ReactOS 0.4.16-dev-456-ga97fcf1
encode.c
Go to the documentation of this file.
1/*
2 * Copyright 2005-2008 Juan Lang
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
17 *
18 * This file implements ASN.1 DER encoding of a limited set of types.
19 * It isn't a full ASN.1 implementation. Microsoft implements BER
20 * encoding of many of the basic types in msasn1.dll, but that interface isn't
21 * implemented, so I implement them here.
22 *
23 * References:
24 * "A Layman's Guide to a Subset of ASN.1, BER, and DER", by Burton Kaliski
25 * (available online, look for a PDF copy as the HTML versions tend to have
26 * translation errors.)
27 *
28 * RFC3280, http://www.faqs.org/rfcs/rfc3280.html
29 *
30 * MSDN, especially "Constants for CryptEncodeObject and CryptDecodeObject"
31 */
32
33#include "config.h"
34#include "wine/port.h"
35
36#include <assert.h>
37#include <stdarg.h>
38#include <stdio.h>
39#include <stdlib.h>
40
41#define NONAMELESSUNION
42
43#include "windef.h"
44#include "winbase.h"
45#include "wincrypt.h"
46#include "snmp.h"
47#include "wine/debug.h"
48#include "wine/exception.h"
49#include "wine/unicode.h"
50#include "crypt32_private.h"
51
54
55typedef BOOL (WINAPI *CryptEncodeObjectFunc)(DWORD, LPCSTR, const void *,
56 BYTE *, DWORD *);
57
58/* Prototypes for built-in encoders. They follow the Ex style prototypes.
59 * The dwCertEncodingType and lpszStructType are ignored by the built-in
60 * functions, but the parameters are retained to simplify CryptEncodeObjectEx,
61 * since it must call functions in external DLLs that follow these signatures.
62 */
64 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
67 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
70 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
73 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
76 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
79 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
82 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
85 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
88 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
91 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
94 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
97 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
100 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
102
104 BYTE *pbEncoded, DWORD *pcbEncoded, DWORD bytesNeeded)
105{
106 BOOL ret = TRUE;
107
109 {
110 if (pEncodePara && pEncodePara->pfnAlloc)
111 *(BYTE **)pbEncoded = pEncodePara->pfnAlloc(bytesNeeded);
112 else
113 *(BYTE **)pbEncoded = LocalAlloc(0, bytesNeeded);
114 if (!*(BYTE **)pbEncoded)
115 ret = FALSE;
116 else
117 *pcbEncoded = bytesNeeded;
118 }
119 else if (bytesNeeded > *pcbEncoded)
120 {
121 *pcbEncoded = bytesNeeded;
123 ret = FALSE;
124 }
125 else
126 *pcbEncoded = bytesNeeded;
127 return ret;
128}
129
130static void CRYPT_FreeSpace(const CRYPT_ENCODE_PARA *pEncodePara, LPVOID pv)
131{
132 if (pEncodePara && pEncodePara->pfnFree)
133 pEncodePara->pfnFree(pv);
134 else
135 LocalFree(pv);
136}
137
139{
140 DWORD bytesNeeded, significantBytes = 0;
141
142 if (len <= 0x7f)
143 bytesNeeded = 1;
144 else
145 {
146 DWORD temp;
147
148 for (temp = len, significantBytes = sizeof(temp); !(temp & 0xff000000);
149 temp <<= 8, significantBytes--)
150 ;
151 bytesNeeded = significantBytes + 1;
152 }
153 if (!pbEncoded)
154 {
155 *pcbEncoded = bytesNeeded;
156 return TRUE;
157 }
158 if (*pcbEncoded < bytesNeeded)
159 {
161 return FALSE;
162 }
163 if (len <= 0x7f)
164 *pbEncoded = (BYTE)len;
165 else
166 {
167 DWORD i;
168
169 *pbEncoded++ = significantBytes | 0x80;
170 for (i = 0; i < significantBytes; i++)
171 {
172 *(pbEncoded + significantBytes - i - 1) = (BYTE)(len & 0xff);
173 len >>= 8;
174 }
175 }
176 *pcbEncoded = bytesNeeded;
177 return TRUE;
178}
179
183{
184 BOOL ret;
185 DWORD i, dataLen = 0;
186
187 TRACE("%p, %d, %08x, %p, %p, %d\n", items, cItem, dwFlags, pEncodePara,
189 for (i = 0, ret = TRUE; ret && i < cItem; i++)
190 {
191 ret = items[i].encodeFunc(dwCertEncodingType, NULL,
192 items[i].pvStructInfo, dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG, NULL,
193 NULL, &items[i].size);
194 /* Some functions propagate their errors through the size */
195 if (!ret)
196 *pcbEncoded = items[i].size;
197 dataLen += items[i].size;
198 }
199 if (ret)
200 {
201 DWORD lenBytes, bytesNeeded;
202
203 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
204 bytesNeeded = 1 + lenBytes + dataLen;
205 if (!pbEncoded)
206 *pcbEncoded = bytesNeeded;
207 else
208 {
209 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
210 pcbEncoded, bytesNeeded)))
211 {
212 BYTE *out;
213
215 pbEncoded = *(BYTE **)pbEncoded;
216 out = pbEncoded;
217 *out++ = ASN_SEQUENCE;
218 CRYPT_EncodeLen(dataLen, out, &lenBytes);
219 out += lenBytes;
220 for (i = 0; ret && i < cItem; i++)
221 {
222 ret = items[i].encodeFunc(dwCertEncodingType, NULL,
223 items[i].pvStructInfo, dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG,
224 NULL, out, &items[i].size);
225 /* Some functions propagate their errors through the size */
226 if (!ret)
227 *pcbEncoded = items[i].size;
228 out += items[i].size;
229 }
231 CRYPT_FreeSpace(pEncodePara, pbEncoded);
232 }
233 }
234 }
235 TRACE("returning %d (%08x)\n", ret, GetLastError());
236 return ret;
237}
238
240 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
242{
243 BOOL ret;
244 const struct AsnConstructedItem *item = pvStructInfo;
245 DWORD len;
246
247 if ((ret = item->encodeFunc(dwCertEncodingType, lpszStructType,
248 item->pvStructInfo, dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG, NULL, NULL, &len)))
249 {
250 DWORD dataLen, bytesNeeded;
251
252 CRYPT_EncodeLen(len, NULL, &dataLen);
253 bytesNeeded = 1 + dataLen + len;
254 if (!pbEncoded)
255 *pcbEncoded = bytesNeeded;
256 else if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
257 pbEncoded, pcbEncoded, bytesNeeded)))
258 {
259 BYTE *out;
260
262 pbEncoded = *(BYTE **)pbEncoded;
263 out = pbEncoded;
264 *out++ = ASN_CONTEXT | ASN_CONSTRUCTOR | item->tag;
265 CRYPT_EncodeLen(len, out, &dataLen);
266 out += dataLen;
267 ret = item->encodeFunc(dwCertEncodingType, lpszStructType,
268 item->pvStructInfo, dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG, NULL,
269 out, &len);
270 if (!ret)
271 {
272 /* Some functions propagate their errors through the size */
273 *pcbEncoded = len;
275 CRYPT_FreeSpace(pEncodePara, pbEncoded);
276 }
277 }
278 }
279 else
280 {
281 /* Some functions propagate their errors through the size */
282 *pcbEncoded = len;
283 }
284 return ret;
285}
286
288{
290 const void *pvStructInfo;
292};
293
294/* Sort of a wacky hack, it encodes something using the struct
295 * AsnEncodeTagSwappedItem's encodeFunc, then replaces the tag byte with the tag
296 * given in the struct AsnEncodeTagSwappedItem.
297 */
299 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
301{
302 BOOL ret;
304
305 ret = item->encodeFunc(dwCertEncodingType, lpszStructType,
306 item->pvStructInfo, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
307 if (ret && pbEncoded)
308 *pbEncoded = item->tag;
309 return ret;
310}
311
313 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
315{
316 const DWORD *ver = pvStructInfo;
317 BOOL ret;
318
319 /* CERT_V1 is not encoded */
320 if (*ver == CERT_V1)
321 {
322 *pcbEncoded = 0;
323 ret = TRUE;
324 }
325 else
326 {
327 struct AsnConstructedItem item = { 0, ver, CRYPT_AsnEncodeInt };
328
330 &item, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
331 }
332 return ret;
333}
334
336 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
338{
340 BOOL ret;
341
342 if (!pbEncoded)
343 {
344 *pcbEncoded = blob->cbData;
345 ret = TRUE;
346 }
347 else
348 {
349 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
350 pcbEncoded, blob->cbData)))
351 {
353 pbEncoded = *(BYTE **)pbEncoded;
354 if (blob->cbData)
355 memcpy(pbEncoded, blob->pbData, blob->cbData);
356 *pcbEncoded = blob->cbData;
357 }
358 }
359 return ret;
360}
361
363 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
365{
366 BOOL ret;
367 /* This has two filetimes in a row, a NotBefore and a NotAfter */
368 const FILETIME *timePtr = pvStructInfo;
369 struct AsnEncodeSequenceItem items[] = {
370 { timePtr, CRYPT_AsnEncodeChoiceOfTime, 0 },
371 { timePtr + 1, CRYPT_AsnEncodeChoiceOfTime, 0 },
372 };
373
375 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
376 pcbEncoded);
377 return ret;
378}
379
380/* Like CRYPT_AsnEncodeAlgorithmId, but encodes parameters as an asn.1 NULL
381 * if they are empty.
382 */
384 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
387{
389 static const BYTE asn1Null[] = { ASN_NULL, 0 };
390 static const CRYPT_DATA_BLOB nullBlob = { sizeof(asn1Null),
391 (LPBYTE)asn1Null };
392 BOOL ret;
393 struct AsnEncodeSequenceItem items[2] = {
394 { algo->pszObjId, CRYPT_AsnEncodeOid, 0 },
396 };
397
398 if (algo->Parameters.cbData)
399 items[1].pvStructInfo = &algo->Parameters;
400 else
401 items[1].pvStructInfo = &nullBlob;
403 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
404 pcbEncoded);
405 return ret;
406}
407
409 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
411{
413 BOOL ret;
414 struct AsnEncodeSequenceItem items[] = {
415 { algo->pszObjId, CRYPT_AsnEncodeOid, 0 },
416 { &algo->Parameters, CRYPT_CopyEncodedBlob, 0 },
417 };
418
420 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
421 pcbEncoded);
422 return ret;
423}
424
426 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
428{
429 BOOL ret;
430
431 __TRY
432 {
434 struct AsnEncodeSequenceItem items[] = {
436 { &info->PublicKey, CRYPT_AsnEncodeBits, 0 },
437 };
438
439 TRACE("Encoding public key with OID %s\n",
440 debugstr_a(info->Algorithm.pszObjId));
442 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
443 pcbEncoded);
444 }
446 {
448 ret = FALSE;
449 }
451 return ret;
452}
453
455 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
457{
458 BOOL ret;
459
460 __TRY
461 {
463 struct AsnEncodeSequenceItem items[] = {
464 { &info->ToBeSigned, CRYPT_CopyEncodedBlob, 0 },
465 { &info->SignatureAlgorithm, CRYPT_AsnEncodeAlgorithmId, 0 },
466 { &info->Signature, CRYPT_AsnEncodeBitsSwapBytes, 0 },
467 };
468
470 items[2].encodeFunc = CRYPT_AsnEncodeBits;
472 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
473 pcbEncoded);
474 }
476 {
478 ret = FALSE;
479 }
481 return ret;
482}
483
485 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
487{
488 BOOL ret;
490 struct AsnEncodeSequenceItem items[] = {
491 { &info->Algorithm, CRYPT_AsnEncodeAlgorithmId, 0 },
492 { &info->PublicKey, CRYPT_AsnEncodeBits, 0 },
493 };
494
495 TRACE("Encoding public key with OID %s\n",
496 debugstr_a(info->Algorithm.pszObjId));
498 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
499 pcbEncoded);
500 return ret;
501}
502
503/* Like in Windows, this blithely ignores the validity of the passed-in
504 * CERT_INFO, and just encodes it as-is. The resulting encoded data may not
505 * decode properly, see CRYPT_AsnDecodeCertInfo.
506 */
508 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
510{
511 BOOL ret;
512
513 __TRY
514 {
515 const CERT_INFO *info = pvStructInfo;
516 struct AsnEncodeSequenceItem items[10] = {
517 { &info->dwVersion, CRYPT_AsnEncodeCertVersion, 0 },
518 { &info->SerialNumber, CRYPT_AsnEncodeInteger, 0 },
519 { &info->SignatureAlgorithm, CRYPT_AsnEncodeAlgorithmId, 0 },
520 { &info->Issuer, CRYPT_CopyEncodedBlob, 0 },
521 { &info->NotBefore, CRYPT_AsnEncodeValidity, 0 },
522 { &info->Subject, CRYPT_CopyEncodedBlob, 0 },
523 { &info->SubjectPublicKeyInfo, CRYPT_AsnEncodePubKeyInfoNoNull, 0 },
524 { 0 }
525 };
526 struct AsnConstructedItem constructed = { 0 };
527 struct AsnEncodeTagSwappedItem swapped[2] = { { 0 } };
528 DWORD cItem = 7, cSwapped = 0;
529
530 if (info->IssuerUniqueId.cbData)
531 {
532 swapped[cSwapped].tag = ASN_CONTEXT | 1;
533 swapped[cSwapped].pvStructInfo = &info->IssuerUniqueId;
534 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeBits;
535 items[cItem].pvStructInfo = &swapped[cSwapped];
536 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
537 cSwapped++;
538 cItem++;
539 }
540 if (info->SubjectUniqueId.cbData)
541 {
542 swapped[cSwapped].tag = ASN_CONTEXT | 2;
543 swapped[cSwapped].pvStructInfo = &info->SubjectUniqueId;
544 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeBits;
545 items[cItem].pvStructInfo = &swapped[cSwapped];
546 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
547 cSwapped++;
548 cItem++;
549 }
550 if (info->cExtension)
551 {
552 constructed.tag = 3;
553 constructed.pvStructInfo = &info->cExtension;
555 items[cItem].pvStructInfo = &constructed;
556 items[cItem].encodeFunc = CRYPT_AsnEncodeConstructed;
557 cItem++;
558 }
559
561 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
562 }
564 {
566 ret = FALSE;
567 }
569 return ret;
570}
571
574{
575 struct AsnEncodeSequenceItem items[3] = {
576 { &entry->SerialNumber, CRYPT_AsnEncodeInteger, 0 },
577 { &entry->RevocationDate, CRYPT_AsnEncodeChoiceOfTime, 0 },
578 { 0 }
579 };
580 DWORD cItem = 2;
581 BOOL ret;
582
583 TRACE("%p, %p, %d\n", entry, pbEncoded, pbEncoded ? *pcbEncoded : 0);
584
585 if (entry->cExtension)
586 {
587 items[cItem].pvStructInfo = &entry->cExtension;
588 items[cItem].encodeFunc = CRYPT_AsnEncodeExtensions;
589 cItem++;
590 }
591
594
595 TRACE("returning %d (%08x)\n", ret, GetLastError());
596 return ret;
597}
598
600 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
602{
603 DWORD bytesNeeded, dataLen, lenBytes, i;
604 const CRL_INFO *info = pvStructInfo;
605 const CRL_ENTRY *rgCRLEntry = info->rgCRLEntry;
606 BOOL ret = TRUE;
607
608 for (i = 0, dataLen = 0; ret && i < info->cCRLEntry; i++)
609 {
610 DWORD size;
611
612 ret = CRYPT_AsnEncodeCRLEntry(&rgCRLEntry[i], NULL, &size);
613 if (ret)
614 dataLen += size;
615 }
616 if (ret)
617 {
618 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
619 bytesNeeded = 1 + lenBytes + dataLen;
620 if (!pbEncoded)
621 *pcbEncoded = bytesNeeded;
622 else
623 {
624 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
625 pcbEncoded, bytesNeeded)))
626 {
627 BYTE *out;
628
630 pbEncoded = *(BYTE **)pbEncoded;
631 out = pbEncoded;
632 *out++ = ASN_SEQUENCEOF;
633 CRYPT_EncodeLen(dataLen, out, &lenBytes);
634 out += lenBytes;
635 for (i = 0; i < info->cCRLEntry; i++)
636 {
637 DWORD size = dataLen;
638
639 ret = CRYPT_AsnEncodeCRLEntry(&rgCRLEntry[i], out, &size);
640 out += size;
641 dataLen -= size;
642 }
644 CRYPT_FreeSpace(pEncodePara, pbEncoded);
645 }
646 }
647 }
648 return ret;
649}
650
652 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
654{
655 const DWORD *ver = pvStructInfo;
656 BOOL ret;
657
658 /* CRL_V1 is not encoded */
659 if (*ver == CRL_V1)
660 {
661 *pcbEncoded = 0;
662 ret = TRUE;
663 }
664 else
666 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
667 return ret;
668}
669
670/* Like in Windows, this blithely ignores the validity of the passed-in
671 * CRL_INFO, and just encodes it as-is. The resulting encoded data may not
672 * decode properly, see CRYPT_AsnDecodeCRLInfo.
673 */
675 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
677{
678 BOOL ret;
679
680 __TRY
681 {
682 const CRL_INFO *info = pvStructInfo;
683 struct AsnEncodeSequenceItem items[7] = {
684 { &info->dwVersion, CRYPT_AsnEncodeCRLVersion, 0 },
685 { &info->SignatureAlgorithm, CRYPT_AsnEncodeAlgorithmId, 0 },
686 { &info->Issuer, CRYPT_CopyEncodedBlob, 0 },
687 { &info->ThisUpdate, CRYPT_AsnEncodeChoiceOfTime, 0 },
688 { 0 }
689 };
690 struct AsnConstructedItem constructed[1] = { { 0 } };
691 DWORD cItem = 4, cConstructed = 0;
692
693 if (info->NextUpdate.dwLowDateTime || info->NextUpdate.dwHighDateTime)
694 {
695 items[cItem].pvStructInfo = &info->NextUpdate;
696 items[cItem].encodeFunc = CRYPT_AsnEncodeChoiceOfTime;
697 cItem++;
698 }
699 if (info->cCRLEntry)
700 {
701 items[cItem].pvStructInfo = info;
702 items[cItem].encodeFunc = CRYPT_AsnEncodeCRLEntries;
703 cItem++;
704 }
705 if (info->cExtension)
706 {
707 constructed[cConstructed].tag = 0;
708 constructed[cConstructed].pvStructInfo = &info->cExtension;
709 constructed[cConstructed].encodeFunc = CRYPT_AsnEncodeExtensions;
710 items[cItem].pvStructInfo = &constructed[cConstructed];
711 items[cItem].encodeFunc = CRYPT_AsnEncodeConstructed;
712 cConstructed++;
713 cItem++;
714 }
715
717 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
718 }
720 {
722 ret = FALSE;
723 }
725 return ret;
726}
727
730{
731 BOOL ret;
732 struct AsnEncodeSequenceItem items[3] = {
733 { ext->pszObjId, CRYPT_AsnEncodeOid, 0 },
734 { NULL, NULL, 0 },
735 { NULL, NULL, 0 },
736 };
737 DWORD cItem = 1;
738
739 TRACE("%p, %p, %d\n", ext, pbEncoded, pbEncoded ? *pcbEncoded : 0);
740
741 if (ext->fCritical)
742 {
743 items[cItem].pvStructInfo = &ext->fCritical;
744 items[cItem].encodeFunc = CRYPT_AsnEncodeBool;
745 cItem++;
746 }
747 items[cItem].pvStructInfo = &ext->Value;
748 items[cItem].encodeFunc = CRYPT_AsnEncodeOctets;
749 cItem++;
750
753 TRACE("returning %d (%08x)\n", ret, GetLastError());
754 return ret;
755}
756
758 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
760{
761 BOOL ret;
762
763 __TRY
764 {
765 DWORD bytesNeeded, dataLen, lenBytes, i;
767
768 ret = TRUE;
769 for (i = 0, dataLen = 0; ret && i < exts->cExtension; i++)
770 {
771 DWORD size;
772
773 ret = CRYPT_AsnEncodeExtension(&exts->rgExtension[i], NULL, &size);
774 if (ret)
775 dataLen += size;
776 }
777 if (ret)
778 {
779 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
780 bytesNeeded = 1 + lenBytes + dataLen;
781 if (!pbEncoded)
782 *pcbEncoded = bytesNeeded;
783 else
784 {
785 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
786 pbEncoded, pcbEncoded, bytesNeeded)))
787 {
788 BYTE *out;
789
791 pbEncoded = *(BYTE **)pbEncoded;
792 out = pbEncoded;
793 *out++ = ASN_SEQUENCEOF;
794 CRYPT_EncodeLen(dataLen, out, &lenBytes);
795 out += lenBytes;
796 for (i = 0; i < exts->cExtension; i++)
797 {
798 DWORD size = dataLen;
799
800 ret = CRYPT_AsnEncodeExtension(&exts->rgExtension[i],
801 out, &size);
802 out += size;
803 dataLen -= size;
804 }
806 CRYPT_FreeSpace(pEncodePara, pbEncoded);
807 }
808 }
809 }
810 }
812 {
814 ret = FALSE;
815 }
817 return ret;
818}
819
821 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
823{
824 LPCSTR pszObjId = pvStructInfo;
825 DWORD bytesNeeded = 0, lenBytes;
826 BOOL ret = TRUE;
827 int firstPos = 0;
828 BYTE firstByte = 0;
829
830 TRACE("%s\n", debugstr_a(pszObjId));
831
832 if (pszObjId)
833 {
834 const char *ptr;
835 int val1, val2;
836
837 if (sscanf(pszObjId, "%d.%d%n", &val1, &val2, &firstPos) != 2)
838 {
840 return FALSE;
841 }
842 bytesNeeded++;
843 firstByte = val1 * 40 + val2;
844 ptr = pszObjId + firstPos;
845 if (*ptr == '.')
846 {
847 ptr++;
848 firstPos++;
849 }
850 while (ret && *ptr)
851 {
852 int pos;
853
854 /* note I assume each component is at most 32-bits long in base 2 */
855 if (sscanf(ptr, "%d%n", &val1, &pos) == 1)
856 {
857 if (val1 >= 0x10000000)
858 bytesNeeded += 5;
859 else if (val1 >= 0x200000)
860 bytesNeeded += 4;
861 else if (val1 >= 0x4000)
862 bytesNeeded += 3;
863 else if (val1 >= 0x80)
864 bytesNeeded += 2;
865 else
866 bytesNeeded += 1;
867 ptr += pos;
868 if (*ptr == '.')
869 ptr++;
870 }
871 else
872 {
874 return FALSE;
875 }
876 }
877 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
878 }
879 else
880 lenBytes = 1;
881 bytesNeeded += 1 + lenBytes;
882 if (pbEncoded)
883 {
884 if (*pcbEncoded < bytesNeeded)
885 {
887 ret = FALSE;
888 }
889 else
890 {
892 CRYPT_EncodeLen(bytesNeeded - 1 - lenBytes, pbEncoded, &lenBytes);
893 pbEncoded += lenBytes;
894 if (pszObjId)
895 {
896 const char *ptr;
897 int val, pos;
898
899 *pbEncoded++ = firstByte;
900 ptr = pszObjId + firstPos;
901 while (ret && *ptr)
902 {
903 sscanf(ptr, "%d%n", &val, &pos);
904 {
905 unsigned char outBytes[5];
906 int numBytes, i;
907
908 if (val >= 0x10000000)
909 numBytes = 5;
910 else if (val >= 0x200000)
911 numBytes = 4;
912 else if (val >= 0x4000)
913 numBytes = 3;
914 else if (val >= 0x80)
915 numBytes = 2;
916 else
917 numBytes = 1;
918 for (i = numBytes; i > 0; i--)
919 {
920 outBytes[i - 1] = val & 0x7f;
921 val >>= 7;
922 }
923 for (i = 0; i < numBytes - 1; i++)
924 *pbEncoded++ = outBytes[i] | 0x80;
925 *pbEncoded++ = outBytes[i];
926 ptr += pos;
927 if (*ptr == '.')
928 ptr++;
929 }
930 }
931 }
932 }
933 }
934 *pcbEncoded = bytesNeeded;
935 return ret;
936}
937
939 BYTE tag, DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
941{
942 BOOL ret = TRUE;
943 LPCSTR str = (LPCSTR)value->Value.pbData;
944 DWORD bytesNeeded, lenBytes, encodedLen;
945
946 encodedLen = value->Value.cbData ? value->Value.cbData : strlen(str);
947 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
948 bytesNeeded = 1 + lenBytes + encodedLen;
949 if (!pbEncoded)
950 *pcbEncoded = bytesNeeded;
951 else
952 {
953 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
954 pbEncoded, pcbEncoded, bytesNeeded)))
955 {
957 pbEncoded = *(BYTE **)pbEncoded;
958 *pbEncoded++ = tag;
959 CRYPT_EncodeLen(encodedLen, pbEncoded, &lenBytes);
960 pbEncoded += lenBytes;
961 memcpy(pbEncoded, str, encodedLen);
962 }
963 }
964 return ret;
965}
966
968 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
970{
971 BOOL ret = TRUE;
972 LPCWSTR str = (LPCWSTR)value->Value.pbData;
973 DWORD bytesNeeded, lenBytes, strLen;
974
975 if (value->Value.cbData)
976 strLen = value->Value.cbData / sizeof(WCHAR);
977 else if (value->Value.pbData)
978 strLen = lstrlenW(str);
979 else
980 strLen = 0;
981 CRYPT_EncodeLen(strLen * 2, NULL, &lenBytes);
982 bytesNeeded = 1 + lenBytes + strLen * 2;
983 if (!pbEncoded)
984 *pcbEncoded = bytesNeeded;
985 else
986 {
987 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
988 pbEncoded, pcbEncoded, bytesNeeded)))
989 {
990 DWORD i;
991
993 pbEncoded = *(BYTE **)pbEncoded;
995 CRYPT_EncodeLen(strLen * 2, pbEncoded, &lenBytes);
996 pbEncoded += lenBytes;
997 for (i = 0; i < strLen; i++)
998 {
999 *pbEncoded++ = (str[i] & 0xff00) >> 8;
1000 *pbEncoded++ = str[i] & 0x00ff;
1001 }
1002 }
1003 }
1004 return ret;
1005}
1006
1008 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
1010{
1011 BOOL ret = TRUE;
1012 LPCWSTR str = (LPCWSTR)value->Value.pbData;
1013 DWORD bytesNeeded, lenBytes, encodedLen, strLen;
1014
1015 if (value->Value.cbData)
1016 strLen = value->Value.cbData / sizeof(WCHAR);
1017 else if (str)
1018 strLen = strlenW(str);
1019 else
1020 strLen = 0;
1021 encodedLen = WideCharToMultiByte(CP_UTF8, 0, str, strLen, NULL, 0, NULL,
1022 NULL);
1023 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
1024 bytesNeeded = 1 + lenBytes + encodedLen;
1025 if (!pbEncoded)
1026 *pcbEncoded = bytesNeeded;
1027 else
1028 {
1029 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1030 pbEncoded, pcbEncoded, bytesNeeded)))
1031 {
1033 pbEncoded = *(BYTE **)pbEncoded;
1035 CRYPT_EncodeLen(encodedLen, pbEncoded, &lenBytes);
1036 pbEncoded += lenBytes;
1038 bytesNeeded - lenBytes - 1, NULL, NULL);
1039 }
1040 }
1041 return ret;
1042}
1043
1045 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1047{
1048 BOOL ret = TRUE;
1049
1050 __TRY
1051 {
1053
1054 switch (value->dwValueType)
1055 {
1056 case CERT_RDN_ANY_TYPE:
1057 /* explicitly disallowed */
1059 ret = FALSE;
1060 break;
1063 &value->Value, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1064 break;
1067 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1068 break;
1071 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1072 break;
1075 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1076 break;
1079 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1080 break;
1084 break;
1087 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1088 break;
1091 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1092 break;
1095 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1096 break;
1099 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1100 break;
1102 FIXME("CERT_RDN_UNIVERSAL_STRING: unimplemented\n");
1104 ret = FALSE;
1105 break;
1107 ret = CRYPT_AsnEncodeBMPString(value, dwFlags, pEncodePara,
1109 break;
1113 break;
1114 default:
1116 ret = FALSE;
1117 }
1118 }
1120 {
1122 ret = FALSE;
1123 }
1124 __ENDTRY
1125 return ret;
1126}
1127
1129 const CERT_RDN_ATTR *attr, CryptEncodeObjectExFunc nameValueEncodeFunc,
1131{
1132 DWORD bytesNeeded = 0, lenBytes, size;
1133 BOOL ret;
1134
1136 0, NULL, NULL, &size);
1137 if (ret)
1138 {
1139 bytesNeeded += size;
1140 /* hack: a CERT_RDN_ATTR is identical to a CERT_NAME_VALUE beginning
1141 * with dwValueType, so "cast" it to get its encoded size
1142 */
1143 ret = nameValueEncodeFunc(dwCertEncodingType, NULL, &attr->dwValueType,
1144 0, NULL, NULL, &size);
1145 if (ret)
1146 {
1147 bytesNeeded += size;
1148 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
1149 bytesNeeded += 1 + lenBytes;
1150 if (pbEncoded)
1151 {
1152 if (*pcbEncoded < bytesNeeded)
1153 {
1155 ret = FALSE;
1156 }
1157 else
1158 {
1160 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, pbEncoded,
1161 &lenBytes);
1162 pbEncoded += lenBytes;
1163 size = bytesNeeded - 1 - lenBytes;
1165 attr->pszObjId, 0, NULL, pbEncoded, &size);
1166 if (ret)
1167 {
1168 pbEncoded += size;
1169 size = bytesNeeded - 1 - lenBytes - size;
1170 ret = nameValueEncodeFunc(dwCertEncodingType, NULL,
1171 &attr->dwValueType, 0, NULL, pbEncoded, &size);
1172 if (!ret)
1173 *pcbEncoded = size;
1174 }
1175 }
1176 }
1177 if (ret)
1178 *pcbEncoded = bytesNeeded;
1179 }
1180 else
1181 {
1182 /* Have to propagate index of failing character */
1183 *pcbEncoded = size;
1184 }
1185 }
1186 return ret;
1187}
1188
1189static int BLOBComp(const void *l, const void *r)
1190{
1191 const CRYPT_DER_BLOB *a = l, *b = r;
1192 int ret;
1193
1194 if (!(ret = memcmp(a->pbData, b->pbData, min(a->cbData, b->cbData))))
1195 ret = a->cbData - b->cbData;
1196 return ret;
1197}
1198
1199/* This encodes a SET OF, which in DER must be lexicographically sorted.
1200 */
1202 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1204{
1206 DWORD bytesNeeded = 0, lenBytes, i;
1207 BOOL ret;
1208
1209 for (i = 0; i < set->cBlob; i++)
1210 bytesNeeded += set->rgBlob[i].cbData;
1211 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
1212 bytesNeeded += 1 + lenBytes;
1213 if (!pbEncoded)
1214 {
1215 *pcbEncoded = bytesNeeded;
1216 ret = TRUE;
1217 }
1218 else if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1219 pbEncoded, pcbEncoded, bytesNeeded)))
1220 {
1222 pbEncoded = *(BYTE **)pbEncoded;
1223 qsort(set->rgBlob, set->cBlob, sizeof(CRYPT_DER_BLOB), BLOBComp);
1225 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, pbEncoded, &lenBytes);
1226 pbEncoded += lenBytes;
1227 for (i = 0; i < set->cBlob; i++)
1228 {
1229 memcpy(pbEncoded, set->rgBlob[i].pbData, set->rgBlob[i].cbData);
1230 pbEncoded += set->rgBlob[i].cbData;
1231 }
1232 }
1233 return ret;
1234}
1235
1237{
1239 const void *items;
1240 size_t itemSize;
1243};
1244
1246 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1248{
1249 const struct DERSetDescriptor *desc = pvStructInfo;
1250 CRYPT_BLOB_ARRAY setOf = { 0, NULL };
1251 BOOL ret = TRUE;
1252 DWORD i;
1253
1254 if (desc->cItems)
1255 {
1256 setOf.rgBlob = CryptMemAlloc(desc->cItems * sizeof(CRYPT_DER_BLOB));
1257 if (!setOf.rgBlob)
1258 ret = FALSE;
1259 else
1260 {
1261 setOf.cBlob = desc->cItems;
1262 memset(setOf.rgBlob, 0, setOf.cBlob * sizeof(CRYPT_DER_BLOB));
1263 }
1264 }
1265 for (i = 0; ret && i < setOf.cBlob; i++)
1266 {
1267 ret = desc->encode(dwCertEncodingType, lpszStructType,
1268 (const BYTE *)desc->items + i * desc->itemSize + desc->itemOffset,
1269 0, NULL, NULL, &setOf.rgBlob[i].cbData);
1270 if (ret)
1271 {
1272 setOf.rgBlob[i].pbData = CryptMemAlloc(setOf.rgBlob[i].cbData);
1273 if (!setOf.rgBlob[i].pbData)
1274 ret = FALSE;
1275 else
1276 ret = desc->encode(dwCertEncodingType, lpszStructType,
1277 (const BYTE *)desc->items + i * desc->itemSize +
1278 desc->itemOffset, 0, NULL, setOf.rgBlob[i].pbData,
1279 &setOf.rgBlob[i].cbData);
1280 }
1281 /* Some functions propagate their errors through the size */
1282 if (!ret)
1283 *pcbEncoded = setOf.rgBlob[i].cbData;
1284 }
1285 if (ret)
1286 {
1287 DWORD bytesNeeded = 0, lenBytes;
1288
1289 for (i = 0; i < setOf.cBlob; i++)
1290 bytesNeeded += setOf.rgBlob[i].cbData;
1291 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
1292 bytesNeeded += 1 + lenBytes;
1293 if (!pbEncoded)
1294 *pcbEncoded = bytesNeeded;
1295 else if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1296 pbEncoded, pcbEncoded, bytesNeeded)))
1297 {
1299 pbEncoded = *(BYTE **)pbEncoded;
1300 qsort(setOf.rgBlob, setOf.cBlob, sizeof(CRYPT_DER_BLOB),
1301 BLOBComp);
1303 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, pbEncoded, &lenBytes);
1304 pbEncoded += lenBytes;
1305 for (i = 0; i < setOf.cBlob; i++)
1306 {
1307 memcpy(pbEncoded, setOf.rgBlob[i].pbData,
1308 setOf.rgBlob[i].cbData);
1309 pbEncoded += setOf.rgBlob[i].cbData;
1310 }
1311 }
1312 }
1313 for (i = 0; i < setOf.cBlob; i++)
1314 CryptMemFree(setOf.rgBlob[i].pbData);
1315 CryptMemFree(setOf.rgBlob);
1316 return ret;
1317}
1318
1320 CryptEncodeObjectExFunc nameValueEncodeFunc, BYTE *pbEncoded,
1322{
1323 BOOL ret;
1324 CRYPT_BLOB_ARRAY setOf = { 0, NULL };
1325
1326 __TRY
1327 {
1328 DWORD i;
1329
1330 ret = TRUE;
1331 if (rdn->cRDNAttr)
1332 {
1333 setOf.rgBlob = CryptMemAlloc(rdn->cRDNAttr *
1334 sizeof(CRYPT_DER_BLOB));
1335 if (!setOf.rgBlob)
1336 ret = FALSE;
1337 else
1338 {
1339 setOf.cBlob = rdn->cRDNAttr;
1340 memset(setOf.rgBlob, 0, setOf.cBlob * sizeof(CRYPT_DER_BLOB));
1341 }
1342 }
1343 for (i = 0; ret && i < rdn->cRDNAttr; i++)
1344 {
1345 setOf.rgBlob[i].cbData = 0;
1347 nameValueEncodeFunc, NULL, &setOf.rgBlob[i].cbData);
1348 if (ret)
1349 {
1350 setOf.rgBlob[i].pbData = CryptMemAlloc(setOf.rgBlob[i].cbData);
1351 if (!setOf.rgBlob[i].pbData)
1352 ret = FALSE;
1353 else
1355 &rdn->rgRDNAttr[i], nameValueEncodeFunc,
1356 setOf.rgBlob[i].pbData, &setOf.rgBlob[i].cbData);
1357 }
1358 if (!ret)
1359 {
1360 /* Have to propagate index of failing character */
1361 *pcbEncoded = setOf.rgBlob[i].cbData;
1362 }
1363 }
1364 if (ret)
1367 for (i = 0; i < setOf.cBlob; i++)
1368 CryptMemFree(setOf.rgBlob[i].pbData);
1369 }
1371 {
1373 ret = FALSE;
1374 }
1375 __ENDTRY
1376 CryptMemFree(setOf.rgBlob);
1377 return ret;
1378}
1379
1381 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1383
1385 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
1388{
1389 const CERT_NAME_VALUE *value = pvStructInfo;
1390 BOOL ret;
1391
1392 if (value->dwValueType == CERT_RDN_ENCODED_BLOB)
1394 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1395 else
1397 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1398 return ret;
1399}
1400
1402 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1404{
1405 BOOL ret = TRUE;
1406
1407 __TRY
1408 {
1409 const CERT_NAME_INFO *info = pvStructInfo;
1410 DWORD bytesNeeded = 0, lenBytes, size, i;
1411
1412 TRACE("encoding name with %d RDNs\n", info->cRDN);
1413 ret = TRUE;
1414 for (i = 0; ret && i < info->cRDN; i++)
1415 {
1418 if (ret)
1419 bytesNeeded += size;
1420 else
1421 *pcbEncoded = size;
1422 }
1423 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
1424 bytesNeeded += 1 + lenBytes;
1425 if (ret)
1426 {
1427 if (!pbEncoded)
1428 *pcbEncoded = bytesNeeded;
1429 else
1430 {
1431 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1432 pbEncoded, pcbEncoded, bytesNeeded)))
1433 {
1434 BYTE *out;
1435
1437 pbEncoded = *(BYTE **)pbEncoded;
1438 out = pbEncoded;
1439 *out++ = ASN_SEQUENCEOF;
1440 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, out, &lenBytes);
1441 out += lenBytes;
1442 for (i = 0; ret && i < info->cRDN; i++)
1443 {
1444 size = bytesNeeded;
1447 out, &size);
1448 if (ret)
1449 {
1450 out += size;
1451 bytesNeeded -= size;
1452 }
1453 else
1454 *pcbEncoded = size;
1455 }
1457 CRYPT_FreeSpace(pEncodePara, pbEncoded);
1458 }
1459 }
1460 }
1461 }
1463 {
1465 ret = FALSE;
1466 }
1467 __ENDTRY
1468 return ret;
1469}
1470
1472 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1474{
1475 const DWORD *ver = pvStructInfo;
1476 BOOL ret;
1477
1478 /* CTL_V1 is not encoded */
1479 if (*ver == CTL_V1)
1480 {
1481 *pcbEncoded = 0;
1482 ret = TRUE;
1483 }
1484 else
1486 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1487 return ret;
1488}
1489
1490/* Like CRYPT_AsnEncodeAlgorithmId, but encodes parameters as an asn.1 NULL
1491 * if they are empty and the OID is not empty (otherwise omits them.)
1492 */
1494 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
1497{
1498 const CRYPT_ALGORITHM_IDENTIFIER *algo = pvStructInfo;
1499 BOOL ret;
1500 struct AsnEncodeSequenceItem items[2] = {
1501 { algo->pszObjId, CRYPT_AsnEncodeOid, 0 },
1502 };
1503 DWORD cItem = 1;
1504
1505 if (algo->pszObjId)
1506 {
1507 static const BYTE asn1Null[] = { ASN_NULL, 0 };
1508 static const CRYPT_DATA_BLOB nullBlob = { sizeof(asn1Null),
1509 (LPBYTE)asn1Null };
1510
1511 if (algo->Parameters.cbData)
1512 items[cItem].pvStructInfo = &algo->Parameters;
1513 else
1514 items[cItem].pvStructInfo = &nullBlob;
1515 items[cItem].encodeFunc = CRYPT_CopyEncodedBlob;
1516 cItem++;
1517 }
1519 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1520 return ret;
1521}
1522
1525{
1526 struct AsnEncodeSequenceItem items[2] = {
1527 { &entry->SubjectIdentifier, CRYPT_AsnEncodeOctets, 0 },
1528 { &entry->cAttribute, CRYPT_AsnEncodePKCSAttributes, 0 },
1529 };
1530 BOOL ret;
1531
1534 return ret;
1535}
1536
1538{
1541};
1542
1544 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1546{
1547 BOOL ret;
1548 DWORD bytesNeeded, dataLen, lenBytes, i;
1549 const struct CTLEntries *entries = pvStructInfo;
1550
1551 ret = TRUE;
1552 for (i = 0, dataLen = 0; ret && i < entries->cEntry; i++)
1553 {
1554 DWORD size;
1555
1556 ret = CRYPT_AsnEncodeCTLEntry(&entries->rgEntry[i], NULL, &size);
1557 if (ret)
1558 dataLen += size;
1559 }
1560 if (ret)
1561 {
1562 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
1563 bytesNeeded = 1 + lenBytes + dataLen;
1564 if (!pbEncoded)
1565 *pcbEncoded = bytesNeeded;
1566 else
1567 {
1568 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1569 pbEncoded, pcbEncoded, bytesNeeded)))
1570 {
1571 BYTE *out;
1572
1574 pbEncoded = *(BYTE **)pbEncoded;
1575 out = pbEncoded;
1576 *out++ = ASN_SEQUENCEOF;
1577 CRYPT_EncodeLen(dataLen, out, &lenBytes);
1578 out += lenBytes;
1579 for (i = 0; ret && i < entries->cEntry; i++)
1580 {
1581 DWORD size = dataLen;
1582
1583 ret = CRYPT_AsnEncodeCTLEntry(&entries->rgEntry[i],
1584 out, &size);
1585 out += size;
1586 dataLen -= size;
1587 }
1589 CRYPT_FreeSpace(pEncodePara, pbEncoded);
1590 }
1591 }
1592 }
1593 return ret;
1594}
1595
1597 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1599{
1600 BOOL ret = FALSE;
1601
1602 __TRY
1603 {
1604 const CTL_INFO *info = pvStructInfo;
1605 struct AsnEncodeSequenceItem items[9] = {
1606 { &info->dwVersion, CRYPT_AsnEncodeCTLVersion, 0 },
1607 { &info->SubjectUsage, CRYPT_AsnEncodeEnhancedKeyUsage, 0 },
1608 };
1609 struct AsnConstructedItem constructed = { 0 };
1610 DWORD cItem = 2;
1611
1612 if (info->ListIdentifier.cbData)
1613 {
1614 items[cItem].pvStructInfo = &info->ListIdentifier;
1615 items[cItem].encodeFunc = CRYPT_AsnEncodeOctets;
1616 cItem++;
1617 }
1618 if (info->SequenceNumber.cbData)
1619 {
1620 items[cItem].pvStructInfo = &info->SequenceNumber;
1621 items[cItem].encodeFunc = CRYPT_AsnEncodeInteger;
1622 cItem++;
1623 }
1624 items[cItem].pvStructInfo = &info->ThisUpdate;
1625 items[cItem].encodeFunc = CRYPT_AsnEncodeChoiceOfTime;
1626 cItem++;
1627 if (info->NextUpdate.dwLowDateTime || info->NextUpdate.dwHighDateTime)
1628 {
1629 items[cItem].pvStructInfo = &info->NextUpdate;
1630 items[cItem].encodeFunc = CRYPT_AsnEncodeChoiceOfTime;
1631 cItem++;
1632 }
1633 items[cItem].pvStructInfo = &info->SubjectAlgorithm;
1634 items[cItem].encodeFunc = CRYPT_AsnEncodeCTLSubjectAlgorithm;
1635 cItem++;
1636 if (info->cCTLEntry)
1637 {
1638 items[cItem].pvStructInfo = &info->cCTLEntry;
1639 items[cItem].encodeFunc = CRYPT_AsnEncodeCTLEntries;
1640 cItem++;
1641 }
1642 if (info->cExtension)
1643 {
1644 constructed.tag = 0;
1645 constructed.pvStructInfo = &info->cExtension;
1647 items[cItem].pvStructInfo = &constructed;
1648 items[cItem].encodeFunc = CRYPT_AsnEncodeConstructed;
1649 cItem++;
1650 }
1652 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1653 }
1655 {
1657 }
1658 __ENDTRY
1659 return ret;
1660}
1661
1663 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1665{
1666 BOOL ret = FALSE;
1667
1668 __TRY
1669 {
1670 const CRYPT_SMIME_CAPABILITY *capability = pvStructInfo;
1671
1672 if (!capability->pszObjId)
1674 else
1675 {
1676 struct AsnEncodeSequenceItem items[] = {
1677 { capability->pszObjId, CRYPT_AsnEncodeOid, 0 },
1678 { &capability->Parameters, CRYPT_CopyEncodedBlob, 0 },
1679 };
1680
1682 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
1683 pcbEncoded);
1684 }
1685 }
1687 {
1689 }
1690 __ENDTRY
1691 return ret;
1692}
1693
1695 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1697{
1698 BOOL ret = FALSE;
1699
1700 __TRY
1701 {
1702 DWORD bytesNeeded, dataLen, lenBytes, i;
1703 const CRYPT_SMIME_CAPABILITIES *capabilities = pvStructInfo;
1704
1705 ret = TRUE;
1706 for (i = 0, dataLen = 0; ret && i < capabilities->cCapability; i++)
1707 {
1708 DWORD size;
1709
1711 &capabilities->rgCapability[i], 0, NULL, NULL, &size);
1712 if (ret)
1713 dataLen += size;
1714 }
1715 if (ret)
1716 {
1717 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
1718 bytesNeeded = 1 + lenBytes + dataLen;
1719 if (!pbEncoded)
1720 *pcbEncoded = bytesNeeded;
1721 else
1722 {
1723 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
1724 pbEncoded, pcbEncoded, bytesNeeded)))
1725 {
1726 BYTE *out;
1727
1729 pbEncoded = *(BYTE **)pbEncoded;
1730 out = pbEncoded;
1731 *out++ = ASN_SEQUENCEOF;
1732 CRYPT_EncodeLen(dataLen, out, &lenBytes);
1733 out += lenBytes;
1734 for (i = 0; i < capabilities->cCapability; i++)
1735 {
1736 DWORD size = dataLen;
1737
1739 NULL, &capabilities->rgCapability[i], 0, NULL,
1740 out, &size);
1741 out += size;
1742 dataLen -= size;
1743 }
1745 CRYPT_FreeSpace(pEncodePara, pbEncoded);
1746 }
1747 }
1748 }
1749 }
1751 {
1753 }
1754 __ENDTRY
1755 return ret;
1756}
1757
1759 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1761{
1763 DWORD bytesNeeded, dataLen, lenBytes, i;
1764 BOOL ret = TRUE;
1765
1766 for (i = 0, dataLen = 0; ret && i < noticeRef->cNoticeNumbers; i++)
1767 {
1768 DWORD size;
1769
1771 &noticeRef->rgNoticeNumbers[i], 0, NULL, NULL, &size);
1772 if (ret)
1773 dataLen += size;
1774 }
1775 if (ret)
1776 {
1777 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
1778 bytesNeeded = 1 + lenBytes + dataLen;
1779 if (!pbEncoded)
1780 *pcbEncoded = bytesNeeded;
1781 else
1782 {
1783 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
1784 pcbEncoded, bytesNeeded)))
1785 {
1786 BYTE *out;
1787
1789 pbEncoded = *(BYTE **)pbEncoded;
1790 out = pbEncoded;
1791 *out++ = ASN_SEQUENCE;
1792 CRYPT_EncodeLen(dataLen, out, &lenBytes);
1793 out += lenBytes;
1794 for (i = 0; i < noticeRef->cNoticeNumbers; i++)
1795 {
1796 DWORD size = dataLen;
1797
1799 &noticeRef->rgNoticeNumbers[i], 0, NULL, out, &size);
1800 out += size;
1801 dataLen -= size;
1802 }
1804 CRYPT_FreeSpace(pEncodePara, pbEncoded);
1805 }
1806 }
1807 }
1808 return ret;
1809}
1810
1812 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1814{
1816 BOOL ret;
1818 { 0, (LPBYTE)noticeRef->pszOrganization } };
1819 struct AsnEncodeSequenceItem items[] = {
1820 { &orgValue, CRYPT_AsnEncodeNameValue, 0 },
1821 { noticeRef, CRYPT_AsnEncodeNoticeNumbers, 0 },
1822 };
1823
1825 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
1826 pcbEncoded);
1827 return ret;
1828}
1829
1831 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
1834{
1835 BOOL ret = FALSE;
1836
1837 __TRY
1838 {
1840 struct AsnEncodeSequenceItem items[2];
1841 CERT_NAME_VALUE displayTextValue;
1842 DWORD cItem = 0;
1843
1844 if (notice->pNoticeReference)
1845 {
1846 items[cItem].encodeFunc = CRYPT_AsnEncodeNoticeReference;
1847 items[cItem].pvStructInfo = notice->pNoticeReference;
1848 cItem++;
1849 }
1850 if (notice->pszDisplayText)
1851 {
1852 displayTextValue.dwValueType = CERT_RDN_BMP_STRING;
1853 displayTextValue.Value.cbData = 0;
1854 displayTextValue.Value.pbData = (LPBYTE)notice->pszDisplayText;
1855 items[cItem].encodeFunc = CRYPT_AsnEncodeNameValue;
1856 items[cItem].pvStructInfo = &displayTextValue;
1857 cItem++;
1858 }
1860 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1861 }
1863 {
1865 }
1866 __ENDTRY
1867 return ret;
1868}
1869
1871 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1873{
1874 BOOL ret = FALSE;
1875
1876 __TRY
1877 {
1879
1880 if (!attr->pszObjId)
1882 else
1883 {
1884 struct AsnEncodeSequenceItem items[2] = {
1885 { attr->pszObjId, CRYPT_AsnEncodeOid, 0 },
1886 { &attr->cValue, CRYPT_DEREncodeSet, 0 },
1887 };
1888
1890 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded,
1891 pcbEncoded);
1892 }
1893 }
1895 {
1897 }
1898 __ENDTRY
1899 return ret;
1900}
1901
1903 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1905{
1906 BOOL ret = FALSE;
1907
1908 __TRY
1909 {
1910 const CRYPT_ATTRIBUTES *attributes = pvStructInfo;
1911 struct DERSetDescriptor desc = { attributes->cAttr, attributes->rgAttr,
1913
1915 &desc, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1916 }
1918 {
1920 }
1921 __ENDTRY
1922 return ret;
1923}
1924
1925/* Like CRYPT_AsnEncodePKCSContentInfo, but allows the OID to be NULL */
1927 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
1930{
1931 const CRYPT_CONTENT_INFO *info = pvStructInfo;
1932 struct AsnEncodeSequenceItem items[2] = {
1933 { info->pszObjId, CRYPT_AsnEncodeOid, 0 },
1934 { NULL, NULL, 0 },
1935 };
1936 struct AsnConstructedItem constructed = { 0 };
1937 DWORD cItem = 1;
1938
1939 if (info->Content.cbData)
1940 {
1941 constructed.tag = 0;
1942 constructed.pvStructInfo = &info->Content;
1943 constructed.encodeFunc = CRYPT_CopyEncodedBlob;
1944 items[cItem].pvStructInfo = &constructed;
1945 items[cItem].encodeFunc = CRYPT_AsnEncodeConstructed;
1946 cItem++;
1947 }
1949 cItem, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
1950}
1951
1953 void *pvData, DWORD *pcbData)
1954{
1955 struct AsnEncodeSequenceItem items[] = {
1956 { &digestedData->version, CRYPT_AsnEncodeInt, 0 },
1958 0 },
1960 { &digestedData->hash, CRYPT_AsnEncodeOctets, 0 },
1961 };
1962
1964}
1965
1967 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
1969{
1970 BOOL ret = FALSE;
1971
1972 __TRY
1973 {
1975
1976 if (!info->pszObjId)
1978 else
1980 lpszStructType, pvStructInfo, dwFlags, pEncodePara, pbEncoded,
1981 pcbEncoded);
1982 }
1984 {
1986 }
1987 __ENDTRY
1988 return ret;
1989}
1990
1992 BYTE tag, DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
1994{
1995 BOOL ret = TRUE;
1996 LPCWSTR str = (LPCWSTR)value->Value.pbData;
1997 DWORD bytesNeeded, lenBytes, encodedLen;
1998
1999 if (value->Value.cbData)
2000 encodedLen = value->Value.cbData / sizeof(WCHAR);
2001 else if (str)
2002 encodedLen = strlenW(str);
2003 else
2004 encodedLen = 0;
2005 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
2006 bytesNeeded = 1 + lenBytes + encodedLen;
2007 if (!pbEncoded)
2008 *pcbEncoded = bytesNeeded;
2009 else
2010 {
2011 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2012 pbEncoded, pcbEncoded, bytesNeeded)))
2013 {
2014 DWORD i;
2015
2017 pbEncoded = *(BYTE **)pbEncoded;
2018 *pbEncoded++ = tag;
2019 CRYPT_EncodeLen(encodedLen, pbEncoded, &lenBytes);
2020 pbEncoded += lenBytes;
2021 for (i = 0; i < encodedLen; i++)
2022 *pbEncoded++ = (BYTE)str[i];
2023 }
2024 }
2025 return ret;
2026}
2027
2029 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
2031{
2032 BOOL ret = TRUE;
2033 LPCWSTR str = (LPCWSTR)value->Value.pbData;
2034 DWORD bytesNeeded, lenBytes, encodedLen;
2035
2036 if (value->Value.cbData)
2037 encodedLen = value->Value.cbData / sizeof(WCHAR);
2038 else if (str)
2039 encodedLen = strlenW(str);
2040 else
2041 encodedLen = 0;
2042 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
2043 bytesNeeded = 1 + lenBytes + encodedLen;
2044 if (!pbEncoded)
2045 *pcbEncoded = bytesNeeded;
2046 else
2047 {
2048 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2049 pbEncoded, pcbEncoded, bytesNeeded)))
2050 {
2051 DWORD i;
2052 BYTE *ptr;
2053
2055 ptr = *(BYTE **)pbEncoded;
2056 else
2057 ptr = pbEncoded;
2059 CRYPT_EncodeLen(encodedLen, ptr, &lenBytes);
2060 ptr += lenBytes;
2061 for (i = 0; ret && i < encodedLen; i++)
2062 {
2063 if (isdigitW(str[i]))
2064 *ptr++ = (BYTE)str[i];
2065 else
2066 {
2067 *pcbEncoded = i;
2069 ret = FALSE;
2070 }
2071 }
2073 CRYPT_FreeSpace(pEncodePara, *(BYTE **)pbEncoded);
2074 }
2075 }
2076 return ret;
2077}
2078
2079static inline BOOL isprintableW(WCHAR wc)
2080{
2081 return isalnumW(wc) || isspaceW(wc) || wc == '\'' || wc == '(' ||
2082 wc == ')' || wc == '+' || wc == ',' || wc == '-' || wc == '.' ||
2083 wc == '/' || wc == ':' || wc == '=' || wc == '?';
2084}
2085
2087 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
2089{
2090 BOOL ret = TRUE;
2091 LPCWSTR str = (LPCWSTR)value->Value.pbData;
2092 DWORD bytesNeeded, lenBytes, encodedLen;
2093
2094 if (value->Value.cbData)
2095 encodedLen = value->Value.cbData / sizeof(WCHAR);
2096 else if (str)
2097 encodedLen = strlenW(str);
2098 else
2099 encodedLen = 0;
2100 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
2101 bytesNeeded = 1 + lenBytes + encodedLen;
2102 if (!pbEncoded)
2103 *pcbEncoded = bytesNeeded;
2104 else
2105 {
2106 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2107 pbEncoded, pcbEncoded, bytesNeeded)))
2108 {
2109 DWORD i;
2110 BYTE *ptr;
2111
2113 ptr = *(BYTE **)pbEncoded;
2114 else
2115 ptr = pbEncoded;
2117 CRYPT_EncodeLen(encodedLen, ptr, &lenBytes);
2118 ptr += lenBytes;
2119 for (i = 0; ret && i < encodedLen; i++)
2120 {
2121 if (isprintableW(str[i]))
2122 *ptr++ = (BYTE)str[i];
2123 else
2124 {
2125 *pcbEncoded = i;
2127 ret = FALSE;
2128 }
2129 }
2131 CRYPT_FreeSpace(pEncodePara, *(BYTE **)pbEncoded);
2132 }
2133 }
2134 return ret;
2135}
2136
2138 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
2140{
2141 BOOL ret = TRUE;
2142 LPCWSTR str = (LPCWSTR)value->Value.pbData;
2143 DWORD bytesNeeded, lenBytes, encodedLen;
2144
2145 if (value->Value.cbData)
2146 encodedLen = value->Value.cbData / sizeof(WCHAR);
2147 else if (str)
2148 encodedLen = strlenW(str);
2149 else
2150 encodedLen = 0;
2151 CRYPT_EncodeLen(encodedLen, NULL, &lenBytes);
2152 bytesNeeded = 1 + lenBytes + encodedLen;
2153 if (!pbEncoded)
2154 *pcbEncoded = bytesNeeded;
2155 else
2156 {
2157 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2158 pbEncoded, pcbEncoded, bytesNeeded)))
2159 {
2160 DWORD i;
2161 BYTE *ptr;
2162
2164 ptr = *(BYTE **)pbEncoded;
2165 else
2166 ptr = pbEncoded;
2167 *ptr++ = ASN_IA5STRING;
2168 CRYPT_EncodeLen(encodedLen, ptr, &lenBytes);
2169 ptr += lenBytes;
2170 for (i = 0; ret && i < encodedLen; i++)
2171 {
2172 if (str[i] <= 0x7f)
2173 *ptr++ = (BYTE)str[i];
2174 else
2175 {
2176 *pcbEncoded = i;
2178 ret = FALSE;
2179 }
2180 }
2182 CRYPT_FreeSpace(pEncodePara, *(BYTE **)pbEncoded);
2183 }
2184 }
2185 return ret;
2186}
2187
2189 DWORD dwFlags, const CRYPT_ENCODE_PARA *pEncodePara, BYTE *pbEncoded,
2191{
2192 BOOL ret = TRUE;
2193 LPCWSTR str = (LPCWSTR)value->Value.pbData;
2194 DWORD bytesNeeded, lenBytes, strLen;
2195
2196 /* FIXME: doesn't handle composite characters */
2197 if (value->Value.cbData)
2198 strLen = value->Value.cbData / sizeof(WCHAR);
2199 else if (str)
2200 strLen = strlenW(str);
2201 else
2202 strLen = 0;
2203 CRYPT_EncodeLen(strLen * 4, NULL, &lenBytes);
2204 bytesNeeded = 1 + lenBytes + strLen * 4;
2205 if (!pbEncoded)
2206 *pcbEncoded = bytesNeeded;
2207 else
2208 {
2209 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2210 pbEncoded, pcbEncoded, bytesNeeded)))
2211 {
2212 DWORD i;
2213
2215 pbEncoded = *(BYTE **)pbEncoded;
2217 CRYPT_EncodeLen(strLen * 4, pbEncoded, &lenBytes);
2218 pbEncoded += lenBytes;
2219 for (i = 0; i < strLen; i++)
2220 {
2221 *pbEncoded++ = 0;
2222 *pbEncoded++ = 0;
2223 *pbEncoded++ = (BYTE)((str[i] & 0xff00) >> 8);
2224 *pbEncoded++ = (BYTE)(str[i] & 0x00ff);
2225 }
2226 }
2227 }
2228 return ret;
2229}
2230
2232 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2234{
2235 BOOL ret = FALSE;
2236
2237 __TRY
2238 {
2240
2241 switch (value->dwValueType)
2242 {
2243 case CERT_RDN_ANY_TYPE:
2247 break;
2251 break;
2255 break;
2258 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2259 break;
2263 break;
2265 ret = CRYPT_AsnEncodeIA5String(value, dwFlags, pEncodePara,
2267 break;
2270 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2271 break;
2274 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2275 break;
2278 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2279 break;
2283 break;
2285 ret = CRYPT_AsnEncodeBMPString(value, dwFlags, pEncodePara,
2287 break;
2291 break;
2292 default:
2294 }
2295 }
2297 {
2299 }
2300 __ENDTRY
2301 return ret;
2302}
2303
2305 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2307{
2308 BOOL ret;
2309
2310 __TRY
2311 {
2313 DWORD bytesNeeded = 0, lenBytes, size, i;
2314
2315 TRACE("encoding name with %d RDNs\n", info->cRDN);
2316 ret = TRUE;
2317 for (i = 0; ret && i < info->cRDN; i++)
2318 {
2321 if (ret)
2322 bytesNeeded += size;
2323 }
2324 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
2325 bytesNeeded += 1 + lenBytes;
2326 if (ret)
2327 {
2328 if (!pbEncoded)
2329 *pcbEncoded = bytesNeeded;
2330 else
2331 {
2332 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2333 pbEncoded, pcbEncoded, bytesNeeded)))
2334 {
2335 BYTE *out;
2336
2338 pbEncoded = *(BYTE **)pbEncoded;
2339 out = pbEncoded;
2340 *out++ = ASN_SEQUENCEOF;
2341 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, out, &lenBytes);
2342 out += lenBytes;
2343 for (i = 0; ret && i < info->cRDN; i++)
2344 {
2345 size = bytesNeeded;
2347 &info->rgRDN[i], CRYPT_AsnEncodeNameValue, out, &size);
2348 if (ret)
2349 {
2350 out += size;
2351 bytesNeeded -= size;
2352 }
2353 }
2355 CRYPT_FreeSpace(pEncodePara, pbEncoded);
2356 }
2357 }
2358 }
2359 }
2361 {
2363 ret = FALSE;
2364 }
2365 __ENDTRY
2366 return ret;
2367}
2368
2370 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2372{
2373 BOOL val = *(const BOOL *)pvStructInfo, ret;
2374
2375 TRACE("%d\n", val);
2376
2377 if (!pbEncoded)
2378 {
2379 *pcbEncoded = 3;
2380 ret = TRUE;
2381 }
2382 else if (*pcbEncoded < 3)
2383 {
2384 *pcbEncoded = 3;
2386 ret = FALSE;
2387 }
2388 else
2389 {
2390 *pcbEncoded = 3;
2391 *pbEncoded++ = ASN_BOOL;
2392 *pbEncoded++ = 1;
2393 *pbEncoded++ = val ? 0xff : 0;
2394 ret = TRUE;
2395 }
2396 TRACE("returning %d (%08x)\n", ret, GetLastError());
2397 return ret;
2398}
2399
2401 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2403{
2405 BOOL ret;
2406 DWORD dataLen;
2407 BYTE tag;
2408
2409 ret = TRUE;
2410 switch (entry->dwAltNameChoice)
2411 {
2414 case CERT_ALT_NAME_URL:
2415 tag = ASN_CONTEXT | (entry->dwAltNameChoice - 1);
2416 if (entry->u.pwszURL)
2417 {
2418 DWORD i;
2419
2420 /* Not + 1: don't encode the NULL-terminator */
2421 dataLen = lstrlenW(entry->u.pwszURL);
2422 for (i = 0; ret && i < dataLen; i++)
2423 {
2424 if (entry->u.pwszURL[i] > 0x7f)
2425 {
2427 ret = FALSE;
2428 *pcbEncoded = i;
2429 }
2430 }
2431 }
2432 else
2433 dataLen = 0;
2434 break;
2436 tag = ASN_CONTEXT | ASN_CONSTRUCTOR | (entry->dwAltNameChoice - 1);
2437 dataLen = entry->u.DirectoryName.cbData;
2438 break;
2440 tag = ASN_CONTEXT | (entry->dwAltNameChoice - 1);
2441 dataLen = entry->u.IPAddress.cbData;
2442 break;
2444 {
2445 struct AsnEncodeTagSwappedItem swapped =
2446 { ASN_CONTEXT | (entry->dwAltNameChoice - 1), entry->u.pszRegisteredID,
2448
2449 return CRYPT_AsnEncodeSwapTag(0, NULL, &swapped, 0, NULL, pbEncoded,
2450 pcbEncoded);
2451 }
2453 FIXME("name type %d unimplemented\n", entry->dwAltNameChoice);
2454 return FALSE;
2455 default:
2457 return FALSE;
2458 }
2459 if (ret)
2460 {
2461 DWORD bytesNeeded, lenBytes;
2462
2463 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
2464 bytesNeeded = 1 + dataLen + lenBytes;
2465 if (!pbEncoded)
2466 *pcbEncoded = bytesNeeded;
2467 else if (*pcbEncoded < bytesNeeded)
2468 {
2470 *pcbEncoded = bytesNeeded;
2471 ret = FALSE;
2472 }
2473 else
2474 {
2475 *pbEncoded++ = tag;
2476 CRYPT_EncodeLen(dataLen, pbEncoded, &lenBytes);
2477 pbEncoded += lenBytes;
2478 switch (entry->dwAltNameChoice)
2479 {
2482 case CERT_ALT_NAME_URL:
2483 {
2484 DWORD i;
2485
2486 for (i = 0; i < dataLen; i++)
2487 *pbEncoded++ = (BYTE)entry->u.pwszURL[i];
2488 break;
2489 }
2491 memcpy(pbEncoded, entry->u.DirectoryName.pbData, dataLen);
2492 break;
2494 memcpy(pbEncoded, entry->u.IPAddress.pbData, dataLen);
2495 break;
2496 }
2497 if (ret)
2498 *pcbEncoded = bytesNeeded;
2499 }
2500 }
2501 TRACE("returning %d (%08x)\n", ret, GetLastError());
2502 return ret;
2503}
2504
2506 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2508{
2509 BOOL ret;
2510
2511 __TRY
2512 {
2514 struct AsnEncodeSequenceItem items[3] = { { 0 } };
2515 struct AsnEncodeTagSwappedItem swapped[3] = { { 0 } };
2516 struct AsnConstructedItem constructed = { 0 };
2517 DWORD cItem = 0, cSwapped = 0;
2518
2519 if (info->KeyId.cbData)
2520 {
2521 swapped[cSwapped].tag = ASN_CONTEXT | 0;
2522 swapped[cSwapped].pvStructInfo = &info->KeyId;
2523 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeOctets;
2524 items[cItem].pvStructInfo = &swapped[cSwapped];
2525 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
2526 cSwapped++;
2527 cItem++;
2528 }
2529 if (info->CertIssuer.cbData)
2530 {
2531 constructed.tag = 1;
2532 constructed.pvStructInfo = &info->CertIssuer;
2533 constructed.encodeFunc = CRYPT_CopyEncodedBlob;
2534 items[cItem].pvStructInfo = &constructed;
2535 items[cItem].encodeFunc = CRYPT_AsnEncodeConstructed;
2536 cItem++;
2537 }
2538 if (info->CertSerialNumber.cbData)
2539 {
2540 swapped[cSwapped].tag = ASN_CONTEXT | 2;
2541 swapped[cSwapped].pvStructInfo = &info->CertSerialNumber;
2542 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeInteger;
2543 items[cItem].pvStructInfo = &swapped[cSwapped];
2544 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
2545 cSwapped++;
2546 cItem++;
2547 }
2549 pEncodePara, pbEncoded, pcbEncoded);
2550 }
2552 {
2554 ret = FALSE;
2555 }
2556 __ENDTRY
2557 return ret;
2558}
2559
2561 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2563{
2564 BOOL ret;
2565
2566 __TRY
2567 {
2569 DWORD bytesNeeded, dataLen, lenBytes, i;
2570
2571 ret = TRUE;
2572 /* FIXME: should check that cAltEntry is not bigger than 0xff, since we
2573 * can't encode an erroneous entry index if it's bigger than this.
2574 */
2575 for (i = 0, dataLen = 0; ret && i < info->cAltEntry; i++)
2576 {
2577 DWORD len;
2578
2580 &info->rgAltEntry[i], 0, NULL, NULL, &len);
2581 if (ret)
2582 dataLen += len;
2584 {
2585 /* CRYPT_AsnEncodeAltNameEntry encoded the index of
2586 * the bad character, now set the index of the bad
2587 * entry
2588 */
2589 *pcbEncoded = (BYTE)i <<
2591 }
2592 }
2593 if (ret)
2594 {
2595 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
2596 bytesNeeded = 1 + lenBytes + dataLen;
2597 if (!pbEncoded)
2598 {
2599 *pcbEncoded = bytesNeeded;
2600 ret = TRUE;
2601 }
2602 else
2603 {
2604 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2605 pbEncoded, pcbEncoded, bytesNeeded)))
2606 {
2607 BYTE *out;
2608
2610 pbEncoded = *(BYTE **)pbEncoded;
2611 out = pbEncoded;
2612 *out++ = ASN_SEQUENCEOF;
2613 CRYPT_EncodeLen(dataLen, out, &lenBytes);
2614 out += lenBytes;
2615 for (i = 0; ret && i < info->cAltEntry; i++)
2616 {
2617 DWORD len = dataLen;
2618
2620 NULL, &info->rgAltEntry[i], 0, NULL, out, &len);
2621 if (ret)
2622 {
2623 out += len;
2624 dataLen -= len;
2625 }
2626 }
2628 CRYPT_FreeSpace(pEncodePara, pbEncoded);
2629 }
2630 }
2631 }
2632 }
2634 {
2636 ret = FALSE;
2637 }
2638 __ENDTRY
2639 return ret;
2640}
2641
2643 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2645{
2646 BOOL ret;
2647
2648 __TRY
2649 {
2651 struct AsnEncodeSequenceItem items[3] = { { 0 } };
2652 struct AsnEncodeTagSwappedItem swapped[3] = { { 0 } };
2653 DWORD cItem = 0, cSwapped = 0;
2654
2655 if (info->KeyId.cbData)
2656 {
2657 swapped[cSwapped].tag = ASN_CONTEXT | 0;
2658 swapped[cSwapped].pvStructInfo = &info->KeyId;
2659 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeOctets;
2660 items[cItem].pvStructInfo = &swapped[cSwapped];
2661 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
2662 cSwapped++;
2663 cItem++;
2664 }
2665 if (info->AuthorityCertIssuer.cAltEntry)
2666 {
2667 swapped[cSwapped].tag = ASN_CONTEXT | ASN_CONSTRUCTOR | 1;
2668 swapped[cSwapped].pvStructInfo = &info->AuthorityCertIssuer;
2669 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeAltName;
2670 items[cItem].pvStructInfo = &swapped[cSwapped];
2671 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
2672 cSwapped++;
2673 cItem++;
2674 }
2675 if (info->AuthorityCertSerialNumber.cbData)
2676 {
2677 swapped[cSwapped].tag = ASN_CONTEXT | 2;
2678 swapped[cSwapped].pvStructInfo = &info->AuthorityCertSerialNumber;
2679 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeInteger;
2680 items[cItem].pvStructInfo = &swapped[cSwapped];
2681 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
2682 cSwapped++;
2683 cItem++;
2684 }
2686 pEncodePara, pbEncoded, pcbEncoded);
2687 }
2689 {
2691 ret = FALSE;
2692 }
2693 __ENDTRY
2694 return ret;
2695}
2696
2699{
2700 struct AsnEncodeSequenceItem items[] = {
2701 { descr->pszAccessMethod, CRYPT_AsnEncodeOid, 0 },
2702 { &descr->AccessLocation, CRYPT_AsnEncodeAltNameEntry, 0 },
2703 };
2704
2705 if (!descr->pszAccessMethod)
2706 {
2708 return FALSE;
2709 }
2711}
2712
2714 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2716{
2717 BOOL ret;
2718
2719 __TRY
2720 {
2721 DWORD bytesNeeded, dataLen, lenBytes, i;
2723
2724 ret = TRUE;
2725 for (i = 0, dataLen = 0; ret && i < info->cAccDescr; i++)
2726 {
2727 DWORD size;
2728
2730 &size);
2731 if (ret)
2732 dataLen += size;
2733 }
2734 if (ret)
2735 {
2736 CRYPT_EncodeLen(dataLen, NULL, &lenBytes);
2737 bytesNeeded = 1 + lenBytes + dataLen;
2738 if (!pbEncoded)
2739 *pcbEncoded = bytesNeeded;
2740 else
2741 {
2742 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2743 pbEncoded, pcbEncoded, bytesNeeded)))
2744 {
2745 BYTE *out;
2746
2748 pbEncoded = *(BYTE **)pbEncoded;
2749 out = pbEncoded;
2750 *out++ = ASN_SEQUENCEOF;
2751 CRYPT_EncodeLen(dataLen, out, &lenBytes);
2752 out += lenBytes;
2753 for (i = 0; i < info->cAccDescr; i++)
2754 {
2755 DWORD size = dataLen;
2756
2758 &info->rgAccDescr[i], out, &size);
2759 out += size;
2760 dataLen -= size;
2761 }
2763 CRYPT_FreeSpace(pEncodePara, pbEncoded);
2764 }
2765 }
2766 }
2767 }
2769 {
2771 ret = FALSE;
2772 }
2773 __ENDTRY
2774 return ret;
2775}
2776
2778 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2780{
2781 BOOL ret;
2782
2783 __TRY
2784 {
2786 struct AsnEncodeSequenceItem items[3] = {
2787 { &info->SubjectType, CRYPT_AsnEncodeBits, 0 },
2788 { 0 }
2789 };
2790 DWORD cItem = 1;
2791
2792 if (info->fPathLenConstraint)
2793 {
2794 items[cItem].pvStructInfo = &info->dwPathLenConstraint;
2795 items[cItem].encodeFunc = CRYPT_AsnEncodeInt;
2796 cItem++;
2797 }
2798 if (info->cSubtreesConstraint)
2799 {
2800 items[cItem].pvStructInfo = &info->cSubtreesConstraint;
2801 items[cItem].encodeFunc = CRYPT_AsnEncodeSequenceOfAny;
2802 cItem++;
2803 }
2805 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2806 }
2808 {
2810 ret = FALSE;
2811 }
2812 __ENDTRY
2813 return ret;
2814}
2815
2817 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2819{
2820 BOOL ret;
2821
2822 __TRY
2823 {
2825 struct AsnEncodeSequenceItem items[2] = { { 0 } };
2826 DWORD cItem = 0;
2827
2828 if (info->fCA)
2829 {
2830 items[cItem].pvStructInfo = &info->fCA;
2831 items[cItem].encodeFunc = CRYPT_AsnEncodeBool;
2832 cItem++;
2833 }
2834 if (info->fPathLenConstraint)
2835 {
2836 items[cItem].pvStructInfo = &info->dwPathLenConstraint;
2837 items[cItem].encodeFunc = CRYPT_AsnEncodeInt;
2838 cItem++;
2839 }
2841 dwFlags, pEncodePara, pbEncoded, pcbEncoded);
2842 }
2844 {
2846 ret = FALSE;
2847 }
2848 __ENDTRY
2849 return ret;
2850}
2851
2853 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2855{
2857 BOOL ret;
2858
2859 if (!info->cPolicyQualifier)
2860 {
2861 *pcbEncoded = 0;
2862 ret = TRUE;
2863 }
2864 else
2865 {
2866 struct AsnEncodeSequenceItem items[2] = {
2867 { NULL, CRYPT_AsnEncodeOid, 0 },
2869 };
2870 DWORD bytesNeeded = 0, lenBytes, size, i;
2871
2872 ret = TRUE;
2873 for (i = 0; ret && i < info->cPolicyQualifier; i++)
2874 {
2875 items[0].pvStructInfo =
2876 info->rgPolicyQualifier[i].pszPolicyQualifierId;
2877 items[1].pvStructInfo = &info->rgPolicyQualifier[i].Qualifier;
2880 if (ret)
2881 bytesNeeded += size;
2882 }
2883 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
2884 bytesNeeded += 1 + lenBytes;
2885 if (ret)
2886 {
2887 if (!pbEncoded)
2888 *pcbEncoded = bytesNeeded;
2889 else
2890 {
2891 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2892 pbEncoded, pcbEncoded, bytesNeeded)))
2893 {
2894 BYTE *out;
2895
2897 pbEncoded = *(BYTE **)pbEncoded;
2898 out = pbEncoded;
2899 *out++ = ASN_SEQUENCEOF;
2900 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, out, &lenBytes);
2901 out += lenBytes;
2902 for (i = 0; ret && i < info->cPolicyQualifier; i++)
2903 {
2904 items[0].pvStructInfo =
2905 info->rgPolicyQualifier[i].pszPolicyQualifierId;
2906 items[1].pvStructInfo =
2907 &info->rgPolicyQualifier[i].Qualifier;
2908 size = bytesNeeded;
2911 if (ret)
2912 {
2913 out += size;
2914 bytesNeeded -= size;
2915 }
2916 }
2918 CRYPT_FreeSpace(pEncodePara, pbEncoded);
2919 }
2920 }
2921 }
2922 }
2923 return ret;
2924}
2925
2929{
2930 struct AsnEncodeSequenceItem items[2] = {
2931 { info->pszPolicyIdentifier, CRYPT_AsnEncodeOid, 0 },
2933 };
2934 BOOL ret;
2935
2936 if (!info->pszPolicyIdentifier)
2937 {
2939 return FALSE;
2940 }
2942 return ret;
2943}
2944
2946 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
2948{
2949 BOOL ret = FALSE;
2950
2951 __TRY
2952 {
2954 DWORD bytesNeeded = 0, lenBytes, size, i;
2955
2956 ret = TRUE;
2957 for (i = 0; ret && i < info->cPolicyInfo; i++)
2958 {
2960 &info->rgPolicyInfo[i], dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG, NULL,
2961 &size);
2962 if (ret)
2963 bytesNeeded += size;
2964 }
2965 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
2966 bytesNeeded += 1 + lenBytes;
2967 if (ret)
2968 {
2969 if (!pbEncoded)
2970 *pcbEncoded = bytesNeeded;
2971 else
2972 {
2973 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
2974 pbEncoded, pcbEncoded, bytesNeeded)))
2975 {
2976 BYTE *out;
2977
2979 pbEncoded = *(BYTE **)pbEncoded;
2980 out = pbEncoded;
2981 *out++ = ASN_SEQUENCEOF;
2982 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, out, &lenBytes);
2983 out += lenBytes;
2984 for (i = 0; ret && i < info->cPolicyInfo; i++)
2985 {
2986 size = bytesNeeded;
2988 &info->rgPolicyInfo[i],
2990 if (ret)
2991 {
2992 out += size;
2993 bytesNeeded -= size;
2994 }
2995 }
2997 CRYPT_FreeSpace(pEncodePara, pbEncoded);
2998 }
2999 }
3000 }
3001 }
3003 {
3005 }
3006 __ENDTRY
3007 return ret;
3008}
3009
3013{
3014 struct AsnEncodeSequenceItem items[] = {
3015 { mapping->pszIssuerDomainPolicy, CRYPT_AsnEncodeOid, 0 },
3016 { mapping->pszSubjectDomainPolicy, CRYPT_AsnEncodeOid, 0 },
3017 };
3018
3019 if (!mapping->pszIssuerDomainPolicy || !mapping->pszSubjectDomainPolicy)
3020 {
3022 return FALSE;
3023 }
3025}
3026
3028 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3030{
3031 BOOL ret = FALSE;
3032
3033 __TRY
3034 {
3036 DWORD bytesNeeded = 0, lenBytes, size, i;
3037
3038 ret = TRUE;
3039 for (i = 0; ret && i < info->cPolicyMapping; i++)
3040 {
3042 &info->rgPolicyMapping[i], dwFlags & ~CRYPT_ENCODE_ALLOC_FLAG,
3043 NULL, &size);
3044 if (ret)
3045 bytesNeeded += size;
3046 }
3047 CRYPT_EncodeLen(bytesNeeded, NULL, &lenBytes);
3048 bytesNeeded += 1 + lenBytes;
3049 if (ret)
3050 {
3051 if (!pbEncoded)
3052 *pcbEncoded = bytesNeeded;
3053 else
3054 {
3055 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara,
3056 pbEncoded, pcbEncoded, bytesNeeded)))
3057 {
3058 BYTE *out;
3059
3061 pbEncoded = *(BYTE **)pbEncoded;
3062 out = pbEncoded;
3063 *out++ = ASN_SEQUENCEOF;
3064 CRYPT_EncodeLen(bytesNeeded - lenBytes - 1, out, &lenBytes);
3065 out += lenBytes;
3066 for (i = 0; ret && i < info->cPolicyMapping; i++)
3067 {
3068 size = bytesNeeded;
3070 dwCertEncodingType, &info->rgPolicyMapping[i],
3072 if (ret)
3073 {
3074 out += size;
3075 bytesNeeded -= size;
3076 }
3077 }
3079 CRYPT_FreeSpace(pEncodePara, pbEncoded);
3080 }
3081 }
3082 }
3083 }
3085 {
3087 }
3088 __ENDTRY
3089 return ret;
3090}
3091
3093 DWORD dwCertEncodingType, LPCSTR lpszStructType, const void *pvStructInfo,
3096{
3097 BOOL ret = FALSE;
3098
3099 __TRY
3100 {
3102 struct AsnEncodeSequenceItem items[2];
3103 struct AsnEncodeTagSwappedItem swapped[2];
3104 DWORD cItem = 0, cSwapped = 0;
3105
3106 if (info->fRequireExplicitPolicy)
3107 {
3108 swapped[cSwapped].tag = ASN_CONTEXT | 0;
3109 swapped[cSwapped].pvStructInfo =
3110 &info->dwRequireExplicitPolicySkipCerts;
3111 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeInt;
3112 items[cItem].pvStructInfo = &swapped[cSwapped];
3113 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
3114 cSwapped++;
3115 cItem++;
3116 }
3117 if (info->fInhibitPolicyMapping)
3118 {
3119 swapped[cSwapped].tag = ASN_CONTEXT | 1;
3120 swapped[cSwapped].pvStructInfo =
3121 &info->dwInhibitPolicyMappingSkipCerts;
3122 swapped[cSwapped].encodeFunc = CRYPT_AsnEncodeInt;
3123 items[cItem].pvStructInfo = &swapped[cSwapped];
3124 items[cItem].encodeFunc = CRYPT_AsnEncodeSwapTag;
3125 cSwapped++;
3126 cItem++;
3127 }
3130 }
3132 {
3134 }
3135 __ENDTRY
3136 return ret;
3137}
3138
3140 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3142{
3143 BOOL ret;
3144
3145 __TRY
3146 {
3147 const BLOBHEADER *hdr = pvStructInfo;
3148
3149 if (hdr->bType != PUBLICKEYBLOB)
3150 {
3152 ret = FALSE;
3153 }
3154 else
3155 {
3156 const RSAPUBKEY *rsaPubKey = (const RSAPUBKEY *)
3157 ((const BYTE *)pvStructInfo + sizeof(BLOBHEADER));
3158 CRYPT_INTEGER_BLOB blob = { rsaPubKey->bitlen / 8,
3159 (BYTE *)pvStructInfo + sizeof(BLOBHEADER) + sizeof(RSAPUBKEY) };
3160 struct AsnEncodeSequenceItem items[] = {
3162 { &rsaPubKey->pubexp, CRYPT_AsnEncodeInt, 0 },
3163 };
3164
3166 ARRAY_SIZE(items), dwFlags, pEncodePara, pbEncoded, pcbEncoded);
3167 }
3168 }
3170 {
3172 ret = FALSE;
3173 }
3174 __ENDTRY
3175 return ret;
3176}
3177
3179 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3181{
3182 BOOL ret;
3183
3184 __TRY
3185 {
3187 DWORD bytesNeeded, lenBytes;
3188
3189 TRACE("(%d, %p), %08x, %p, %p, %d\n", blob->cbData, blob->pbData,
3190 dwFlags, pEncodePara, pbEncoded, pbEncoded ? *pcbEncoded : 0);
3191
3192 CRYPT_EncodeLen(blob->cbData, NULL, &lenBytes);
3193 bytesNeeded = 1 + lenBytes + blob->cbData;
3194 if (!pbEncoded)
3195 {
3196 *pcbEncoded = bytesNeeded;
3197 ret = TRUE;
3198 }
3199 else
3200 {
3201 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
3202 pcbEncoded, bytesNeeded)))
3203 {
3205 pbEncoded = *(BYTE **)pbEncoded;
3207 CRYPT_EncodeLen(blob->cbData, pbEncoded, &lenBytes);
3208 pbEncoded += lenBytes;
3209 if (blob->cbData)
3210 memcpy(pbEncoded, blob->pbData, blob->cbData);
3211 }
3212 }
3213 }
3215 {
3217 ret = FALSE;
3218 }
3219 __ENDTRY
3220 TRACE("returning %d (%08x)\n", ret, GetLastError());
3221 return ret;
3222}
3223
3225 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3227{
3228 BOOL ret;
3229
3230 __TRY
3231 {
3233 DWORD bytesNeeded, lenBytes, dataBytes;
3234 BYTE unusedBits;
3235
3236 /* yep, MS allows cUnusedBits to be >= 8 */
3237 if (!blob->cUnusedBits)
3238 {
3239 dataBytes = blob->cbData;
3240 unusedBits = 0;
3241 }
3242 else if (blob->cbData * 8 > blob->cUnusedBits)
3243 {
3244 dataBytes = (blob->cbData * 8 - blob->cUnusedBits) / 8 + 1;
3245 unusedBits = blob->cUnusedBits >= 8 ? blob->cUnusedBits / 8 :
3246 blob->cUnusedBits;
3247 }
3248 else
3249 {
3250 dataBytes = 0;
3251 unusedBits = 0;
3252 }
3253 CRYPT_EncodeLen(dataBytes + 1, NULL, &lenBytes);
3254 bytesNeeded = 1 + lenBytes + dataBytes + 1;
3255 if (!pbEncoded)
3256 {
3257 *pcbEncoded = bytesNeeded;
3258 ret = TRUE;
3259 }
3260 else
3261 {
3262 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
3263 pcbEncoded, bytesNeeded)))
3264 {
3266 pbEncoded = *(BYTE **)pbEncoded;
3268 CRYPT_EncodeLen(dataBytes + 1, pbEncoded, &lenBytes);
3269 pbEncoded += lenBytes;
3270 *pbEncoded++ = unusedBits;
3271 if (dataBytes)
3272 {
3273 BYTE mask = 0xff << unusedBits;
3274
3275 if (dataBytes > 1)
3276 {
3277 memcpy(pbEncoded, blob->pbData, dataBytes - 1);
3278 pbEncoded += dataBytes - 1;
3279 }
3280 *pbEncoded = *(blob->pbData + dataBytes - 1) & mask;
3281 }
3282 }
3283 }
3284 }
3286 {
3288 ret = FALSE;
3289 }
3290 __ENDTRY
3291 return ret;
3292}
3293
3295 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3297{
3298 BOOL ret;
3299
3300 __TRY
3301 {
3303 CRYPT_BIT_BLOB newBlob = { blob->cbData, NULL, blob->cUnusedBits };
3304
3305 ret = TRUE;
3306 if (newBlob.cbData)
3307 {
3308 newBlob.pbData = CryptMemAlloc(newBlob.cbData);
3309 if (newBlob.pbData)
3310 {
3311 DWORD i;
3312
3313 for (i = 0; i < newBlob.cbData; i++)
3314 newBlob.pbData[newBlob.cbData - i - 1] = blob->pbData[i];
3315 }
3316 else
3317 ret = FALSE;
3318 }
3319 if (ret)
3320 ret = CRYPT_AsnEncodeBits(dwCertEncodingType, lpszStructType,
3321 &newBlob, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
3322 CryptMemFree(newBlob.pbData);
3323 }
3325 {
3327 ret = FALSE;
3328 }
3329 __ENDTRY
3330 return ret;
3331}
3332
3334 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3336{
3337 CRYPT_INTEGER_BLOB blob = { sizeof(INT), (BYTE *)pvStructInfo };
3338
3340 &blob, dwFlags, pEncodePara, pbEncoded, pcbEncoded);
3341}
3342
3344 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3346{
3347 BOOL ret;
3348
3349 __TRY
3350 {
3351 DWORD significantBytes, lenBytes, bytesNeeded;
3352 BYTE padByte = 0;
3353 BOOL pad = FALSE;
3355
3356 significantBytes = blob->cbData;
3357 if (significantBytes)
3358 {
3359 if (blob->pbData[significantBytes - 1] & 0x80)
3360 {
3361 /* negative, lop off leading (little-endian) 0xffs */
3362 for (; significantBytes > 0 &&
3363 blob->pbData[significantBytes - 1] == 0xff; significantBytes--)
3364 ;
3365 if (blob->pbData[significantBytes - 1] < 0x80)
3366 {
3367 padByte = 0xff;
3368 pad = TRUE;
3369 }
3370 }
3371 else
3372 {
3373 /* positive, lop off leading (little-endian) zeroes */
3374 for (; significantBytes > 0 &&
3375 !blob->pbData[significantBytes - 1]; significantBytes--)
3376 ;
3377 if (significantBytes == 0)
3378 significantBytes = 1;
3379 if (blob->pbData[significantBytes - 1] > 0x7f)
3380 {
3381 padByte = 0;
3382 pad = TRUE;
3383 }
3384 }
3385 }
3386 if (pad)
3387 CRYPT_EncodeLen(significantBytes + 1, NULL, &lenBytes);
3388 else
3389 CRYPT_EncodeLen(significantBytes, NULL, &lenBytes);
3390 bytesNeeded = 1 + lenBytes + significantBytes;
3391 if (pad)
3392 bytesNeeded++;
3393 if (!pbEncoded)
3394 {
3395 *pcbEncoded = bytesNeeded;
3396 ret = TRUE;
3397 }
3398 else
3399 {
3400 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
3401 pcbEncoded, bytesNeeded)))
3402 {
3404 pbEncoded = *(BYTE **)pbEncoded;
3406 if (pad)
3407 {
3408 CRYPT_EncodeLen(significantBytes + 1, pbEncoded, &lenBytes);
3409 pbEncoded += lenBytes;
3410 *pbEncoded++ = padByte;
3411 }
3412 else
3413 {
3414 CRYPT_EncodeLen(significantBytes, pbEncoded, &lenBytes);
3415 pbEncoded += lenBytes;
3416 }
3417 for (; significantBytes > 0; significantBytes--)
3418 *(pbEncoded++) = blob->pbData[significantBytes - 1];
3419 }
3420 }
3421 }
3423 {
3425 ret = FALSE;
3426 }
3427 __ENDTRY
3428 return ret;
3429}
3430
3432 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3434{
3435 BOOL ret;
3436
3437 __TRY
3438 {
3439 DWORD significantBytes, lenBytes, bytesNeeded;
3440 BOOL pad = FALSE;
3442
3443 significantBytes = blob->cbData;
3444 if (significantBytes)
3445 {
3446 /* positive, lop off leading (little-endian) zeroes */
3447 for (; significantBytes > 0 && !blob->pbData[significantBytes - 1];
3448 significantBytes--)
3449 ;
3450 if (significantBytes == 0)
3451 significantBytes = 1;
3452 if (blob->pbData[significantBytes - 1] > 0x7f)
3453 pad = TRUE;
3454 }
3455 if (pad)
3456 CRYPT_EncodeLen(significantBytes + 1, NULL, &lenBytes);
3457 else
3458 CRYPT_EncodeLen(significantBytes, NULL, &lenBytes);
3459 bytesNeeded = 1 + lenBytes + significantBytes;
3460 if (pad)
3461 bytesNeeded++;
3462 if (!pbEncoded)
3463 {
3464 *pcbEncoded = bytesNeeded;
3465 ret = TRUE;
3466 }
3467 else
3468 {
3469 if ((ret = CRYPT_EncodeEnsureSpace(dwFlags, pEncodePara, pbEncoded,
3470 pcbEncoded, bytesNeeded)))
3471 {
3473 pbEncoded = *(BYTE **)pbEncoded;
3475 if (pad)
3476 {
3477 CRYPT_EncodeLen(significantBytes + 1, pbEncoded, &lenBytes);
3478 pbEncoded += lenBytes;
3479 *pbEncoded++ = 0;
3480 }
3481 else
3482 {
3483 CRYPT_EncodeLen(significantBytes, pbEncoded, &lenBytes);
3484 pbEncoded += lenBytes;
3485 }
3486 for (; significantBytes > 0; significantBytes--)
3487 *(pbEncoded++) = blob->pbData[significantBytes - 1];
3488 }
3489 }
3490 }
3492 {
3494 ret = FALSE;
3495 }
3496 __ENDTRY
3497 return ret;
3498}
3499
3501 LPCSTR lpszStructType, const void *pvStructInfo, DWORD dwFlags,
3503{
3505 BOOL ret;
3506
3507 /* Encode as an unsigned integer, then change the tag to enumerated */
3508 blob.cbData = sizeof(DWORD);
3509 blob.pbData = (BYTE *)pvStructInfo;
3510 ret =