - (cur_time - cached_last_sent_time > HTTP_IDLE_TIME ? 0 : cur_time - cached_last_sent_time);
2125}
2126
2128{
2129 HttpTimerThreadData *data_in = param;
2131 DWORD timeout;
2132
2133 data = *data_in;
2134 HeapFree(GetProcessHeap(), 0, data_in);
2135
2136 for (timeout = HTTP_IDLE_TIME;
2137 WaitForSingleObject(data.timer_cancelled, timeout) == WAIT_TIMEOUT;
2139 {
2140 /* are we too soon after last send? */
2141 if (GetTickCount() - *data.last_sent_time < HTTP_IDLE_TIME)
2142 continue;
2144 }
2145
2146 CloseHandle(data.timer_cancelled);
2147 return 0;
2148}
2149
2151 HINTERNET hInternet,
2152 DWORD_PTR dwContext,
2153 DWORD dwInternetStatus,
2154 LPVOID lpvStatusInformation,
2155 DWORD dwStatusInformationLength)
2156{
2157 RpcHttpAsyncData *async_data = (RpcHttpAsyncData *)dwContext;
2158
2159 switch (dwInternetStatus)
2160 {
2162 TRACE("INTERNET_STATUS_REQUEST_COMPLETED\n");
2163 if (async_data)
2164 {
2165 INTERNET_ASYNC_RESULT *async_result = lpvStatusInformation;
2166
2167 async_data->async_result = async_result->dwResult ? ERROR_SUCCESS : async_result->dwError;
2168 SetEvent(async_data->completion_event);
2169 RpcHttpAsyncData_Release(async_data);
2170 }
2171 break;
2172 }
2173}
2174
2176{
2177 BOOL ret;
2179 DWORD size;
2180 DWORD index;
2181 WCHAR buf[32];
2182 WCHAR *status_text = buf;
2183 TRACE("\n");
2184
2185 index = 0;
2186 size = sizeof(status_code);
2188 if (!ret)
2189 return GetLastError();
2191 return RPC_S_OK;
2192 index = 0;
2193 size = sizeof(buf);
2194 ret = HttpQueryInfoW(hor, HTTP_QUERY_STATUS_TEXT, status_text, &size, &index);
2196 {
2197 status_text = HeapAlloc(GetProcessHeap(), 0, size);
2198 ret = HttpQueryInfoW(hor, HTTP_QUERY_STATUS_TEXT, status_text, &size, &index);
2199 }
2200
2201 ERR("server returned: %d %s\n", status_code, ret ? debugstr_w(status_text) : "<status text unavailable>");
2202 if(status_text != buf) HeapFree(GetProcessHeap(), 0, status_text);
2203
2205 return ERROR_ACCESS_DENIED;
2207}
2208
2210{
2211 static const WCHAR wszUserAgent[] = {'M','S','R','P','C',0};
2212 LPWSTR proxy = NULL;
2213 LPWSTR user = NULL;
2215 LPWSTR servername = NULL;
2216 const WCHAR *option;
2218
2219 if (httpc->common.QOS &&
2221 {
2222 const RPC_HTTP_TRANSPORT_CREDENTIALS_W *http_cred = httpc->common.QOS->qos->u.HttpCredentials;
2223 if (http_cred->TransportCredentials)
2224 {
2225 WCHAR *p;
2226 const SEC_WINNT_AUTH_IDENTITY_W *cred = http_cred->TransportCredentials;
2227 ULONG len = cred->DomainLength + 1 + cred->UserLength;
2228 user = HeapAlloc(GetProcessHeap(), 0, (len + 1) * sizeof(WCHAR));
2229 if (!user)
2231 p = user;
2232 if (cred->DomainLength)
2233 {
2234 memcpy(p, cred->Domain, cred->DomainLength * sizeof(WCHAR));
2235 p += cred->DomainLength;
2236 *p = '\\';
2237 p++;
2238 }
2239 memcpy(p, cred->User, cred->UserLength * sizeof(WCHAR));
2240 p[cred->UserLength] = 0;
2241
2243 }
2244 }
2245
2246 for (option = httpc->common.NetworkOptions; option;
2247 option = (wcschr(option, ',') ? wcschr(option, ',')+1 : NULL))
2248 {
2249 static const WCHAR wszRpcProxy[] = {'R','p','c','P','r','o','x','y','=',0};
2250 static const WCHAR wszHttpProxy[] = {'H','t','t','p','P','r','o','x','y','=',0};
2251
2252 if (!_wcsnicmp(option, wszRpcProxy, ARRAY_SIZE(wszRpcProxy)-1))
2253 {
2254 const WCHAR *value_start = option + ARRAY_SIZE(wszRpcProxy)-1;
2255 const WCHAR *value_end;
2256 const WCHAR *p;
2257
2258 value_end = wcschr(option, ',');
2259 if (!value_end)
2260 value_end = value_start + lstrlenW(value_start);
2261 for (p = value_start; p < value_end; p++)
2262 if (*p == ':')
2263 {
2264 port = wcstol(p+1, NULL, 10);
2265 value_end = p;
2266 break;
2267 }
2268 TRACE("RpcProxy value is %s\n", debugstr_wn(value_start, value_end-value_start));
2269 servername = RPCRT4_strndupW(value_start, value_end-value_start);
2270 }
2271 else if (!_wcsnicmp(option, wszHttpProxy, ARRAY_SIZE(wszHttpProxy)-1))
2272 {
2273 const WCHAR *value_start = option + ARRAY_SIZE(wszHttpProxy)-1;
2274 const WCHAR *value_end;
2275
2276 value_end = wcschr(option, ',');
2277 if (!value_end)
2278 value_end = value_start + lstrlenW(value_start);
2279 TRACE("HttpProxy value is %s\n", debugstr_wn(value_start, value_end-value_start));
2280 proxy = RPCRT4_strndupW(value_start, value_end-value_start);
2281 }
2282 else
2283 FIXME("unhandled option %s\n", debugstr_w(option));
2284 }
2285
2288 if (!httpc->app_info)
2289 {
2293 HeapFree(GetProcessHeap(), 0, servername);
2294 ERR("InternetOpenW failed with error %d\n", GetLastError());
2296 }
2298
2299 /* if no RpcProxy option specified, set the HTTP server address to the
2300 * RPC server address */
2301 if (!servername)
2302 {
2303 servername = HeapAlloc(GetProcessHeap(), 0, (strlen(httpc->common.NetworkAddr) + 1)*sizeof(WCHAR));
2304 if (!servername)
2305 {
2310 }
2311 MultiByteToWideChar(CP_ACP, 0, httpc->common.NetworkAddr, -1, servername, strlen(httpc->common.NetworkAddr) + 1);
2312 }
2313
2314 port = (httpc->common.QOS &&
2318
2319 httpc->session = InternetConnectW(httpc->app_info, servername, port, user, password,
2320 INTERNET_SERVICE_HTTP, 0, 0);
2321
2325
2326 if (!httpc->session)
2327 {
2328 ERR("InternetConnectW failed with error %d\n", GetLastError());
2329 HeapFree(GetProcessHeap(), 0, servername);
2331 }
2332 httpc->servername = servername;
2333 return RPC_S_OK;
2334}
2335
2336static int rpcrt4_http_async_read(HINTERNET req, RpcHttpAsyncData *async_data, HANDLE cancel_event,
2337 void *buffer, unsigned int count)
2338{
2339 char *buf = buffer;
2340 BOOL ret;
2341 unsigned int bytes_left = count;
2343
2345
2346 while (bytes_left)
2347 {
2348 async_data->inet_buffers.dwBufferLength = bytes_left;
2349 prepare_async_request(async_data);
2350 ret = InternetReadFileExW(req, &async_data->inet_buffers, IRF_ASYNC, 0);
2351 status = wait_async_request(async_data, ret, cancel_event);
2352 if (status != RPC_S_OK)
2353 {
2355 TRACE("call cancelled\n");
2356 break;
2357 }
2358
2359 if (!async_data->inet_buffers.dwBufferLength)
2360 break;
2361 memcpy(buf, async_data->inet_buffers.lpvBuffer,
2362 async_data->inet_buffers.dwBufferLength);
2363
2364 bytes_left -= async_data->inet_buffers.dwBufferLength;
2365 buf += async_data->inet_buffers.dwBufferLength;
2366 }
2367
2368 HeapFree(GetProcessHeap(), 0, async_data->inet_buffers.lpvBuffer);
2369 async_data->inet_buffers.lpvBuffer = NULL;
2370
2371 TRACE("%p %p %u -> %u\n", req, buffer, count, status);
2372 return status == RPC_S_OK ? count : -1;
2373}
2374
2375static RPC_STATUS send_echo_request(HINTERNET req, RpcHttpAsyncData *async_data, HANDLE cancel_event)
2376{
2377 BYTE buf[20];
2378 BOOL ret;
2380
2381 TRACE("sending echo request to server\n");
2382
2383 prepare_async_request(async_data);
2384 ret = HttpSendRequestW(req, NULL, 0, NULL, 0);
2385 status = wait_async_request(async_data, ret, cancel_event);
2386 if (status != RPC_S_OK) return status;
2387
2389 if (status != RPC_S_OK) return status;
2390
2391 rpcrt4_http_async_read(req, async_data, cancel_event, buf, sizeof(buf));
2392 /* FIXME: do something with retrieved data */
2393
2394 return RPC_S_OK;
2395}
2396
2398{
2399 static const WCHAR fmtW[] =
2400 {'C','o','n','t','e','n','t','-','L','e','n','g','t','h',':',' ','%','u','\r','\n',0};
2401 WCHAR header[ARRAY_SIZE(fmtW) + 10];
2402
2403 swprintf(header, fmtW, len);
2406}
2407
2408/* prepare the in pipe for use by RPC packets */
2409static RPC_STATUS rpcrt4_http_prepare_in_pipe(HINTERNET in_request, RpcHttpAsyncData *async_data, HANDLE cancel_event,
2410 const UUID *connection_uuid, const UUID *in_pipe_uuid,
2411 const UUID *association_uuid, BOOL authorized)
2412{
2413 BOOL ret;
2415 RpcPktHdr *hdr;
2416 INTERNET_BUFFERSW buffers_in;
2417 DWORD bytes_written;
2418
2419 if (!authorized)
2420 {
2421 /* ask wininet to authorize, if necessary */
2422 status = send_echo_request(in_request, async_data, cancel_event);
2423 if (status != RPC_S_OK) return status;
2424 }
2425 memset(&buffers_in, 0, sizeof(buffers_in));
2426 buffers_in.dwStructSize = sizeof(buffers_in);
2427 /* FIXME: get this from the registry */
2428 buffers_in.dwBufferTotal = 1024 * 1024 * 1024; /* 1Gb */
2429 status = insert_content_length_header(in_request, buffers_in.dwBufferTotal);
2430 if (status != RPC_S_OK) return status;
2431
2432 prepare_async_request(async_data);
2433 ret = HttpSendRequestExW(in_request, &buffers_in, NULL, 0, 0);
2434 status = wait_async_request(async_data, ret, cancel_event);
2435 if (status != RPC_S_OK) return status;
2436
2437 TRACE("sending HTTP connect header to server\n");
2438 hdr = RPCRT4_BuildHttpConnectHeader(FALSE, connection_uuid, in_pipe_uuid, association_uuid);
2439 if (!hdr) return RPC_S_OUT_OF_RESOURCES;
2440 ret = InternetWriteFile(in_request, hdr, hdr->common.frag_len, &bytes_written);
2442 if (!ret)
2443 {
2444 ERR("InternetWriteFile failed with error %d\n", GetLastError());
2446 }
2447
2448 return RPC_S_OK;
2449}
2450
2452 HANDLE cancel_event, RpcPktHdr *hdr, BYTE **data)
2453{
2454 unsigned short data_len;
2455 unsigned int size;
2456
2457 if (rpcrt4_http_async_read(request, async_data, cancel_event, hdr, sizeof(hdr->common)) < 0)
2459 if (hdr->common.ptype != PKT_HTTP || hdr->common.frag_len < sizeof(hdr->http))
2460 {
2461 ERR("wrong packet type received %d or wrong frag_len %d\n",
2462 hdr->common.ptype, hdr->common.frag_len);
2463 return RPC_S_PROTOCOL_ERROR;
2464 }
2465
2466 size = sizeof(hdr->http) - sizeof(hdr->common);
2467 if (rpcrt4_http_async_read(request, async_data, cancel_event, &hdr->common + 1, size) < 0)
2469
2470 data_len = hdr->common.frag_len - sizeof(hdr->http);
2471 if (data_len)
2472 {
2473 *data = HeapAlloc(GetProcessHeap(), 0, data_len);
2474 if (!*data)
2476 if (rpcrt4_http_async_read(request, async_data, cancel_event, *data, data_len) < 0)
2477 {
2480 }
2481 }
2482 else
2483 *data = NULL;
2484
2485 if (!RPCRT4_IsValidHttpPacket(hdr, *data, data_len))
2486 {
2487 ERR("invalid http packet\n");
2489 return RPC_S_PROTOCOL_ERROR;
2490 }
2491
2492 return RPC_S_OK;
2493}
2494
2495/* prepare the out pipe for use by RPC packets */
2497 HANDLE cancel_event, const UUID *connection_uuid,
2498 const UUID *out_pipe_uuid, ULONG *flow_control_increment,
2499 BOOL authorized)
2500{
2501 BOOL ret;
2503 RpcPktHdr *hdr;
2504 BYTE *data_from_server;
2505 RpcPktHdr pkt_from_server;
2506 ULONG field1, field3;
2507 BYTE buf[20];
2508
2509 if (!authorized)
2510 {
2511 /* ask wininet to authorize, if necessary */
2512 status = send_echo_request(out_request, async_data, cancel_event);
2513 if (status != RPC_S_OK) return status;
2514 }
2515 else
2516 rpcrt4_http_async_read(out_request, async_data, cancel_event, buf, sizeof(buf));
2517
2518 hdr = RPCRT4_BuildHttpConnectHeader(TRUE, connection_uuid, out_pipe_uuid, NULL);
2519 if (!hdr) return RPC_S_OUT_OF_RESOURCES;
2520
2521 status = insert_content_length_header(out_request, hdr->common.frag_len);
2522 if (status != RPC_S_OK)
2523 {
2525 return status;
2526 }
2527
2528 TRACE("sending HTTP connect header to server\n");
2529 prepare_async_request(async_data);
2530 ret = HttpSendRequestW(out_request, NULL, 0, hdr, hdr->common.frag_len);
2531 status = wait_async_request(async_data, ret, cancel_event);
2533 if (status != RPC_S_OK) return status;
2534
2535 status = rpcrt4_http_check_response(out_request);
2536 if (status != RPC_S_OK) return status;
2537
2538 status = rpcrt4_http_read_http_packet(out_request, async_data, cancel_event,
2539 &pkt_from_server, &data_from_server);
2540 if (status != RPC_S_OK) return status;
2541 status = RPCRT4_ParseHttpPrepareHeader1(&pkt_from_server, data_from_server,
2542 &field1);
2543 HeapFree(GetProcessHeap(), 0, data_from_server);
2544 if (status != RPC_S_OK) return status;
2545 TRACE("received (%d) from first prepare header\n", field1);
2546
2547 for (;;)
2548 {
2549 status = rpcrt4_http_read_http_packet(out_request, async_data, cancel_event,
2550 &pkt_from_server, &data_from_server);
2551 if (status != RPC_S_OK) return status;
2552 if (pkt_from_server.http.flags != 0x0001) break;
2553
2554 TRACE("http idle packet, waiting for real packet\n");
2555 HeapFree(GetProcessHeap(), 0, data_from_server);
2556 if (pkt_from_server.http.num_data_items != 0)
2557 {
2558 ERR("HTTP idle packet should have no data items instead of %d\n",
2559 pkt_from_server.http.num_data_items);
2560 return RPC_S_PROTOCOL_ERROR;
2561 }
2562 }
2563 status = RPCRT4_ParseHttpPrepareHeader2(&pkt_from_server, data_from_server,
2564 &field1, flow_control_increment,
2565 &field3);
2566 HeapFree(GetProcessHeap(), 0, data_from_server);
2567 if (status != RPC_S_OK) return status;
2568 TRACE("received (0x%08x 0x%08x %d) from second prepare header\n", field1, *flow_control_increment, field3);
2569
2570 return RPC_S_OK;
2571}
2572
2573static UINT encode_base64(const char *bin, unsigned int len, WCHAR *base64)
2574{
2575 static const char enc[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
2576 UINT i = 0, x;
2577
2578 while (len > 0)
2579 {
2580 /* first 6 bits, all from bin[0] */
2581 base64[i++] = enc[(bin[0] & 0xfc) >> 2];
2582 x = (bin[0] & 3) << 4;
2583
2584 /* next 6 bits, 2 from bin[0] and 4 from bin[1] */
2585 if (len == 1)
2586 {
2587 base64[i++] = enc[x];
2588 base64[i++] = '=';
2589 base64[i++] = '=';
2590 break;
2591 }
2592 base64[i++] = enc[x | ((bin[1] & 0xf0) >> 4)];
2593 x = (bin[1] & 0x0f) << 2;
2594
2595 /* next 6 bits 4 from bin[1] and 2 from bin[2] */
2596 if (len == 2)
2597 {
2598 base64[i++] = enc[x];
2599 base64[i++] = '=';
2600 break;
2601 }
2602 base64[i++] = enc[x | ((bin[2] & 0xc0) >> 6)];
2603
2604 /* last 6 bits, all from bin [2] */
2605 base64[i++] = enc[bin[2] & 0x3f];
2606 bin += 3;
2607 len -= 3;
2608 }
2609 base64[i] = 0;
2610 return i;
2611}
2612
2613static inline char decode_char( WCHAR c )
2614{
2615 if (c >= 'A' && c <= 'Z') return c - 'A';
2616 if (c >= 'a' && c <= 'z') return c - 'a' + 26;
2617 if (c >= '0' && c <= '9') return c - '0' + 52;
2618 if (c == '+') return 62;
2619 if (c == '/') return 63;
2620 return 64;
2621}
2622
2623static unsigned int decode_base64( const WCHAR *base64, unsigned int len, char *buf )
2624{
2625 unsigned int i = 0;
2626 char c0, c1, c2, c3;
2627 const WCHAR *p = base64;
2628
2629 while (len > 4)
2630 {
2631 if ((c0 = decode_char( p[0] )) > 63) return 0;
2632 if ((c1 = decode_char( p[1] )) > 63) return 0;
2633 if ((c2 = decode_char( p[2] )) > 63) return 0;
2634 if ((c3 = decode_char( p[3] )) > 63) return 0;
2635
2636 if (buf)
2637 {
2638 buf[i + 0] = (c0 << 2) | (c1 >> 4);
2639 buf[i + 1] = (c1 << 4) | (c2 >> 2);
2640 buf[i + 2] = (c2 << 6) | c3;
2641 }
2642 len -= 4;
2643 i += 3;
2644 p += 4;
2645 }
2646 if (p[2] == '=')
2647 {
2648 if ((c0 = decode_char( p[0] )) > 63) return 0;
2649 if ((c1 = decode_char( p[1] )) > 63) return 0;
2650
2651 if (buf) buf[i] = (c0 << 2) | (c1 >> 4);
2652 i++;
2653 }
2654 else if (p[3] == '=')
2655 {
2656 if ((c0 = decode_char( p[0] )) > 63) return 0;
2657 if ((c1 = decode_char( p[1] )) > 63) return 0;
2658 if ((c2 = decode_char( p[2] )) > 63) return 0;
2659
2660 if (buf)
2661 {
2662 buf[i + 0] = (c0 << 2) | (c1 >> 4);
2663 buf[i + 1] = (c1 << 4) | (c2 >> 2);
2664 }
2665 i += 2;
2666 }
2667 else
2668 {
2669 if ((c0 = decode_char( p[0] )) > 63) return 0;
2670 if ((c1 = decode_char( p[1] )) > 63) return 0;
2671 if ((c2 = decode_char( p[2] )) > 63) return 0;
2672 if ((c3 = decode_char( p[3] )) > 63) return 0;
2673
2674 if (buf)
2675 {
2676 buf[i + 0] = (c0 << 2) | (c1 >> 4);
2677 buf[i + 1] = (c1 << 4) | (c2 >> 2);
2678 buf[i + 2] = (c2 << 6) | c3;
2679 }
2680 i += 3;
2681 }
2682 return i;
2683}
2684
2685static struct authinfo *alloc_authinfo(void)
2686{
2687 struct authinfo *ret;
2688
2689 if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(*ret) ))) return NULL;
2690
2691 SecInvalidateHandle(&ret->cred);
2692 SecInvalidateHandle(&ret->ctx);
2693 memset(&ret->exp, 0, sizeof(ret->exp));
2694 ret->scheme = 0;
2695 ret->attr = 0;
2696 ret->max_token = 0;
2697 ret->data = NULL;
2698 ret->data_len = 0;
2699 ret->finished = FALSE;
2700 return ret;
2701}
2702
2703static void destroy_authinfo(struct authinfo *info)
2704{
2705 if (!info) return;
2706
2707 if (SecIsValidHandle(&info->ctx))
2709 if (SecIsValidHandle(&info->cred))
2711
2712 HeapFree(GetProcessHeap(), 0, info->data);
2714}
2715
2716static const WCHAR basicW[] = {'B','a','s','i','c',0};
2717static const WCHAR ntlmW[] = {'N','T','L','M',0};
2718static const WCHAR passportW[] = {'P','a','s','s','p','o','r','t',0};
2719static const WCHAR digestW[] = {'D','i','g','e','s','t',0};
2720static const WCHAR negotiateW[] = {'N','e','g','o','t','i','a','t','e',0};
2721
2722static const struct
2723{
2724 const WCHAR *str;
2725 unsigned int len;
2727}
2728auth_schemes[] =
2729{
2736
2738{
2739 unsigned int i;
2740 for (i = 0; i < ARRAY_SIZE(auth_schemes); i++)
2741 {
2743 (header[auth_schemes[i].len] == ' ' || !header[auth_schemes[i].len])) return auth_schemes[i].scheme;
2744 }
2745 return 0;
2746}
2747
2749{
2750 DWORD len, index = 0;
2751 for (;;)
2752 {
2753 len = buflen;
2755 if (auth_scheme_from_header(buffer) == scheme) break;
2756 }
2757 return TRUE;
2758}
2759
2761 const RPC_HTTP_TRANSPORT_CREDENTIALS_W *creds, struct authinfo **auth_ptr)
2762{
2763 struct authinfo *info = *auth_ptr;
2766
2767 if ((!info && !(info = alloc_authinfo()))) return RPC_S_SERVER_UNAVAILABLE;
2768
2769 switch (creds->AuthnSchemes[0])
2770 {
2772 {
2773 int userlen = WideCharToMultiByte(CP_UTF8, 0, id->User, id->UserLength, NULL, 0, NULL, NULL);
2774 int passlen = WideCharToMultiByte(CP_UTF8, 0, id->Password, id->PasswordLength, NULL, 0, NULL, NULL);
2775
2776 info->data_len = userlen + passlen + 1;
2777 if (!(info->data = HeapAlloc(GetProcessHeap(), 0, info->data_len)))
2778 {
2780 break;
2781 }
2782 WideCharToMultiByte(CP_UTF8, 0, id->User, id->UserLength, info->data, userlen, NULL, NULL);
2783 info->data[userlen] = ':';
2784 WideCharToMultiByte(CP_UTF8, 0, id->Password, id->PasswordLength, info->data + userlen + 1, passlen, NULL, NULL);
2785
2787 info->finished = TRUE;
2788 status = RPC_S_OK;
2789 break;
2790 }
2793 {
2794
2795 static SEC_WCHAR ntlmW[] = {'N','T','L','M',0}, negotiateW[] = {'N','e','g','o','t','i','a','t','e',0};
2797 SecBufferDesc out_desc, in_desc;
2798 SecBuffer out, in;
2801 int scheme_len;
2802 const WCHAR *p;
2803 WCHAR auth_value[2048];
2804 DWORD size = sizeof(auth_value);
2805 BOOL first = FALSE;
2806
2808 else scheme = negotiateW;
2809 scheme_len = lstrlenW( scheme );
2810
2811 if (!*auth_ptr)
2812 {
2813 TimeStamp exp;
2814 SecPkgInfoW *pkg_info;
2815
2817 if (ret != SEC_E_OK) break;
2818
2819 ret = QuerySecurityPackageInfoW(scheme, &pkg_info);
2820 if (ret != SEC_E_OK) break;
2821
2822 info->max_token = pkg_info->cbMaxToken;
2823 FreeContextBuffer(pkg_info);
2824 first = TRUE;
2825 }
2826 else
2827 {
2828 if (info->finished || !get_authvalue(request, creds->AuthnSchemes[0], auth_value, size)) break;
2829 if (auth_scheme_from_header(auth_value) != info->scheme)
2830 {
2831 ERR("authentication scheme changed\n");
2832 break;
2833 }
2834 }
2835 in.BufferType = SECBUFFER_TOKEN;
2836 in.cbBuffer = 0;
2837 in.pvBuffer = NULL;
2838
2839 in_desc.ulVersion = 0;
2840 in_desc.cBuffers = 1;
2841 in_desc.pBuffers = &in;
2842
2843 p = auth_value + scheme_len;
2844 if (!first && *p == ' ')
2845 {
2846 int len = lstrlenW(++p);
2847 in.cbBuffer = decode_base64(p, len, NULL);
2848 if (!(in.pvBuffer = HeapAlloc(GetProcessHeap(), 0, in.cbBuffer))) break;
2849 decode_base64(p, len, in.pvBuffer);
2850 }
2851 out.BufferType = SECBUFFER_TOKEN;
2852 out.cbBuffer = info->max_token;
2853 if (!(out.pvBuffer = HeapAlloc(GetProcessHeap(), 0, out.cbBuffer)))
2854 {
2855 HeapFree(GetProcessHeap(), 0, in.pvBuffer);
2856 break;
2857 }
2858 out_desc.ulVersion = 0;
2859 out_desc.cBuffers = 1;
2860 out_desc.pBuffers = &out;
2861
2862 ret = InitializeSecurityContextW(first ? &info->cred : NULL, first ? NULL : &info->ctx,
2863 first ? servername : NULL, flags, 0, SECURITY_NETWORK_DREP,
2864 in.pvBuffer ? &in_desc : NULL, 0, &info->ctx, &out_desc,
2865 &info->attr, &info->exp);
2866 HeapFree(GetProcessHeap(), 0, in.pvBuffer);
2867 if (ret == SEC_E_OK)
2868 {
2869 HeapFree(GetProcessHeap(), 0, info->data);
2870 info->data = out.pvBuffer;
2871 info->data_len = out.cbBuffer;
2872 info->finished = TRUE;
2873 TRACE("sending last auth packet\n");
2874 status = RPC_S_OK;
2875 }
2876 else if (ret == SEC_I_CONTINUE_NEEDED)
2877 {
2878 HeapFree(GetProcessHeap(), 0, info->data);
2879 info->data = out.pvBuffer;
2880 info->data_len = out.cbBuffer;
2881 TRACE("sending next auth packet\n");
2882 status = RPC_S_OK;
2883 }
2884 else
2885 {
2886 ERR("InitializeSecurityContextW failed with error 0x%08x\n", ret);
2887 HeapFree(GetProcessHeap(), 0, out.pvBuffer);
2888 break;
2889 }
2890 info->scheme = creds->AuthnSchemes[0];
2891 break;
2892 }
2893 default:
2894 FIXME("scheme %u not supported\n", creds->AuthnSchemes[0]);
2895 break;
2896 }
2897
2898 if (status != RPC_S_OK)
2899 {
2901 *auth_ptr = NULL;
2902 return status;
2903 }
2904 *auth_ptr = info;
2905 return RPC_S_OK;
2906}
2907
2909{
2910 static const WCHAR authW[] = {'A','u','t','h','o','r','i','z','a','t','i','o','n',':',' '};
2911 static const WCHAR basicW[] = {'B','a','s','i','c',' '};
2912 static const WCHAR negotiateW[] = {'N','e','g','o','t','i','a','t','e',' '};
2913 static const WCHAR ntlmW[] = {'N','T','L','M',' '};
2914 int scheme_len, auth_len = ARRAY_SIZE(authW), len = ((data_len + 2) * 4) / 3;
2915 const WCHAR *scheme_str;
2916 WCHAR *header, *ptr;
2918
2919 switch (scheme)
2920 {
2922 scheme_str = basicW;
2923 scheme_len = ARRAY_SIZE(basicW);
2924 break;
2926 scheme_str = negotiateW;
2927 scheme_len = ARRAY_SIZE(negotiateW);
2928 break;
2930 scheme_str = ntlmW;
2931 scheme_len = ARRAY_SIZE(ntlmW);
2932 break;
2933 default:
2934 ERR("unknown scheme %u\n", scheme);
2936 }
2937 if ((header = HeapAlloc(GetProcessHeap(), 0, (auth_len + scheme_len + len + 2) * sizeof(WCHAR))))
2938 {
2939 memcpy(header, authW, auth_len * sizeof(WCHAR));
2940 ptr = header + auth_len;
2941 memcpy(ptr, scheme_str, scheme_len * sizeof(WCHAR));
2942 ptr += scheme_len;
2944 ptr[len++] = '\r';
2945 ptr[len++] = '\n';
2946 ptr[len] = 0;
2948 status = RPC_S_OK;
2950 }
2951 return status;
2952}
2953
2954static void drain_content(HINTERNET request, RpcHttpAsyncData *async_data, HANDLE cancel_event)
2955{
2956 DWORD count, len = 0, size = sizeof(len);
2957 char buf[2048];
2958
2960 if (!len) return;
2961 for (;;)
2962 {
2963 count = min(sizeof(buf), len);
2964 if (rpcrt4_http_async_read(request, async_data, cancel_event, buf, count) <= 0) return;
2965 len -= count;
2966 }
2967}
2968
2970{
2971 static const WCHAR authW[] = {'A','u','t','h','o','r','i','z','a','t','i','o','n',':','\r','\n',0};
2972 struct authinfo *info = NULL;
2974 BOOL ret;
2975
2976 for (;;)
2977 {
2979 if (status != RPC_S_OK) break;
2980
2981 status = insert_authorization_header(request, info->scheme, info->data, info->data_len);
2982 if (status != RPC_S_OK) break;
2983
2987 if (status != RPC_S_OK || info->finished) break;
2988
2990 if (status != RPC_S_OK && status != ERROR_ACCESS_DENIED) break;
2992 }
2993
2994 if (info->scheme != RPC_C_HTTP_AUTHN_SCHEME_BASIC)
2996
2998 return status;
2999}
3000
3002{
3005
3007 return FALSE;
3008
3009 creds = httpc->common.QOS->qos->u.HttpCredentials;
3011 return FALSE;
3012
3013 id = creds->TransportCredentials;
3014 if (!id || !id->User || !id->Password) return FALSE;
3015
3016 return TRUE;
3017}
3018
3020{
3021 return httpc->common.QOS &&
3024}
3025
3027{
3028 static WCHAR httpW[] = {'h','t','t','p',0};
3029 static WCHAR httpsW[] = {'h','t','t','p','s',0};
3030 URL_COMPONENTSW uc;
3031 DWORD len;
3032 WCHAR *url;
3033 BOOL ret;
3034
3035 if (!value) return RPC_S_OK;
3036
3037 uc.dwStructSize = sizeof(uc);
3038 uc.lpszScheme = is_secure(httpc) ? httpsW : httpW;
3039 uc.dwSchemeLength = 0;
3040 uc.lpszHostName = httpc->servername;
3041 uc.dwHostNameLength = 0;
3042 uc.nPort = 0;
3043 uc.lpszUserName = NULL;
3044 uc.dwUserNameLength = 0;
3045 uc.lpszPassword = NULL;
3046 uc.dwPasswordLength = 0;
3047 uc.lpszUrlPath = NULL;
3048 uc.dwUrlPathLength = 0;
3049 uc.lpszExtraInfo = NULL;
3050 uc.dwExtraInfoLength = 0;
3051
3054
3055 if (!(url = HeapAlloc(GetProcessHeap(), 0, len))) return RPC_S_OUT_OF_MEMORY;
3056
3057 len = len / sizeof(WCHAR) - 1;
3058 if (!InternetCreateUrlW(&uc, 0, url, &len))
3059 {
3062 }
3063
3066 if (!ret) return RPC_S_SERVER_UNAVAILABLE;
3067
3068 return RPC_S_OK;
3069}
3070
3072{
3073 RpcConnection_http *httpc = (RpcConnection_http *)Connection;
3074 static const WCHAR wszVerbIn[] = {'R','P','C','_','I','N','_','D','A','T','A',0};
3075 static const WCHAR wszVerbOut[] = {'R','P','C','_','O','U','T','_','D','A','T','A',0};
3076 static const WCHAR wszRpcProxyPrefix[] = {'/','r','p','c','/','r','p','c','p','r','o','x','y','.','d','l','l','?',0};
3077 static const WCHAR wszColon[] = {':',0};
3078 static const WCHAR wszAcceptType[] = {'a','p','p','l','i','c','a','t','i','o','n','/','r','p','c',0};
3079 LPCWSTR wszAcceptTypes[] = { wszAcceptType, NULL };
3080 DWORD flags;
3081 WCHAR *url;
3083 BOOL secure, credentials;
3084 HttpTimerThreadData *timer_data;
3085 HANDLE thread;
3086
3087 TRACE("(%s, %s)\n", Connection->NetworkAddr, Connection->Endpoint);
3088
3089 if (Connection->server)
3090 {
3091 ERR("ncacn_http servers not supported yet\n");
3093 }
3094
3095 if (httpc->in_request)
3096 return RPC_S_OK;
3097
3099
3100 UuidCreate(&httpc->connection_uuid);
3101 UuidCreate(&httpc->in_pipe_uuid);
3102 UuidCreate(&httpc->out_pipe_uuid);
3103
3105 if (status != RPC_S_OK)
3106 return status;
3107
3108 url = HeapAlloc(GetProcessHeap(), 0, sizeof(wszRpcProxyPrefix) + (strlen(Connection->NetworkAddr) + 1 + strlen(Connection->Endpoint))*sizeof(WCHAR));
3109 if (!url)
3110 return RPC_S_OUT_OF_MEMORY;
3111 memcpy(url, wszRpcProxyPrefix, sizeof(wszRpcProxyPrefix));
3112 MultiByteToWideChar(CP_ACP, 0, Connection->NetworkAddr, -1, url+ARRAY_SIZE(wszRpcProxyPrefix)-1,
3113 strlen(Connection->NetworkAddr)+1);
3114 lstrcatW(url, wszColon);
3115 MultiByteToWideChar(CP_ACP, 0, Connection->Endpoint, -1, url+lstrlenW(url), strlen(Connection->Endpoint)+1);
3116
3117 secure = is_secure(httpc);
3118 credentials = has_credentials(httpc);
3119
3123 if (credentials) flags |= INTERNET_FLAG_NO_AUTH;
3124
3125 status = set_auth_cookie(httpc, Connection->CookieAuth);
3126 if (status != RPC_S_OK)
3127 {
3129 return status;
3130 }
3131 httpc->in_request = HttpOpenRequestW(httpc->session, wszVerbIn, url, NULL, NULL, wszAcceptTypes,
3132 flags, (DWORD_PTR)httpc->async_data);
3133 if (!httpc->in_request)
3134 {
3135 ERR("HttpOpenRequestW failed with error %d\n", GetLastError());
3138 }
3139
3140 if (credentials)
3141 {
3142 status = authorize_request(httpc, httpc->in_request);
3143 if (status != RPC_S_OK)
3144 {
3146 return status;
3147 }
3149 if (status != RPC_S_OK)
3150 {
3152 return status;
3153 }
3154 drain_content(httpc->in_request, httpc->async_data, httpc->cancel_event);
3155 }
3156
3157 httpc->out_request = HttpOpenRequestW(httpc->session, wszVerbOut, url, NULL, NULL, wszAcceptTypes,
3158 flags, (DWORD_PTR)httpc->async_data);
3160 if (!httpc->out_request)
3161 {
3162 ERR("HttpOpenRequestW failed with error %d\n", GetLastError());
3164 }
3165
3166 if (credentials)
3167 {
3168 status = authorize_request(httpc, httpc->out_request);
3169 if (status != RPC_S_OK)
3170 return status;
3171 }
3172
3174 &httpc->connection_uuid, &httpc->in_pipe_uuid,
3175 &Connection->assoc->http_uuid, credentials);
3176 if (status != RPC_S_OK)
3177 return status;
3178
3180 &httpc->connection_uuid, &httpc->out_pipe_uuid,
3181 &httpc->flow_control_increment, credentials);
3182 if (status != RPC_S_OK)
3183 return status;
3184
3185 httpc->flow_control_mark = httpc->flow_control_increment / 2;
3186 httpc->last_sent_time = GetTickCount();
3188
3189 timer_data = HeapAlloc(GetProcessHeap(), 0, sizeof(*timer_data));
3190 if (!timer_data)
3191 return ERROR_OUTOFMEMORY;
3192 timer_data->timer_param = httpc->in_request;
3193 timer_data->last_sent_time = &httpc->last_sent_time;
3194 timer_data->timer_cancelled = httpc->timer_cancelled;
3195 /* FIXME: should use CreateTimerQueueTimer when implemented */
3196 thread = CreateThread(NULL, 0, rpcrt4_http_timer_thread, timer_data, 0, NULL);
3197 if (!thread)
3198 {
3199 HeapFree(GetProcessHeap(), 0, timer_data);
3200 return GetLastError();
3201 }
3203
3204 return RPC_S_OK;
3205}
3206
3208{
3209 assert(0);
3211}
3212
3214 void *buffer, unsigned int count)
3215{
3216 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3217 return rpcrt4_http_async_read(httpc->out_request, httpc->async_data, httpc->cancel_event, buffer, count);
3218}
3219
3221{
3222 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3224 DWORD hdr_length;
3225 LONG dwRead;
3226 RpcPktCommonHdr common_hdr;
3227
3228 *Header = NULL;
3229
3230 TRACE("(%p, %p, %p)\n", Connection, Header, Payload);
3231
3232again:
3233 /* read packet common header */
3234 dwRead = rpcrt4_ncacn_http_read(Connection, &common_hdr, sizeof(common_hdr));
3235 if (dwRead != sizeof(common_hdr)) {
3236 WARN("Short read of header, %d bytes\n", dwRead);
3238 goto fail;
3239 }
3240 if (!memcmp(&common_hdr, "HTTP/1.1", sizeof("HTTP/1.1")) ||
3241 !memcmp(&common_hdr, "HTTP/1.0", sizeof("HTTP/1.0")))
3242 {
3243 FIXME("server returned %s\n", debugstr_a((const char *)&common_hdr));
3245 goto fail;
3246 }
3247
3248 status = RPCRT4_ValidateCommonHeader(&common_hdr);
3249 if (status != RPC_S_OK) goto fail;
3250
3251 hdr_length = RPCRT4_GetHeaderSize((RpcPktHdr*)&common_hdr);
3252 if (hdr_length == 0) {
3253 WARN("header length == 0\n");
3255 goto fail;
3256 }
3257
3258 *Header = HeapAlloc(GetProcessHeap(), 0, hdr_length);
3259 if (!*Header)
3260 {
3262 goto fail;
3263 }
3264 memcpy(*Header, &common_hdr, sizeof(common_hdr));
3265
3266 /* read the rest of packet header */
3267 dwRead = rpcrt4_ncacn_http_read(Connection, &(*Header)->common + 1, hdr_length - sizeof(common_hdr));
3268 if (dwRead != hdr_length - sizeof(common_hdr)) {
3269 WARN("bad header length, %d bytes, hdr_length %d\n", dwRead, hdr_length);
3271 goto fail;
3272 }
3273
3274 if (common_hdr.frag_len - hdr_length)
3275 {
3276 *Payload = HeapAlloc(GetProcessHeap(), 0, common_hdr.frag_len - hdr_length);
3277 if (!*Payload)
3278 {
3280 goto fail;
3281 }
3282
3283 dwRead = rpcrt4_ncacn_http_read(Connection, *Payload, common_hdr.frag_len - hdr_length);
3284 if (dwRead != common_hdr.frag_len - hdr_length)
3285 {
3286 WARN("bad data length, %d/%d\n", dwRead, common_hdr.frag_len - hdr_length);
3288 goto fail;
3289 }
3290 }
3291 else
3292 *Payload = NULL;
3293
3294 if ((*Header)->common.ptype == PKT_HTTP)
3295 {
3296 if (!RPCRT4_IsValidHttpPacket(*Header, *Payload, common_hdr.frag_len - hdr_length))
3297 {
3298 ERR("invalid http packet of length %d bytes\n", (*Header)->common.frag_len);
3300 goto fail;
3301 }
3302 if ((*Header)->http.flags == 0x0001)
3303 {
3304 TRACE("http idle packet, waiting for real packet\n");
3305 if ((*Header)->http.num_data_items != 0)
3306 {
3307 ERR("HTTP idle packet should have no data items instead of %d\n", (*Header)->http.num_data_items);
3309 goto fail;
3310 }
3311 }
3312 else if ((*Header)->http.flags == 0x0002)
3313 {
3314 ULONG bytes_transmitted;
3315 ULONG flow_control_increment;
3316 UUID pipe_uuid;
3318 Connection->server,
3319 &bytes_transmitted,
3320 &flow_control_increment,
3321 &pipe_uuid);
3322 if (status != RPC_S_OK)
3323 goto fail;
3324 TRACE("received http flow control header (0x%x, 0x%x, %s)\n",
3325 bytes_transmitted, flow_control_increment, debugstr_guid(&pipe_uuid));
3326 /* FIXME: do something with parsed data */
3327 }
3328 else
3329 {
3330 FIXME("unrecognised http packet with flags 0x%04x\n", (*Header)->http.flags);
3332 goto fail;
3333 }
3335 *Header = NULL;
3336 HeapFree(GetProcessHeap(), 0, *Payload);
3337 *Payload = NULL;
3338 goto again;
3339 }
3340
3341 /* success */
3342 status = RPC_S_OK;
3343
3344 httpc->bytes_received += common_hdr.frag_len;
3345
3346 TRACE("httpc->bytes_received = 0x%x\n", httpc->bytes_received);
3347
3348 if (httpc->bytes_received > httpc->flow_control_mark)
3349 {
3351 httpc->bytes_received,
3353 &httpc->out_pipe_uuid);
3354 if (hdr)
3355 {
3356 DWORD bytes_written;
3357 BOOL ret2;
3358 TRACE("sending flow control packet at 0x%x\n", httpc->bytes_received);
3359 ret2 = InternetWriteFile(httpc->in_request, hdr, hdr->common.frag_len, &bytes_written);
3361 if (ret2)
3362 httpc->flow_control_mark = httpc->bytes_received + httpc->flow_control_increment / 2;
3363 }
3364 }
3365
3366fail:
3367 if (status != RPC_S_OK) {
3369 *Header = NULL;
3370 HeapFree(GetProcessHeap(), 0, *Payload);
3371 *Payload = NULL;
3372 }
3373 return status;
3374}
3375
3377 const void *buffer, unsigned int count)
3378{
3379 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3380 DWORD bytes_written;
3381 BOOL ret;
3382
3383 httpc->last_sent_time = ~0U; /* disable idle packet sending */
3384 ret = InternetWriteFile(httpc->in_request, buffer, count, &bytes_written);
3385 httpc->last_sent_time = GetTickCount();
3386 TRACE("%p %p %u -> %s\n", httpc->in_request, buffer, count, ret ? "TRUE" : "FALSE");
3387 return ret ? bytes_written : -1;
3388}
3389
3391{
3392 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3393
3394 TRACE("\n");
3395
3396 SetEvent(httpc->timer_cancelled);
3397 if (httpc->in_request)
3399 httpc->in_request = NULL;
3400 if (httpc->out_request)
3402 httpc->out_request = NULL;
3403 if (httpc->app_info)
3405 httpc->app_info = NULL;
3406 if (httpc->session)
3408 httpc->session = NULL;
3410 if (httpc->cancel_event)
3411 CloseHandle(httpc->cancel_event);
3412 HeapFree(GetProcessHeap(), 0, httpc->servername);
3413 httpc->servername = NULL;
3414
3415 return 0;
3416}
3417
3419{
3420 rpcrt4_ncacn_http_close(conn); /* FIXME */
3421}
3422
3424{
3425 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3426
3427 SetEvent(httpc->cancel_event);
3428}
3429
3431{
3432 FIXME("\n");
3433 return RPC_S_ACCESS_DENIED;
3434}
3435
3437{
3438 RpcConnection_http *httpc = (RpcConnection_http *) Connection;
3439 BOOL ret;
3441
3446 return status == RPC_S_OK ? 0 : -1;
3447}
3448
3449static size_t rpcrt4_ncacn_http_get_top_of_tower(unsigned char *tower_data,
3450 const char *networkaddr,
3451 const char *endpoint)
3452{
3453 return rpcrt4_ip_tcp_get_top_of_tower(tower_data, networkaddr,
3455}
3456
3457static RPC_STATUS rpcrt4_ncacn_http_parse_top_of_tower(const unsigned char *tower_data,
3458 size_t tower_size,
3459 char **networkaddr,
3460 char **endpoint)
3461{
3462 return rpcrt4_ip_tcp_parse_top_of_tower(tower_data, tower_size,
3463 networkaddr, EPM_PROTOCOL_HTTP,
3464 endpoint);
3465}
3466
3467static const struct connection_ops conn_protseq_list[] = {
3468 { "ncacn_np",
3482 NULL,
3489 },
3490 { "ncalrpc",
3504 NULL,
3511 },
3512 { "ncacn_ip_tcp",
3526 NULL,
3533 },
3534 { "ncacn_http",
3555 },
3556};
3557
3558
3559static const struct protseq_ops protseq_list[] =
3560{
3561 {
3562 "ncacn_np",
3569 },
3570 {
3571 "ncalrpc",
3578 },
3579 {
3580 "ncacn_ip_tcp",
3587 },
3588};
3589
3590const struct protseq_ops *rpcrt4_get_protseq_ops(const char *protseq)
3591{
3592 unsigned int i;
3593 for(i = 0; i < ARRAY_SIZE(protseq_list); i++)
3594 if (!strcmp(protseq_list[i].name, protseq))
3595 return &protseq_list[i];
3596 return NULL;
3597}
3598
3599static const struct connection_ops *rpcrt4_get_conn_protseq_ops(const char *protseq)
3600{
3601 unsigned int i;
3602 for(i = 0; i < ARRAY_SIZE(conn_protseq_list); i++)
3603 if (!strcmp(conn_protseq_list[i].name, protseq))
3604 return &conn_protseq_list[i];
3605 return NULL;
3606}
3607
3608/**** interface to rest of code ****/
3609
3611{
3612 TRACE("(Connection == ^%p)\n", Connection);
3613
3614 assert(!Connection->server);
3615 return Connection->ops->open_connection_client(Connection);
3616}
3617
3619{
3620 TRACE("(Connection == ^%p)\n", Connection);
3621 if (SecIsValidHandle(&Connection->ctx))
3622 {
3623 DeleteSecurityContext(&Connection->ctx);
3624 SecInvalidateHandle(&Connection->ctx);
3625 }
3626 rpcrt4_conn_close(Connection);
3627 return RPC_S_OK;
3628}
3629
3631 LPCSTR Protseq, LPCSTR NetworkAddr, LPCSTR Endpoint,
3632 LPCWSTR NetworkOptions, RpcAuthInfo* AuthInfo, RpcQualityOfService *QOS, LPCWSTR CookieAuth)
3633{
3634 static LONG next_id;
3635 const struct connection_ops *ops;
3636 RpcConnection* NewConnection;
3637
3638 ops = rpcrt4_get_conn_protseq_ops(Protseq);
3639 if (!ops)
3640 {
3641 FIXME("not supported for protseq %s\n", Protseq);
3643 }
3644
3645 NewConnection = ops->alloc();
3646 NewConnection->ref = 1;
3647 NewConnection->server = server;
3648 NewConnection->ops = ops;
3649 NewConnection->NetworkAddr = RPCRT4_strdupA(NetworkAddr);
3650 NewConnection->Endpoint = RPCRT4_strdupA(Endpoint);
3651 NewConnection->NetworkOptions = RPCRT4_strdupW(NetworkOptions);
3652 NewConnection->CookieAuth = RPCRT4_strdupW(CookieAuth);
3654 NewConnection->NextCallId = 1;
3655
3656 SecInvalidateHandle(&NewConnection->ctx);
3657 if (AuthInfo) RpcAuthInfo_AddRef(AuthInfo);
3658 NewConnection->AuthInfo = AuthInfo;
3659 NewConnection->auth_context_id = InterlockedIncrement( &next_id );
3661 NewConnection->QOS = QOS;
3662
3663 list_init(&NewConnection->conn_pool_entry);
3664 list_init(&NewConnection->protseq_entry);
3665
3666 TRACE("connection: %p\n", NewConnection);
3667 *Connection = NewConnection;
3668
3669 return RPC_S_OK;
3670}
3671
3673{
3674 RpcConnection *connection;
3676
3677 err = RPCRT4_CreateConnection(&connection, old_connection->server, rpcrt4_conn_get_name(old_connection),
3678 old_connection->NetworkAddr, old_connection->Endpoint, NULL,
3679 old_connection->AuthInfo, old_connection->QOS, old_connection->CookieAuth);
3680 if (err != RPC_S_OK)
3681 return NULL;
3682
3683 rpcrt4_conn_handoff(old_connection, connection);
3684 if (old_connection->protseq)
3685 {
3686 EnterCriticalSection(&old_connection->protseq->cs);
3687 connection->protseq = old_connection->protseq;
3688 list_add_tail(&old_connection->protseq->connections, &connection->protseq_entry);
3689 LeaveCriticalSection(&old_connection->protseq->cs);
3690 }
3691 return connection;
3692}
3693
3695{
3696 HANDLE event = NULL;
3697
3698 if (connection->ref > 1)
3699 event = connection->wait_release = CreateEventW(NULL, TRUE, FALSE, NULL);
3700
3701 RPCRT4_ReleaseConnection(connection);
3702
3703 if(event)
3704 {
3707 }
3708}
3709
3711{
3712 LONG ref = InterlockedIncrement(&connection->ref);
3713 TRACE("%p ref=%u\n", connection, ref);
3714 return connection;
3715}
3716
3718{
3719 LONG ref;
3720
3721 /* protseq stores a list of active connections, but does not own references to them.
3722 * It may need to grab a connection from the list, which could lead to a race if
3723 * connection is being released, but not yet removed from the list. We handle that
3724 * by synchronizing on CS here. */
3725 if (connection->protseq)
3726 {
3727 EnterCriticalSection(&connection->protseq->cs);
3728 ref = InterlockedDecrement(&connection->ref);
3729 if (!ref)
3730 list_remove(&connection->protseq_entry);
3731 LeaveCriticalSection(&connection->protseq->cs);
3732 }
3733 else
3734 {
3735 ref = InterlockedDecrement(&connection->ref);
3736 }
3737
3738 TRACE("%p ref=%u\n", connection, ref);
3739
3740 if (!ref)
3741 {
3742 RPCRT4_CloseConnection(connection);
3743 RPCRT4_strfree(connection->Endpoint);
3744 RPCRT4_strfree(connection->NetworkAddr);
3745 HeapFree(GetProcessHeap(), 0, connection->NetworkOptions);
3746 HeapFree(GetProcessHeap(), 0, connection->CookieAuth);
3747 if (connection->AuthInfo) RpcAuthInfo_Release(connection->AuthInfo);
3748 if (connection->QOS) RpcQualityOfService_Release(connection->QOS);
3749
3750 /* server-only */
3751 if (connection->server_binding) RPCRT4_ReleaseBinding(connection->server_binding);
3752 else if (connection->assoc) RpcAssoc_ConnectionReleased(connection->assoc);
3753
3754 if (connection->wait_release) SetEvent(connection->wait_release);
3755
3756 HeapFree(GetProcessHeap(), 0, connection);
3757 }
3758}
3759
3760RPC_STATUS RPCRT4_IsServerListening(const char *protseq, const char *endpoint)
3761{
3762 const struct connection_ops *ops;
3763
3764 ops = rpcrt4_get_conn_protseq_ops(protseq);
3765 if (!ops)
3766 {
3767 FIXME("not supported for protseq %s\n", protseq);
3768 return RPC_S_INVALID_BINDING;
3769 }
3770
3771 return ops->is_server_listening(endpoint);
3772}
3773
3774RPC_STATUS RpcTransport_GetTopOfTower(unsigned char *tower_data,
3775 size_t *tower_size,
3776 const char *protseq,
3777 const char *networkaddr,
3778 const char *endpoint)
3779{
3780 twr_empty_floor_t *protocol_floor;
3782
3783 *tower_size = 0;
3784
3785 if (!protseq_ops)
3787
3788 if (!tower_data)
3789 {
3790 *tower_size = sizeof(*protocol_floor);
3791 *tower_size += protseq_ops->get_top_of_tower(NULL, networkaddr, endpoint);
3792 return RPC_S_OK;
3793 }
3794
3795 protocol_floor = (twr_empty_floor_t *)tower_data;
3796 protocol_floor->count_lhs = sizeof(protocol_floor->protid);
3797 protocol_floor->protid = protseq_ops->epm_protocols[0];
3798 protocol_floor->count_rhs = 0;
3799
3800 tower_data += sizeof(*protocol_floor);
3801
3802 *tower_size = protseq_ops->get_top_of_tower(tower_data, networkaddr, endpoint);
3803 if (!*tower_size)
3804 return EPT_S_NOT_REGISTERED;
3805
3806 *tower_size += sizeof(*protocol_floor);
3807
3808 return RPC_S_OK;
3809}
3810
3811RPC_STATUS RpcTransport_ParseTopOfTower(const unsigned char *tower_data,
3812 size_t tower_size,
3813 char **protseq,
3814 char **networkaddr,
3815 char **endpoint)
3816{
3817 const twr_empty_floor_t *protocol_floor;
3818 const twr_empty_floor_t *floor4;
3819 const struct connection_ops *protseq_ops = NULL;
3821 unsigned int i;
3822
3823 if (tower_size < sizeof(*protocol_floor))
3824 return EPT_S_NOT_REGISTERED;
3825
3826 protocol_floor = (const twr_empty_floor_t *)tower_data;
3827 tower_data += sizeof(*protocol_floor);
3828 tower_size -= sizeof(*protocol_floor);
3829 if ((protocol_floor->count_lhs != sizeof(protocol_floor->protid)) ||
3830 (protocol_floor->count_rhs > tower_size))
3831 return EPT_S_NOT_REGISTERED;
3832 tower_data += protocol_floor->count_rhs;
3833 tower_size -= protocol_floor->count_rhs;
3834
3835 floor4 = (const twr_empty_floor_t *)tower_data;
3836 if ((tower_size < sizeof(*floor4)) ||
3837 (floor4->count_lhs != sizeof(floor4->protid)))
3838 return EPT_S_NOT_REGISTERED;
3839
3840 for(i = 0; i < ARRAY_SIZE(conn_protseq_list); i++)
3841 if ((protocol_floor->protid == conn_protseq_list[i].epm_protocols[0]) &&
3842 (floor4->protid == conn_protseq_list[i].epm_protocols[1]))
3843 {
3845 break;
3846 }
3847
3848 if (!protseq_ops)
3849 return EPT_S_NOT_REGISTERED;
3850
3851 status = protseq_ops->parse_top_of_tower(tower_data, tower_size, networkaddr, endpoint);
3852
3853 if ((status == RPC_S_OK) && protseq)
3854 {
3855 *protseq = I_RpcAllocate(strlen(protseq_ops->name) + 1);
3856 strcpy(*protseq, protseq_ops->name);
3857 }
3858
3859 return status;
3860}
3861
3862/***********************************************************************
3863 * RpcNetworkIsProtseqValidW (RPCRT4.@)
3864 *
3865 * Checks if the given protocol sequence is known by the RPC system.
3866 * If it is, returns RPC_S_OK, otherwise RPC_S_PROTSEQ_NOT_SUPPORTED.
3867 *
3868 */
3870{
3871 char ps[0x10];
3872
3873 WideCharToMultiByte(CP_ACP, 0, protseq, -1,
3874 ps, sizeof ps, NULL, NULL);
3876 return RPC_S_OK;
3877
3878 FIXME("Unknown protseq %s\n", debugstr_w(protseq));
3879
3881}
3882
3883/***********************************************************************
3884 * RpcNetworkIsProtseqValidA (RPCRT4.@)
3885 */
3887{
3888 UNICODE_STRING protseqW;
3889
3890 if (RtlCreateUnicodeStringFromAsciiz(&protseqW, (char*)protseq))
3891 {
3893 RtlFreeUnicodeString(&protseqW);
3894 return ret;
3895 }
3896 return RPC_S_OUT_OF_MEMORY;
3897}
3898
3899/***********************************************************************
3900 * RpcProtseqVectorFreeA (RPCRT4.@)
3901 */
3903{
3904 TRACE("(%p)\n", protseqs);
3905
3906 if (*protseqs)
3907 {
3908 unsigned int i;
3909 for (i = 0; i < (*protseqs)->Count; i++)
3910 HeapFree(GetProcessHeap(), 0, (*protseqs)->Protseq[i]);
3912 *protseqs = NULL;
3913 }
3914 return RPC_S_OK;
3915}
3916
3917/***********************************************************************
3918 * RpcProtseqVectorFreeW (RPCRT4.@)
3919 */
3921{
3922 TRACE("(%p)\n", protseqs);
3923
3924 if (*protseqs)
3925 {
3926 unsigned int i;
3927 for (i = 0; i < (*protseqs)->Count; i++)
3928 HeapFree(GetProcessHeap(), 0, (*protseqs)->Protseq[i]);
3930 *protseqs = NULL;
3931 }
3932 return RPC_S_OK;
3933}
3934
3935/***********************************************************************
3936 * RpcNetworkInqProtseqsW (RPCRT4.@)
3937 */
3939{
3940 RPC_PROTSEQ_VECTORW *pvector;
3941 unsigned int i;
3943
3944 TRACE("(%p)\n", protseqs);
3945
3946 *protseqs = HeapAlloc(GetProcessHeap(), 0, sizeof(RPC_PROTSEQ_VECTORW)+(sizeof(unsigned short*)*ARRAY_SIZE(protseq_list)));
3947 if (!*protseqs)
3948 goto end;
3949 pvector = *protseqs;
3950 pvector->Count = 0;
3951 for (i = 0;