ReactOS 0.4.16-dev-340-g0540c21
vartype.c
Go to the documentation of this file.
1/*
2 * Low level variant functions
3 *
4 * Copyright 2003 Jon Griffiths
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
19 */
20
21#define COBJMACROS
22#define NONAMELESSUNION
23#define NONAMELESSSTRUCT
24
25#include <wchar.h>
26
27#include "wine/debug.h"
28#include "winbase.h"
29#include "winuser.h"
30#include "winnt.h"
31#include "variant.h"
32#include "resource.h"
33
35
36extern HMODULE hProxyDll DECLSPEC_HIDDEN;
37
38#define CY_MULTIPLIER 10000 /* 4 dp of precision */
39#define CY_MULTIPLIER_F 10000.0
40#define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
41#define CY_HALF_F (CY_MULTIPLIER_F/2.0)
42
43static const WCHAR szFloatFormatW[] = { '%','.','7','G','\0' };
44static const WCHAR szDoubleFormatW[] = { '%','.','1','5','G','\0' };
45
46/* Copy data from one variant to another. */
47static inline void VARIANT_CopyData(const VARIANT *srcVar, VARTYPE vt, void *pOut)
48{
49 switch (vt)
50 {
51 case VT_I1:
52 case VT_UI1: memcpy(pOut, &V_UI1(srcVar), sizeof(BYTE)); break;
53 case VT_BOOL:
54 case VT_I2:
55 case VT_UI2: memcpy(pOut, &V_UI2(srcVar), sizeof(SHORT)); break;
56 case VT_R4:
57 case VT_INT:
58 case VT_I4:
59 case VT_UINT:
60 case VT_UI4: memcpy(pOut, &V_UI4(srcVar), sizeof (LONG)); break;
61 case VT_R8:
62 case VT_DATE:
63 case VT_CY:
64 case VT_I8:
65 case VT_UI8: memcpy(pOut, &V_UI8(srcVar), sizeof (LONG64)); break;
66 case VT_INT_PTR: memcpy(pOut, &V_INT_PTR(srcVar), sizeof (INT_PTR)); break;
67 case VT_DECIMAL: memcpy(pOut, &V_DECIMAL(srcVar), sizeof (DECIMAL)); break;
68 case VT_BSTR: memcpy(pOut, &V_BSTR(srcVar), sizeof(BSTR)); break;
69 default:
70 FIXME("VT_ type %d unhandled, please report!\n", vt);
71 }
72}
73
74/* Macro to inline conversion from a float or double to any integer type,
75 * rounding according to the 'dutch' convention.
76 */
77#define VARIANT_DutchRound(typ, value, res) do { \
78 double whole = value < 0 ? ceil(value) : floor(value); \
79 double fract = value - whole; \
80 if (fract > 0.5) res = (typ)whole + (typ)1; \
81 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
82 else if (fract >= 0.0) res = (typ)whole; \
83 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
84 else if (fract > -0.5) res = (typ)whole; \
85 else res = (typ)whole - (typ)1; \
86} while(0)
87
88
89/* Coerce VT_BSTR to a numeric type */
90static HRESULT VARIANT_NumberFromBstr(OLECHAR* pStrIn, LCID lcid, ULONG ulFlags,
91 void* pOut, VARTYPE vt)
92{
93 VARIANTARG dstVar;
94 HRESULT hRet;
95 NUMPARSE np;
96 BYTE rgb[1024];
97
98 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
99 np.cDig = ARRAY_SIZE(rgb);
101
102 hRet = VarParseNumFromStr(pStrIn, lcid, ulFlags, &np, rgb);
103
104 if (SUCCEEDED(hRet))
105 {
106 /* 1 << vt gives us the VTBIT constant for the destination number type */
107 hRet = VarNumFromParseNum(&np, rgb, 1 << vt, &dstVar);
108 if (SUCCEEDED(hRet))
109 VARIANT_CopyData(&dstVar, vt, pOut);
110 }
111 return hRet;
112}
113
114/* Coerce VT_DISPATCH to another type */
115static HRESULT VARIANT_FromDisp(IDispatch* pdispIn, LCID lcid, void* pOut,
117{
118 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
119 VARIANTARG srcVar, dstVar;
120 HRESULT hRet;
121
122 if (!pdispIn)
123 return DISP_E_BADVARTYPE;
124
125 /* Get the default 'value' property from the IDispatch */
126 VariantInit(&srcVar);
127 hRet = IDispatch_Invoke(pdispIn, DISPID_VALUE, &IID_NULL, lcid, DISPATCH_PROPERTYGET,
128 &emptyParams, &srcVar, NULL, NULL);
129
130 if (SUCCEEDED(hRet))
131 {
132 /* Convert the property to the requested type */
133 VariantInit(&dstVar);
134 hRet = VariantChangeTypeEx(&dstVar, &srcVar, lcid, dwFlags, vt);
135 VariantClear(&srcVar);
136
137 if (SUCCEEDED(hRet))
138 VARIANT_CopyData(&dstVar, vt, pOut);
139 }
140 else
141 hRet = DISP_E_TYPEMISMATCH;
142 return hRet;
143}
144
145/* Inline return type */
146#define RETTYP static inline HRESULT
147
148
149/* Simple compiler cast from one type to another */
150#define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
151 *out = in; return S_OK; }
152
153/* Compiler cast where input cannot be negative */
154#define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
155 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
156
157/* Compiler cast where input cannot be > some number */
158#define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
159 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
160
161/* Compiler cast where input cannot be < some number or >= some other number */
162#define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
163 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
164
165/* I1 */
166POSTST(signed char, BYTE, VarI1FromUI1, I1_MAX)
167BOTHTST(signed char, SHORT, VarI1FromI2, I1_MIN, I1_MAX)
168BOTHTST(signed char, LONG, VarI1FromI4, I1_MIN, I1_MAX)
169SIMPLE(signed char, VARIANT_BOOL, VarI1FromBool)
170POSTST(signed char, USHORT, VarI1FromUI2, I1_MAX)
171POSTST(signed char, ULONG, VarI1FromUI4, I1_MAX)
172BOTHTST(signed char, LONG64, VarI1FromI8, I1_MIN, I1_MAX)
173POSTST(signed char, ULONG64, VarI1FromUI8, I1_MAX)
174
175/* UI1 */
178NEGTST(BYTE, signed char, VarUI1FromI1)
184
185/* I2 */
189SIMPLE(SHORT, signed char, VarI2FromI1)
194
195/* UI2 */
200NEGTST(USHORT, signed char, VarUI2FromI1)
204
205/* I4 */
209SIMPLE(LONG, signed char, VarI4FromI1)
214
215/* UI4 */
220NEGTST(ULONG, signed char, VarUI4FromI1)
224
225/* I8 */
228SIMPLE(LONG64, signed char, VarI8FromI1)
232
233/* UI8 */
236NEGTST(ULONG64, signed char, VarUI8FromI1)
240
241/* R4 (float) */
242SIMPLE(float, BYTE, VarR4FromUI1)
243SIMPLE(float, SHORT, VarR4FromI2)
244SIMPLE(float, signed char, VarR4FromI1)
246SIMPLE(float, LONG, VarR4FromI4)
250
251/* R8 (double) */
252SIMPLE(double, BYTE, VarR8FromUI1)
253SIMPLE(double, SHORT, VarR8FromI2)
254SIMPLE(double, float, VarR8FromR4)
255RETTYP _VarR8FromCy(CY i, double* o) { *o = (double)i.int64 / CY_MULTIPLIER_F; return S_OK; }
256SIMPLE(double, DATE, VarR8FromDate)
257SIMPLE(double, signed char, VarR8FromI1)
258SIMPLE(double, USHORT, VarR8FromUI2)
259SIMPLE(double, LONG, VarR8FromI4)
260SIMPLE(double, ULONG, VarR8FromUI4)
261SIMPLE(double, LONG64, VarR8FromI8)
263
264
265/* I1
266 */
267
268/************************************************************************
269 * VarI1FromUI1 (OLEAUT32.244)
270 *
271 * Convert a VT_UI1 to a VT_I1.
272 *
273 * PARAMS
274 * bIn [I] Source
275 * pcOut [O] Destination
276 *
277 * RETURNS
278 * Success: S_OK.
279 * Failure: E_INVALIDARG, if the source value is invalid
280 * DISP_E_OVERFLOW, if the value will not fit in the destination
281 */
282HRESULT WINAPI VarI1FromUI1(BYTE bIn, signed char* pcOut)
283{
284 return _VarI1FromUI1(bIn, pcOut);
285}
286
287/************************************************************************
288 * VarI1FromI2 (OLEAUT32.245)
289 *
290 * Convert a VT_I2 to a VT_I1.
291 *
292 * PARAMS
293 * sIn [I] Source
294 * pcOut [O] Destination
295 *
296 * RETURNS
297 * Success: S_OK.
298 * Failure: E_INVALIDARG, if the source value is invalid
299 * DISP_E_OVERFLOW, if the value will not fit in the destination
300 */
301HRESULT WINAPI VarI1FromI2(SHORT sIn, signed char* pcOut)
302{
303 return _VarI1FromI2(sIn, pcOut);
304}
305
306/************************************************************************
307 * VarI1FromI4 (OLEAUT32.246)
308 *
309 * Convert a VT_I4 to a VT_I1.
310 *
311 * PARAMS
312 * iIn [I] Source
313 * pcOut [O] Destination
314 *
315 * RETURNS
316 * Success: S_OK.
317 * Failure: E_INVALIDARG, if the source value is invalid
318 * DISP_E_OVERFLOW, if the value will not fit in the destination
319 */
320HRESULT WINAPI VarI1FromI4(LONG iIn, signed char* pcOut)
321{
322 return _VarI1FromI4(iIn, pcOut);
323}
324
325/************************************************************************
326 * VarI1FromR4 (OLEAUT32.247)
327 *
328 * Convert a VT_R4 to a VT_I1.
329 *
330 * PARAMS
331 * fltIn [I] Source
332 * pcOut [O] Destination
333 *
334 * RETURNS
335 * Success: S_OK.
336 * Failure: E_INVALIDARG, if the source value is invalid
337 * DISP_E_OVERFLOW, if the value will not fit in the destination
338 */
339HRESULT WINAPI VarI1FromR4(FLOAT fltIn, signed char* pcOut)
340{
341 return VarI1FromR8(fltIn, pcOut);
342}
343
344/************************************************************************
345 * VarI1FromR8 (OLEAUT32.248)
346 *
347 * Convert a VT_R8 to a VT_I1.
348 *
349 * PARAMS
350 * dblIn [I] Source
351 * pcOut [O] Destination
352 *
353 * RETURNS
354 * Success: S_OK.
355 * Failure: E_INVALIDARG, if the source value is invalid
356 * DISP_E_OVERFLOW, if the value will not fit in the destination
357 *
358 * NOTES
359 * See VarI8FromR8() for details concerning rounding.
360 */
361HRESULT WINAPI VarI1FromR8(double dblIn, signed char* pcOut)
362{
363 if (dblIn < I1_MIN - 0.5 || dblIn >= I1_MAX + 0.5)
364 return DISP_E_OVERFLOW;
365 VARIANT_DutchRound(CHAR, dblIn, *pcOut);
366 return S_OK;
367}
368
369/************************************************************************
370 * VarI1FromDate (OLEAUT32.249)
371 *
372 * Convert a VT_DATE to a VT_I1.
373 *
374 * PARAMS
375 * dateIn [I] Source
376 * pcOut [O] Destination
377 *
378 * RETURNS
379 * Success: S_OK.
380 * Failure: E_INVALIDARG, if the source value is invalid
381 * DISP_E_OVERFLOW, if the value will not fit in the destination
382 */
383HRESULT WINAPI VarI1FromDate(DATE dateIn, signed char* pcOut)
384{
385 return VarI1FromR8(dateIn, pcOut);
386}
387
388/************************************************************************
389 * VarI1FromCy (OLEAUT32.250)
390 *
391 * Convert a VT_CY to a VT_I1.
392 *
393 * PARAMS
394 * cyIn [I] Source
395 * pcOut [O] Destination
396 *
397 * RETURNS
398 * Success: S_OK.
399 * Failure: E_INVALIDARG, if the source value is invalid
400 * DISP_E_OVERFLOW, if the value will not fit in the destination
401 */
402HRESULT WINAPI VarI1FromCy(CY cyIn, signed char* pcOut)
403{
404 LONG i = I1_MAX + 1;
405
406 VarI4FromCy(cyIn, &i);
407 return _VarI1FromI4(i, pcOut);
408}
409
410/************************************************************************
411 * VarI1FromStr (OLEAUT32.251)
412 *
413 * Convert a VT_BSTR to a VT_I1.
414 *
415 * PARAMS
416 * strIn [I] Source
417 * lcid [I] LCID for the conversion
418 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
419 * pcOut [O] Destination
420 *
421 * RETURNS
422 * Success: S_OK.
423 * Failure: E_INVALIDARG, if the source value is invalid
424 * DISP_E_OVERFLOW, if the value will not fit in the destination
425 * DISP_E_TYPEMISMATCH, if the type cannot be converted
426 */
427HRESULT WINAPI VarI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, signed char* pcOut)
428{
429 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pcOut, VT_I1);
430}
431
432/************************************************************************
433 * VarI1FromDisp (OLEAUT32.252)
434 *
435 * Convert a VT_DISPATCH to a VT_I1.
436 *
437 * PARAMS
438 * pdispIn [I] Source
439 * lcid [I] LCID for conversion
440 * pcOut [O] Destination
441 *
442 * RETURNS
443 * Success: S_OK.
444 * Failure: E_INVALIDARG, if the source value is invalid
445 * DISP_E_OVERFLOW, if the value will not fit in the destination
446 * DISP_E_TYPEMISMATCH, if the type cannot be converted
447 */
448HRESULT WINAPI VarI1FromDisp(IDispatch* pdispIn, LCID lcid, signed char* pcOut)
449{
450 return VARIANT_FromDisp(pdispIn, lcid, pcOut, VT_I1, 0);
451}
452
453/************************************************************************
454 * VarI1FromBool (OLEAUT32.253)
455 *
456 * Convert a VT_BOOL to a VT_I1.
457 *
458 * PARAMS
459 * boolIn [I] Source
460 * pcOut [O] Destination
461 *
462 * RETURNS
463 * S_OK.
464 */
465HRESULT WINAPI VarI1FromBool(VARIANT_BOOL boolIn, signed char* pcOut)
466{
467 return _VarI1FromBool(boolIn, pcOut);
468}
469
470/************************************************************************
471 * VarI1FromUI2 (OLEAUT32.254)
472 *
473 * Convert a VT_UI2 to a VT_I1.
474 *
475 * PARAMS
476 * usIn [I] Source
477 * pcOut [O] Destination
478 *
479 * RETURNS
480 * Success: S_OK.
481 * Failure: E_INVALIDARG, if the source value is invalid
482 * DISP_E_OVERFLOW, if the value will not fit in the destination
483 */
484HRESULT WINAPI VarI1FromUI2(USHORT usIn, signed char* pcOut)
485{
486 return _VarI1FromUI2(usIn, pcOut);
487}
488
489/************************************************************************
490 * VarI1FromUI4 (OLEAUT32.255)
491 *
492 * Convert a VT_UI4 to a VT_I1.
493 *
494 * PARAMS
495 * ulIn [I] Source
496 * pcOut [O] Destination
497 *
498 * RETURNS
499 * Success: S_OK.
500 * Failure: E_INVALIDARG, if the source value is invalid
501 * DISP_E_OVERFLOW, if the value will not fit in the destination
502 * DISP_E_TYPEMISMATCH, if the type cannot be converted
503 */
504HRESULT WINAPI VarI1FromUI4(ULONG ulIn, signed char* pcOut)
505{
506 return _VarI1FromUI4(ulIn, pcOut);
507}
508
509/************************************************************************
510 * VarI1FromDec (OLEAUT32.256)
511 *
512 * Convert a VT_DECIMAL to a VT_I1.
513 *
514 * PARAMS
515 * pDecIn [I] Source
516 * pcOut [O] Destination
517 *
518 * RETURNS
519 * Success: S_OK.
520 * Failure: E_INVALIDARG, if the source value is invalid
521 * DISP_E_OVERFLOW, if the value will not fit in the destination
522 */
523HRESULT WINAPI VarI1FromDec(DECIMAL *pdecIn, signed char* pcOut)
524{
525 LONG64 i64;
526 HRESULT hRet;
527
528 hRet = VarI8FromDec(pdecIn, &i64);
529
530 if (SUCCEEDED(hRet))
531 hRet = _VarI1FromI8(i64, pcOut);
532 return hRet;
533}
534
535/************************************************************************
536 * VarI1FromI8 (OLEAUT32.376)
537 *
538 * Convert a VT_I8 to a VT_I1.
539 *
540 * PARAMS
541 * llIn [I] Source
542 * pcOut [O] Destination
543 *
544 * RETURNS
545 * Success: S_OK.
546 * Failure: E_INVALIDARG, if the source value is invalid
547 * DISP_E_OVERFLOW, if the value will not fit in the destination
548 */
549HRESULT WINAPI VarI1FromI8(LONG64 llIn, signed char* pcOut)
550{
551 return _VarI1FromI8(llIn, pcOut);
552}
553
554/************************************************************************
555 * VarI1FromUI8 (OLEAUT32.377)
556 *
557 * Convert a VT_UI8 to a VT_I1.
558 *
559 * PARAMS
560 * ullIn [I] Source
561 * pcOut [O] Destination
562 *
563 * RETURNS
564 * Success: S_OK.
565 * Failure: E_INVALIDARG, if the source value is invalid
566 * DISP_E_OVERFLOW, if the value will not fit in the destination
567 */
568HRESULT WINAPI VarI1FromUI8(ULONG64 ullIn, signed char* pcOut)
569{
570 return _VarI1FromUI8(ullIn, pcOut);
571}
572
573/* UI1
574 */
575
576/************************************************************************
577 * VarUI1FromI2 (OLEAUT32.130)
578 *
579 * Convert a VT_I2 to a VT_UI1.
580 *
581 * PARAMS
582 * sIn [I] Source
583 * pbOut [O] Destination
584 *
585 * RETURNS
586 * Success: S_OK.
587 * Failure: E_INVALIDARG, if the source value is invalid
588 * DISP_E_OVERFLOW, if the value will not fit in the destination
589 */
591{
592 return _VarUI1FromI2(sIn, pbOut);
593}
594
595/************************************************************************
596 * VarUI1FromI4 (OLEAUT32.131)
597 *
598 * Convert a VT_I4 to a VT_UI1.
599 *
600 * PARAMS
601 * iIn [I] Source
602 * pbOut [O] Destination
603 *
604 * RETURNS
605 * Success: S_OK.
606 * Failure: E_INVALIDARG, if the source value is invalid
607 * DISP_E_OVERFLOW, if the value will not fit in the destination
608 */
610{
611 return _VarUI1FromI4(iIn, pbOut);
612}
613
614/************************************************************************
615 * VarUI1FromR4 (OLEAUT32.132)
616 *
617 * Convert a VT_R4 to a VT_UI1.
618 *
619 * PARAMS
620 * fltIn [I] Source
621 * pbOut [O] Destination
622 *
623 * RETURNS
624 * Success: S_OK.
625 * Failure: E_INVALIDARG, if the source value is invalid
626 * DISP_E_OVERFLOW, if the value will not fit in the destination
627 * DISP_E_TYPEMISMATCH, if the type cannot be converted
628 */
630{
631 return VarUI1FromR8(fltIn, pbOut);
632}
633
634/************************************************************************
635 * VarUI1FromR8 (OLEAUT32.133)
636 *
637 * Convert a VT_R8 to a VT_UI1.
638 *
639 * PARAMS
640 * dblIn [I] Source
641 * pbOut [O] Destination
642 *
643 * RETURNS
644 * Success: S_OK.
645 * Failure: E_INVALIDARG, if the source value is invalid
646 * DISP_E_OVERFLOW, if the value will not fit in the destination
647 *
648 * NOTES
649 * See VarI8FromR8() for details concerning rounding.
650 */
651HRESULT WINAPI VarUI1FromR8(double dblIn, BYTE* pbOut)
652{
653 if (dblIn < -0.5 || dblIn >= UI1_MAX + 0.5)
654 return DISP_E_OVERFLOW;
655 VARIANT_DutchRound(BYTE, dblIn, *pbOut);
656 return S_OK;
657}
658
659/************************************************************************
660 * VarUI1FromCy (OLEAUT32.134)
661 *
662 * Convert a VT_CY to a VT_UI1.
663 *
664 * PARAMS
665 * cyIn [I] Source
666 * pbOut [O] Destination
667 *
668 * RETURNS
669 * Success: S_OK.
670 * Failure: E_INVALIDARG, if the source value is invalid
671 * DISP_E_OVERFLOW, if the value will not fit in the destination
672 *
673 * NOTES
674 * Negative values >= -5000 will be converted to 0.
675 */
677{
678 ULONG i = UI1_MAX + 1;
679
680 VarUI4FromCy(cyIn, &i);
681 return _VarUI1FromUI4(i, pbOut);
682}
683
684/************************************************************************
685 * VarUI1FromDate (OLEAUT32.135)
686 *
687 * Convert a VT_DATE to a VT_UI1.
688 *
689 * PARAMS
690 * dateIn [I] Source
691 * pbOut [O] Destination
692 *
693 * RETURNS
694 * Success: S_OK.
695 * Failure: E_INVALIDARG, if the source value is invalid
696 * DISP_E_OVERFLOW, if the value will not fit in the destination
697 */
699{
700 return VarUI1FromR8(dateIn, pbOut);
701}
702
703/************************************************************************
704 * VarUI1FromStr (OLEAUT32.136)
705 *
706 * Convert a VT_BSTR to a VT_UI1.
707 *
708 * PARAMS
709 * strIn [I] Source
710 * lcid [I] LCID for the conversion
711 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
712 * pbOut [O] Destination
713 *
714 * RETURNS
715 * Success: S_OK.
716 * Failure: E_INVALIDARG, if the source value is invalid
717 * DISP_E_OVERFLOW, if the value will not fit in the destination
718 * DISP_E_TYPEMISMATCH, if the type cannot be converted
719 */
721{
722 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pbOut, VT_UI1);
723}
724
725/************************************************************************
726 * VarUI1FromDisp (OLEAUT32.137)
727 *
728 * Convert a VT_DISPATCH to a VT_UI1.
729 *
730 * PARAMS
731 * pdispIn [I] Source
732 * lcid [I] LCID for conversion
733 * pbOut [O] Destination
734 *
735 * RETURNS
736 * Success: S_OK.
737 * Failure: E_INVALIDARG, if the source value is invalid
738 * DISP_E_OVERFLOW, if the value will not fit in the destination
739 * DISP_E_TYPEMISMATCH, if the type cannot be converted
740 */
742{
743 return VARIANT_FromDisp(pdispIn, lcid, pbOut, VT_UI1, 0);
744}
745
746/************************************************************************
747 * VarUI1FromBool (OLEAUT32.138)
748 *
749 * Convert a VT_BOOL to a VT_UI1.
750 *
751 * PARAMS
752 * boolIn [I] Source
753 * pbOut [O] Destination
754 *
755 * RETURNS
756 * S_OK.
757 */
759{
760 return _VarUI1FromBool(boolIn, pbOut);
761}
762
763/************************************************************************
764 * VarUI1FromI1 (OLEAUT32.237)
765 *
766 * Convert a VT_I1 to a VT_UI1.
767 *
768 * PARAMS
769 * cIn [I] Source
770 * pbOut [O] Destination
771 *
772 * RETURNS
773 * Success: S_OK.
774 * Failure: E_INVALIDARG, if the source value is invalid
775 * DISP_E_OVERFLOW, if the value will not fit in the destination
776 */
777HRESULT WINAPI VarUI1FromI1(signed char cIn, BYTE* pbOut)
778{
779 return _VarUI1FromI1(cIn, pbOut);
780}
781
782/************************************************************************
783 * VarUI1FromUI2 (OLEAUT32.238)
784 *
785 * Convert a VT_UI2 to a VT_UI1.
786 *
787 * PARAMS
788 * usIn [I] Source
789 * pbOut [O] Destination
790 *
791 * RETURNS
792 * Success: S_OK.
793 * Failure: E_INVALIDARG, if the source value is invalid
794 * DISP_E_OVERFLOW, if the value will not fit in the destination
795 */
797{
798 return _VarUI1FromUI2(usIn, pbOut);
799}
800
801/************************************************************************
802 * VarUI1FromUI4 (OLEAUT32.239)
803 *
804 * Convert a VT_UI4 to a VT_UI1.
805 *
806 * PARAMS
807 * ulIn [I] Source
808 * pbOut [O] Destination
809 *
810 * RETURNS
811 * Success: S_OK.
812 * Failure: E_INVALIDARG, if the source value is invalid
813 * DISP_E_OVERFLOW, if the value will not fit in the destination
814 */
816{
817 return _VarUI1FromUI4(ulIn, pbOut);
818}
819
820/************************************************************************
821 * VarUI1FromDec (OLEAUT32.240)
822 *
823 * Convert a VT_DECIMAL to a VT_UI1.
824 *
825 * PARAMS
826 * pDecIn [I] Source
827 * pbOut [O] Destination
828 *
829 * RETURNS
830 * Success: S_OK.
831 * Failure: E_INVALIDARG, if the source value is invalid
832 * DISP_E_OVERFLOW, if the value will not fit in the destination
833 */
835{
836 LONG64 i64;
837 HRESULT hRet;
838
839 hRet = VarI8FromDec(pdecIn, &i64);
840
841 if (SUCCEEDED(hRet))
842 hRet = _VarUI1FromI8(i64, pbOut);
843 return hRet;
844}
845
846/************************************************************************
847 * VarUI1FromI8 (OLEAUT32.372)
848 *
849 * Convert a VT_I8 to a VT_UI1.
850 *
851 * PARAMS
852 * llIn [I] Source
853 * pbOut [O] Destination
854 *
855 * RETURNS
856 * Success: S_OK.
857 * Failure: E_INVALIDARG, if the source value is invalid
858 * DISP_E_OVERFLOW, if the value will not fit in the destination
859 */
861{
862 return _VarUI1FromI8(llIn, pbOut);
863}
864
865/************************************************************************
866 * VarUI1FromUI8 (OLEAUT32.373)
867 *
868 * Convert a VT_UI8 to a VT_UI1.
869 *
870 * PARAMS
871 * ullIn [I] Source
872 * pbOut [O] Destination
873 *
874 * RETURNS
875 * Success: S_OK.
876 * Failure: E_INVALIDARG, if the source value is invalid
877 * DISP_E_OVERFLOW, if the value will not fit in the destination
878 */
880{
881 return _VarUI1FromUI8(ullIn, pbOut);
882}
883
884
885/* I2
886 */
887
888/************************************************************************
889 * VarI2FromUI1 (OLEAUT32.48)
890 *
891 * Convert a VT_UI2 to a VT_I2.
892 *
893 * PARAMS
894 * bIn [I] Source
895 * psOut [O] Destination
896 *
897 * RETURNS
898 * S_OK.
899 */
901{
902 return _VarI2FromUI1(bIn, psOut);
903}
904
905/************************************************************************
906 * VarI2FromI4 (OLEAUT32.49)
907 *
908 * Convert a VT_I4 to a VT_I2.
909 *
910 * PARAMS
911 * iIn [I] Source
912 * psOut [O] Destination
913 *
914 * RETURNS
915 * Success: S_OK.
916 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
917 */
919{
920 return _VarI2FromI4(iIn, psOut);
921}
922
923/************************************************************************
924 * VarI2FromR4 (OLEAUT32.50)
925 *
926 * Convert a VT_R4 to a VT_I2.
927 *
928 * PARAMS
929 * fltIn [I] Source
930 * psOut [O] Destination
931 *
932 * RETURNS
933 * Success: S_OK.
934 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
935 */
937{
938 return VarI2FromR8(fltIn, psOut);
939}
940
941/************************************************************************
942 * VarI2FromR8 (OLEAUT32.51)
943 *
944 * Convert a VT_R8 to a VT_I2.
945 *
946 * PARAMS
947 * dblIn [I] Source
948 * psOut [O] Destination
949 *
950 * RETURNS
951 * Success: S_OK.
952 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
953 *
954 * NOTES
955 * See VarI8FromR8() for details concerning rounding.
956 */
957HRESULT WINAPI VarI2FromR8(double dblIn, SHORT* psOut)
958{
959 if (dblIn < I2_MIN - 0.5 || dblIn >= I2_MAX + 0.5)
960 return DISP_E_OVERFLOW;
961 VARIANT_DutchRound(SHORT, dblIn, *psOut);
962 return S_OK;
963}
964
965/************************************************************************
966 * VarI2FromCy (OLEAUT32.52)
967 *
968 * Convert a VT_CY to a VT_I2.
969 *
970 * PARAMS
971 * cyIn [I] Source
972 * psOut [O] Destination
973 *
974 * RETURNS
975 * Success: S_OK.
976 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
977 */
979{
980 LONG i = I2_MAX + 1;
981
982 VarI4FromCy(cyIn, &i);
983 return _VarI2FromI4(i, psOut);
984}
985
986/************************************************************************
987 * VarI2FromDate (OLEAUT32.53)
988 *
989 * Convert a VT_DATE to a VT_I2.
990 *
991 * PARAMS
992 * dateIn [I] Source
993 * psOut [O] Destination
994 *
995 * RETURNS
996 * Success: S_OK.
997 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
998 */
1000{
1001 return VarI2FromR8(dateIn, psOut);
1002}
1003
1004/************************************************************************
1005 * VarI2FromStr (OLEAUT32.54)
1006 *
1007 * Convert a VT_BSTR to a VT_I2.
1008 *
1009 * PARAMS
1010 * strIn [I] Source
1011 * lcid [I] LCID for the conversion
1012 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1013 * psOut [O] Destination
1014 *
1015 * RETURNS
1016 * Success: S_OK.
1017 * Failure: E_INVALIDARG, if any parameter is invalid
1018 * DISP_E_OVERFLOW, if the value will not fit in the destination
1019 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1020 */
1022{
1023 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, psOut, VT_I2);
1024}
1025
1026/************************************************************************
1027 * VarI2FromDisp (OLEAUT32.55)
1028 *
1029 * Convert a VT_DISPATCH to a VT_I2.
1030 *
1031 * PARAMS
1032 * pdispIn [I] Source
1033 * lcid [I] LCID for conversion
1034 * psOut [O] Destination
1035 *
1036 * RETURNS
1037 * Success: S_OK.
1038 * Failure: E_INVALIDARG, if pdispIn is invalid,
1039 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1040 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1041 */
1043{
1044 return VARIANT_FromDisp(pdispIn, lcid, psOut, VT_I2, 0);
1045}
1046
1047/************************************************************************
1048 * VarI2FromBool (OLEAUT32.56)
1049 *
1050 * Convert a VT_BOOL to a VT_I2.
1051 *
1052 * PARAMS
1053 * boolIn [I] Source
1054 * psOut [O] Destination
1055 *
1056 * RETURNS
1057 * S_OK.
1058 */
1060{
1061 return _VarI2FromBool(boolIn, psOut);
1062}
1063
1064/************************************************************************
1065 * VarI2FromI1 (OLEAUT32.205)
1066 *
1067 * Convert a VT_I1 to a VT_I2.
1068 *
1069 * PARAMS
1070 * cIn [I] Source
1071 * psOut [O] Destination
1072 *
1073 * RETURNS
1074 * S_OK.
1075 */
1076HRESULT WINAPI VarI2FromI1(signed char cIn, SHORT* psOut)
1077{
1078 return _VarI2FromI1(cIn, psOut);
1079}
1080
1081/************************************************************************
1082 * VarI2FromUI2 (OLEAUT32.206)
1083 *
1084 * Convert a VT_UI2 to a VT_I2.
1085 *
1086 * PARAMS
1087 * usIn [I] Source
1088 * psOut [O] Destination
1089 *
1090 * RETURNS
1091 * Success: S_OK.
1092 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1093 */
1095{
1096 return _VarI2FromUI2(usIn, psOut);
1097}
1098
1099/************************************************************************
1100 * VarI2FromUI4 (OLEAUT32.207)
1101 *
1102 * Convert a VT_UI4 to a VT_I2.
1103 *
1104 * PARAMS
1105 * ulIn [I] Source
1106 * psOut [O] Destination
1107 *
1108 * RETURNS
1109 * Success: S_OK.
1110 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1111 */
1113{
1114 return _VarI2FromUI4(ulIn, psOut);
1115}
1116
1117/************************************************************************
1118 * VarI2FromDec (OLEAUT32.208)
1119 *
1120 * Convert a VT_DECIMAL to a VT_I2.
1121 *
1122 * PARAMS
1123 * pDecIn [I] Source
1124 * psOut [O] Destination
1125 *
1126 * RETURNS
1127 * Success: S_OK.
1128 * Failure: E_INVALIDARG, if the source value is invalid
1129 * DISP_E_OVERFLOW, if the value will not fit in the destination
1130 */
1132{
1133 LONG64 i64;
1134 HRESULT hRet;
1135
1136 hRet = VarI8FromDec(pdecIn, &i64);
1137
1138 if (SUCCEEDED(hRet))
1139 hRet = _VarI2FromI8(i64, psOut);
1140 return hRet;
1141}
1142
1143/************************************************************************
1144 * VarI2FromI8 (OLEAUT32.346)
1145 *
1146 * Convert a VT_I8 to a VT_I2.
1147 *
1148 * PARAMS
1149 * llIn [I] Source
1150 * psOut [O] Destination
1151 *
1152 * RETURNS
1153 * Success: S_OK.
1154 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1155 */
1157{
1158 return _VarI2FromI8(llIn, psOut);
1159}
1160
1161/************************************************************************
1162 * VarI2FromUI8 (OLEAUT32.347)
1163 *
1164 * Convert a VT_UI8 to a VT_I2.
1165 *
1166 * PARAMS
1167 * ullIn [I] Source
1168 * psOut [O] Destination
1169 *
1170 * RETURNS
1171 * Success: S_OK.
1172 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1173 */
1175{
1176 return _VarI2FromUI8(ullIn, psOut);
1177}
1178
1179/* UI2
1180 */
1181
1182/************************************************************************
1183 * VarUI2FromUI1 (OLEAUT32.257)
1184 *
1185 * Convert a VT_UI1 to a VT_UI2.
1186 *
1187 * PARAMS
1188 * bIn [I] Source
1189 * pusOut [O] Destination
1190 *
1191 * RETURNS
1192 * S_OK.
1193 */
1195{
1196 return _VarUI2FromUI1(bIn, pusOut);
1197}
1198
1199/************************************************************************
1200 * VarUI2FromI2 (OLEAUT32.258)
1201 *
1202 * Convert a VT_I2 to a VT_UI2.
1203 *
1204 * PARAMS
1205 * sIn [I] Source
1206 * pusOut [O] Destination
1207 *
1208 * RETURNS
1209 * Success: S_OK.
1210 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1211 */
1213{
1214 return _VarUI2FromI2(sIn, pusOut);
1215}
1216
1217/************************************************************************
1218 * VarUI2FromI4 (OLEAUT32.259)
1219 *
1220 * Convert a VT_I4 to a VT_UI2.
1221 *
1222 * PARAMS
1223 * iIn [I] Source
1224 * pusOut [O] Destination
1225 *
1226 * RETURNS
1227 * Success: S_OK.
1228 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1229 */
1231{
1232 return _VarUI2FromI4(iIn, pusOut);
1233}
1234
1235/************************************************************************
1236 * VarUI2FromR4 (OLEAUT32.260)
1237 *
1238 * Convert a VT_R4 to a VT_UI2.
1239 *
1240 * PARAMS
1241 * fltIn [I] Source
1242 * pusOut [O] Destination
1243 *
1244 * RETURNS
1245 * Success: S_OK.
1246 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1247 */
1249{
1250 return VarUI2FromR8(fltIn, pusOut);
1251}
1252
1253/************************************************************************
1254 * VarUI2FromR8 (OLEAUT32.261)
1255 *
1256 * Convert a VT_R8 to a VT_UI2.
1257 *
1258 * PARAMS
1259 * dblIn [I] Source
1260 * pusOut [O] Destination
1261 *
1262 * RETURNS
1263 * Success: S_OK.
1264 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1265 *
1266 * NOTES
1267 * See VarI8FromR8() for details concerning rounding.
1268 */
1269HRESULT WINAPI VarUI2FromR8(double dblIn, USHORT* pusOut)
1270{
1271 if (dblIn < -0.5 || dblIn >= UI2_MAX + 0.5)
1272 return DISP_E_OVERFLOW;
1273 VARIANT_DutchRound(USHORT, dblIn, *pusOut);
1274 return S_OK;
1275}
1276
1277/************************************************************************
1278 * VarUI2FromDate (OLEAUT32.262)
1279 *
1280 * Convert a VT_DATE to a VT_UI2.
1281 *
1282 * PARAMS
1283 * dateIn [I] Source
1284 * pusOut [O] Destination
1285 *
1286 * RETURNS
1287 * Success: S_OK.
1288 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1289 */
1291{
1292 return VarUI2FromR8(dateIn, pusOut);
1293}
1294
1295/************************************************************************
1296 * VarUI2FromCy (OLEAUT32.263)
1297 *
1298 * Convert a VT_CY to a VT_UI2.
1299 *
1300 * PARAMS
1301 * cyIn [I] Source
1302 * pusOut [O] Destination
1303 *
1304 * RETURNS
1305 * Success: S_OK.
1306 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1307 *
1308 * NOTES
1309 * Negative values >= -5000 will be converted to 0.
1310 */
1312{
1313 ULONG i = UI2_MAX + 1;
1314
1315 VarUI4FromCy(cyIn, &i);
1316 return _VarUI2FromUI4(i, pusOut);
1317}
1318
1319/************************************************************************
1320 * VarUI2FromStr (OLEAUT32.264)
1321 *
1322 * Convert a VT_BSTR to a VT_UI2.
1323 *
1324 * PARAMS
1325 * strIn [I] Source
1326 * lcid [I] LCID for the conversion
1327 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1328 * pusOut [O] Destination
1329 *
1330 * RETURNS
1331 * Success: S_OK.
1332 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1333 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1334 */
1336{
1337 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pusOut, VT_UI2);
1338}
1339
1340/************************************************************************
1341 * VarUI2FromDisp (OLEAUT32.265)
1342 *
1343 * Convert a VT_DISPATCH to a VT_UI2.
1344 *
1345 * PARAMS
1346 * pdispIn [I] Source
1347 * lcid [I] LCID for conversion
1348 * pusOut [O] Destination
1349 *
1350 * RETURNS
1351 * Success: S_OK.
1352 * Failure: E_INVALIDARG, if the source value is invalid
1353 * DISP_E_OVERFLOW, if the value will not fit in the destination
1354 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1355 */
1357{
1358 return VARIANT_FromDisp(pdispIn, lcid, pusOut, VT_UI2, 0);
1359}
1360
1361/************************************************************************
1362 * VarUI2FromBool (OLEAUT32.266)
1363 *
1364 * Convert a VT_BOOL to a VT_UI2.
1365 *
1366 * PARAMS
1367 * boolIn [I] Source
1368 * pusOut [O] Destination
1369 *
1370 * RETURNS
1371 * S_OK.
1372 */
1374{
1375 return _VarUI2FromBool(boolIn, pusOut);
1376}
1377
1378/************************************************************************
1379 * VarUI2FromI1 (OLEAUT32.267)
1380 *
1381 * Convert a VT_I1 to a VT_UI2.
1382 *
1383 * PARAMS
1384 * cIn [I] Source
1385 * pusOut [O] Destination
1386 *
1387 * RETURNS
1388 * Success: S_OK.
1389 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1390 */
1391HRESULT WINAPI VarUI2FromI1(signed char cIn, USHORT* pusOut)
1392{
1393 return _VarUI2FromI1(cIn, pusOut);
1394}
1395
1396/************************************************************************
1397 * VarUI2FromUI4 (OLEAUT32.268)
1398 *
1399 * Convert a VT_UI4 to a VT_UI2.
1400 *
1401 * PARAMS
1402 * ulIn [I] Source
1403 * pusOut [O] Destination
1404 *
1405 * RETURNS
1406 * Success: S_OK.
1407 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1408 */
1410{
1411 return _VarUI2FromUI4(ulIn, pusOut);
1412}
1413
1414/************************************************************************
1415 * VarUI2FromDec (OLEAUT32.269)
1416 *
1417 * Convert a VT_DECIMAL to a VT_UI2.
1418 *
1419 * PARAMS
1420 * pDecIn [I] Source
1421 * pusOut [O] Destination
1422 *
1423 * RETURNS
1424 * Success: S_OK.
1425 * Failure: E_INVALIDARG, if the source value is invalid
1426 * DISP_E_OVERFLOW, if the value will not fit in the destination
1427 */
1429{
1430 LONG64 i64;
1431 HRESULT hRet;
1432
1433 hRet = VarI8FromDec(pdecIn, &i64);
1434
1435 if (SUCCEEDED(hRet))
1436 hRet = _VarUI2FromI8(i64, pusOut);
1437 return hRet;
1438}
1439
1440/************************************************************************
1441 * VarUI2FromI8 (OLEAUT32.378)
1442 *
1443 * Convert a VT_I8 to a VT_UI2.
1444 *
1445 * PARAMS
1446 * llIn [I] Source
1447 * pusOut [O] Destination
1448 *
1449 * RETURNS
1450 * Success: S_OK.
1451 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1452 */
1454{
1455 return _VarUI2FromI8(llIn, pusOut);
1456}
1457
1458/************************************************************************
1459 * VarUI2FromUI8 (OLEAUT32.379)
1460 *
1461 * Convert a VT_UI8 to a VT_UI2.
1462 *
1463 * PARAMS
1464 * ullIn [I] Source
1465 * pusOut [O] Destination
1466 *
1467 * RETURNS
1468 * Success: S_OK.
1469 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1470 */
1472{
1473 return _VarUI2FromUI8(ullIn, pusOut);
1474}
1475
1476/* I4
1477 */
1478
1479/************************************************************************
1480 * VarI4FromUI1 (OLEAUT32.58)
1481 *
1482 * Convert a VT_UI1 to a VT_I4.
1483 *
1484 * PARAMS
1485 * bIn [I] Source
1486 * piOut [O] Destination
1487 *
1488 * RETURNS
1489 * S_OK.
1490 */
1492{
1493 return _VarI4FromUI1(bIn, piOut);
1494}
1495
1496/************************************************************************
1497 * VarI4FromI2 (OLEAUT32.59)
1498 *
1499 * Convert a VT_I2 to a VT_I4.
1500 *
1501 * PARAMS
1502 * sIn [I] Source
1503 * piOut [O] Destination
1504 *
1505 * RETURNS
1506 * Success: S_OK.
1507 * Failure: E_INVALIDARG, if the source value is invalid
1508 * DISP_E_OVERFLOW, if the value will not fit in the destination
1509 */
1511{
1512 return _VarI4FromI2(sIn, piOut);
1513}
1514
1515/************************************************************************
1516 * VarI4FromR4 (OLEAUT32.60)
1517 *
1518 * Convert a VT_R4 to a VT_I4.
1519 *
1520 * PARAMS
1521 * fltIn [I] Source
1522 * piOut [O] Destination
1523 *
1524 * RETURNS
1525 * Success: S_OK.
1526 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1527 */
1529{
1530 return VarI4FromR8(fltIn, piOut);
1531}
1532
1533/************************************************************************
1534 * VarI4FromR8 (OLEAUT32.61)
1535 *
1536 * Convert a VT_R8 to a VT_I4.
1537 *
1538 * PARAMS
1539 * dblIn [I] Source
1540 * piOut [O] Destination
1541 *
1542 * RETURNS
1543 * Success: S_OK.
1544 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1545 *
1546 * NOTES
1547 * See VarI8FromR8() for details concerning rounding.
1548 */
1549HRESULT WINAPI VarI4FromR8(double dblIn, LONG *piOut)
1550{
1551 if (dblIn < I4_MIN - 0.5 || dblIn >= I4_MAX + 0.5)
1552 return DISP_E_OVERFLOW;
1553 VARIANT_DutchRound(LONG, dblIn, *piOut);
1554 return S_OK;
1555}
1556
1557/************************************************************************
1558 * VarI4FromCy (OLEAUT32.62)
1559 *
1560 * Convert a VT_CY to a VT_I4.
1561 *
1562 * PARAMS
1563 * cyIn [I] Source
1564 * piOut [O] Destination
1565 *
1566 * RETURNS
1567 * Success: S_OK.
1568 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1569 */
1571{
1572 double d = cyIn.int64 / CY_MULTIPLIER_F;
1573 return VarI4FromR8(d, piOut);
1574}
1575
1576/************************************************************************
1577 * VarI4FromDate (OLEAUT32.63)
1578 *
1579 * Convert a VT_DATE to a VT_I4.
1580 *
1581 * PARAMS
1582 * dateIn [I] Source
1583 * piOut [O] Destination
1584 *
1585 * RETURNS
1586 * Success: S_OK.
1587 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1588 */
1590{
1591 return VarI4FromR8(dateIn, piOut);
1592}
1593
1594/************************************************************************
1595 * VarI4FromStr (OLEAUT32.64)
1596 *
1597 * Convert a VT_BSTR to a VT_I4.
1598 *
1599 * PARAMS
1600 * strIn [I] Source
1601 * lcid [I] LCID for the conversion
1602 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1603 * piOut [O] Destination
1604 *
1605 * RETURNS
1606 * Success: S_OK.
1607 * Failure: E_INVALIDARG, if any parameter is invalid
1608 * DISP_E_OVERFLOW, if the value will not fit in the destination
1609 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1610 */
1612{
1613 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, piOut, VT_I4);
1614}
1615
1616/************************************************************************
1617 * VarI4FromDisp (OLEAUT32.65)
1618 *
1619 * Convert a VT_DISPATCH to a VT_I4.
1620 *
1621 * PARAMS
1622 * pdispIn [I] Source
1623 * lcid [I] LCID for conversion
1624 * piOut [O] Destination
1625 *
1626 * RETURNS
1627 * Success: S_OK.
1628 * Failure: E_INVALIDARG, if the source value is invalid
1629 * DISP_E_OVERFLOW, if the value will not fit in the destination
1630 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1631 */
1633{
1634 return VARIANT_FromDisp(pdispIn, lcid, piOut, VT_I4, 0);
1635}
1636
1637/************************************************************************
1638 * VarI4FromBool (OLEAUT32.66)
1639 *
1640 * Convert a VT_BOOL to a VT_I4.
1641 *
1642 * PARAMS
1643 * boolIn [I] Source
1644 * piOut [O] Destination
1645 *
1646 * RETURNS
1647 * S_OK.
1648 */
1650{
1651 return _VarI4FromBool(boolIn, piOut);
1652}
1653
1654/************************************************************************
1655 * VarI4FromI1 (OLEAUT32.209)
1656 *
1657 * Convert a VT_I1 to a VT_I4.
1658 *
1659 * PARAMS
1660 * cIn [I] Source
1661 * piOut [O] Destination
1662 *
1663 * RETURNS
1664 * S_OK.
1665 */
1666HRESULT WINAPI VarI4FromI1(signed char cIn, LONG *piOut)
1667{
1668 return _VarI4FromI1(cIn, piOut);
1669}
1670
1671/************************************************************************
1672 * VarI4FromUI2 (OLEAUT32.210)
1673 *
1674 * Convert a VT_UI2 to a VT_I4.
1675 *
1676 * PARAMS
1677 * usIn [I] Source
1678 * piOut [O] Destination
1679 *
1680 * RETURNS
1681 * S_OK.
1682 */
1684{
1685 return _VarI4FromUI2(usIn, piOut);
1686}
1687
1688/************************************************************************
1689 * VarI4FromUI4 (OLEAUT32.211)
1690 *
1691 * Convert a VT_UI4 to a VT_I4.
1692 *
1693 * PARAMS
1694 * ulIn [I] Source
1695 * piOut [O] Destination
1696 *
1697 * RETURNS
1698 * Success: S_OK.
1699 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1700 */
1702{
1703 return _VarI4FromUI4(ulIn, piOut);
1704}
1705
1706/************************************************************************
1707 * VarI4FromDec (OLEAUT32.212)
1708 *
1709 * Convert a VT_DECIMAL to a VT_I4.
1710 *
1711 * PARAMS
1712 * pDecIn [I] Source
1713 * piOut [O] Destination
1714 *
1715 * RETURNS
1716 * Success: S_OK.
1717 * Failure: E_INVALIDARG, if pdecIn is invalid
1718 * DISP_E_OVERFLOW, if the value will not fit in the destination
1719 */
1721{
1722 LONG64 i64;
1723 HRESULT hRet;
1724
1725 hRet = VarI8FromDec(pdecIn, &i64);
1726
1727 if (SUCCEEDED(hRet))
1728 hRet = _VarI4FromI8(i64, piOut);
1729 return hRet;
1730}
1731
1732/************************************************************************
1733 * VarI4FromI8 (OLEAUT32.348)
1734 *
1735 * Convert a VT_I8 to a VT_I4.
1736 *
1737 * PARAMS
1738 * llIn [I] Source
1739 * piOut [O] Destination
1740 *
1741 * RETURNS
1742 * Success: S_OK.
1743 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1744 */
1746{
1747 return _VarI4FromI8(llIn, piOut);
1748}
1749
1750/************************************************************************
1751 * VarI4FromUI8 (OLEAUT32.349)
1752 *
1753 * Convert a VT_UI8 to a VT_I4.
1754 *
1755 * PARAMS
1756 * ullIn [I] Source
1757 * piOut [O] Destination
1758 *
1759 * RETURNS
1760 * Success: S_OK.
1761 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1762 */
1764{
1765 return _VarI4FromUI8(ullIn, piOut);
1766}
1767
1768/* UI4
1769 */
1770
1771/************************************************************************
1772 * VarUI4FromUI1 (OLEAUT32.270)
1773 *
1774 * Convert a VT_UI1 to a VT_UI4.
1775 *
1776 * PARAMS
1777 * bIn [I] Source
1778 * pulOut [O] Destination
1779 *
1780 * RETURNS
1781 * S_OK.
1782 */
1784{
1785 return _VarUI4FromUI1(bIn, pulOut);
1786}
1787
1788/************************************************************************
1789 * VarUI4FromI2 (OLEAUT32.271)
1790 *
1791 * Convert a VT_I2 to a VT_UI4.
1792 *
1793 * PARAMS
1794 * sIn [I] Source
1795 * pulOut [O] Destination
1796 *
1797 * RETURNS
1798 * Success: S_OK.
1799 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1800 */
1802{
1803 return _VarUI4FromI2(sIn, pulOut);
1804}
1805
1806/************************************************************************
1807 * VarUI4FromI4 (OLEAUT32.272)
1808 *
1809 * Convert a VT_I4 to a VT_UI4.
1810 *
1811 * PARAMS
1812 * iIn [I] Source
1813 * pulOut [O] Destination
1814 *
1815 * RETURNS
1816 * Success: S_OK.
1817 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1818 */
1820{
1821 return _VarUI4FromI4(iIn, pulOut);
1822}
1823
1824/************************************************************************
1825 * VarUI4FromR4 (OLEAUT32.273)
1826 *
1827 * Convert a VT_R4 to a VT_UI4.
1828 *
1829 * PARAMS
1830 * fltIn [I] Source
1831 * pulOut [O] Destination
1832 *
1833 * RETURNS
1834 * Success: S_OK.
1835 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1836 */
1838{
1839 return VarUI4FromR8(fltIn, pulOut);
1840}
1841
1842/************************************************************************
1843 * VarUI4FromR8 (OLEAUT32.274)
1844 *
1845 * Convert a VT_R8 to a VT_UI4.
1846 *
1847 * PARAMS
1848 * dblIn [I] Source
1849 * pulOut [O] Destination
1850 *
1851 * RETURNS
1852 * Success: S_OK.
1853 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1854 *
1855 * NOTES
1856 * See VarI8FromR8() for details concerning rounding.
1857 */
1858HRESULT WINAPI VarUI4FromR8(double dblIn, ULONG *pulOut)
1859{
1860 if (dblIn < -0.5 || dblIn >= UI4_MAX + 0.5)
1861 return DISP_E_OVERFLOW;
1862 VARIANT_DutchRound(ULONG, dblIn, *pulOut);
1863 return S_OK;
1864}
1865
1866/************************************************************************
1867 * VarUI4FromDate (OLEAUT32.275)
1868 *
1869 * Convert a VT_DATE to a VT_UI4.
1870 *
1871 * PARAMS
1872 * dateIn [I] Source
1873 * pulOut [O] Destination
1874 *
1875 * RETURNS
1876 * Success: S_OK.
1877 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1878 */
1880{
1881 return VarUI4FromR8(dateIn, pulOut);
1882}
1883
1884/************************************************************************
1885 * VarUI4FromCy (OLEAUT32.276)
1886 *
1887 * Convert a VT_CY to a VT_UI4.
1888 *
1889 * PARAMS
1890 * cyIn [I] Source
1891 * pulOut [O] Destination
1892 *
1893 * RETURNS
1894 * Success: S_OK.
1895 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1896 */
1898{
1899 double d = cyIn.int64 / CY_MULTIPLIER_F;
1900 return VarUI4FromR8(d, pulOut);
1901}
1902
1903/************************************************************************
1904 * VarUI4FromStr (OLEAUT32.277)
1905 *
1906 * Convert a VT_BSTR to a VT_UI4.
1907 *
1908 * PARAMS
1909 * strIn [I] Source
1910 * lcid [I] LCID for the conversion
1911 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1912 * pulOut [O] Destination
1913 *
1914 * RETURNS
1915 * Success: S_OK.
1916 * Failure: E_INVALIDARG, if any parameter is invalid
1917 * DISP_E_OVERFLOW, if the value will not fit in the destination
1918 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1919 */
1921{
1922 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pulOut, VT_UI4);
1923}
1924
1925/************************************************************************
1926 * VarUI4FromDisp (OLEAUT32.278)
1927 *
1928 * Convert a VT_DISPATCH to a VT_UI4.
1929 *
1930 * PARAMS
1931 * pdispIn [I] Source
1932 * lcid [I] LCID for conversion
1933 * pulOut [O] Destination
1934 *
1935 * RETURNS
1936 * Success: S_OK.
1937 * Failure: E_INVALIDARG, if the source value is invalid
1938 * DISP_E_OVERFLOW, if the value will not fit in the destination
1939 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1940 */
1942{
1943 return VARIANT_FromDisp(pdispIn, lcid, pulOut, VT_UI4, 0);
1944}
1945
1946/************************************************************************
1947 * VarUI4FromBool (OLEAUT32.279)
1948 *
1949 * Convert a VT_BOOL to a VT_UI4.
1950 *
1951 * PARAMS
1952 * boolIn [I] Source
1953 * pulOut [O] Destination
1954 *
1955 * RETURNS
1956 * S_OK.
1957 */
1959{
1960 return _VarUI4FromBool(boolIn, pulOut);
1961}
1962
1963/************************************************************************
1964 * VarUI4FromI1 (OLEAUT32.280)
1965 *
1966 * Convert a VT_I1 to a VT_UI4.
1967 *
1968 * PARAMS
1969 * cIn [I] Source
1970 * pulOut [O] Destination
1971 *
1972 * RETURNS
1973 * Success: S_OK.
1974 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1975 */
1976HRESULT WINAPI VarUI4FromI1(signed char cIn, ULONG *pulOut)
1977{
1978 return _VarUI4FromI1(cIn, pulOut);
1979}
1980
1981/************************************************************************
1982 * VarUI4FromUI2 (OLEAUT32.281)
1983 *
1984 * Convert a VT_UI2 to a VT_UI4.
1985 *
1986 * PARAMS
1987 * usIn [I] Source
1988 * pulOut [O] Destination
1989 *
1990 * RETURNS
1991 * S_OK.
1992 */
1994{
1995 return _VarUI4FromUI2(usIn, pulOut);
1996}
1997
1998/************************************************************************
1999 * VarUI4FromDec (OLEAUT32.282)
2000 *
2001 * Convert a VT_DECIMAL to a VT_UI4.
2002 *
2003 * PARAMS
2004 * pDecIn [I] Source
2005 * pulOut [O] Destination
2006 *
2007 * RETURNS
2008 * Success: S_OK.
2009 * Failure: E_INVALIDARG, if pdecIn is invalid
2010 * DISP_E_OVERFLOW, if the value will not fit in the destination
2011 */
2013{
2014 LONG64 i64;
2015 HRESULT hRet;
2016
2017 hRet = VarI8FromDec(pdecIn, &i64);
2018
2019 if (SUCCEEDED(hRet))
2020 hRet = _VarUI4FromI8(i64, pulOut);
2021 return hRet;
2022}
2023
2024/************************************************************************
2025 * VarUI4FromI8 (OLEAUT32.425)
2026 *
2027 * Convert a VT_I8 to a VT_UI4.
2028 *
2029 * PARAMS
2030 * llIn [I] Source
2031 * pulOut [O] Destination
2032 *
2033 * RETURNS
2034 * Success: S_OK.
2035 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2036 */
2038{
2039 return _VarUI4FromI8(llIn, pulOut);
2040}
2041
2042/************************************************************************
2043 * VarUI4FromUI8 (OLEAUT32.426)
2044 *
2045 * Convert a VT_UI8 to a VT_UI4.
2046 *
2047 * PARAMS
2048 * ullIn [I] Source
2049 * pulOut [O] Destination
2050 *
2051 * RETURNS
2052 * Success: S_OK.
2053 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2054 */
2056{
2057 return _VarUI4FromUI8(ullIn, pulOut);
2058}
2059
2060/* I8
2061 */
2062
2063/************************************************************************
2064 * VarI8FromUI1 (OLEAUT32.333)
2065 *
2066 * Convert a VT_UI1 to a VT_I8.
2067 *
2068 * PARAMS
2069 * bIn [I] Source
2070 * pi64Out [O] Destination
2071 *
2072 * RETURNS
2073 * S_OK.
2074 */
2076{
2077 return _VarI8FromUI1(bIn, pi64Out);
2078}
2079
2080
2081/************************************************************************
2082 * VarI8FromI2 (OLEAUT32.334)
2083 *
2084 * Convert a VT_I2 to a VT_I8.
2085 *
2086 * PARAMS
2087 * sIn [I] Source
2088 * pi64Out [O] Destination
2089 *
2090 * RETURNS
2091 * S_OK.
2092 */
2094{
2095 return _VarI8FromI2(sIn, pi64Out);
2096}
2097
2098/************************************************************************
2099 * VarI8FromR4 (OLEAUT32.335)
2100 *
2101 * Convert a VT_R4 to a VT_I8.
2102 *
2103 * PARAMS
2104 * fltIn [I] Source
2105 * pi64Out [O] Destination
2106 *
2107 * RETURNS
2108 * Success: S_OK.
2109 * Failure: E_INVALIDARG, if the source value is invalid
2110 * DISP_E_OVERFLOW, if the value will not fit in the destination
2111 */
2113{
2114 return VarI8FromR8(fltIn, pi64Out);
2115}
2116
2117/************************************************************************
2118 * VarI8FromR8 (OLEAUT32.336)
2119 *
2120 * Convert a VT_R8 to a VT_I8.
2121 *
2122 * PARAMS
2123 * dblIn [I] Source
2124 * pi64Out [O] Destination
2125 *
2126 * RETURNS
2127 * Success: S_OK.
2128 * Failure: E_INVALIDARG, if the source value is invalid
2129 * DISP_E_OVERFLOW, if the value will not fit in the destination
2130 *
2131 * NOTES
2132 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2133 * very high or low values will not be accurately converted.
2134 *
2135 * Numbers are rounded using Dutch rounding, as follows:
2136 *
2137 *| Fractional Part Sign Direction Example
2138 *| --------------- ---- --------- -------
2139 *| < 0.5 + Down 0.4 -> 0.0
2140 *| < 0.5 - Up -0.4 -> 0.0
2141 *| > 0.5 + Up 0.6 -> 1.0
2142 *| < 0.5 - Up -0.6 -> -1.0
2143 *| = 0.5 + Up/Down Down if even, Up if odd
2144 *| = 0.5 - Up/Down Up if even, Down if odd
2145 *
2146 * This system is often used in supermarkets.
2147 */
2148HRESULT WINAPI VarI8FromR8(double dblIn, LONG64* pi64Out)
2149{
2150 if ( dblIn < -4611686018427387904.0 || dblIn >= 4611686018427387904.0)
2151 return DISP_E_OVERFLOW;
2152 VARIANT_DutchRound(LONG64, dblIn, *pi64Out);
2153 return S_OK;
2154}
2155
2156/************************************************************************
2157 * VarI8FromCy (OLEAUT32.337)
2158 *
2159 * Convert a VT_CY to a VT_I8.
2160 *
2161 * PARAMS
2162 * cyIn [I] Source
2163 * pi64Out [O] Destination
2164 *
2165 * RETURNS
2166 * S_OK.
2167 *
2168 * NOTES
2169 * All negative numbers are rounded down by 1, including those that are
2170 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2171 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2172 * for details.
2173 */
2175{
2176 *pi64Out = cyIn.int64 / CY_MULTIPLIER;
2177
2178 if (cyIn.int64 < 0)
2179 (*pi64Out)--; /* Mimic Win32 bug */
2180 else
2181 {
2182 cyIn.int64 -= *pi64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2183
2184 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pi64Out & 0x1)))
2185 (*pi64Out)++;
2186 }
2187 return S_OK;
2188}
2189
2190/************************************************************************
2191 * VarI8FromDate (OLEAUT32.338)
2192 *
2193 * Convert a VT_DATE to a VT_I8.
2194 *
2195 * PARAMS
2196 * dateIn [I] Source
2197 * pi64Out [O] Destination
2198 *
2199 * RETURNS
2200 * Success: S_OK.
2201 * Failure: E_INVALIDARG, if the source value is invalid
2202 * DISP_E_OVERFLOW, if the value will not fit in the destination
2203 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2204 */
2206{
2207 return VarI8FromR8(dateIn, pi64Out);
2208}
2209
2210/************************************************************************
2211 * VarI8FromStr (OLEAUT32.339)
2212 *
2213 * Convert a VT_BSTR to a VT_I8.
2214 *
2215 * PARAMS
2216 * strIn [I] Source
2217 * lcid [I] LCID for the conversion
2218 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2219 * pi64Out [O] Destination
2220 *
2221 * RETURNS
2222 * Success: S_OK.
2223 * Failure: E_INVALIDARG, if the source value is invalid
2224 * DISP_E_OVERFLOW, if the value will not fit in the destination
2225 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2226 */
2228{
2229 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pi64Out, VT_I8);
2230}
2231
2232/************************************************************************
2233 * VarI8FromDisp (OLEAUT32.340)
2234 *
2235 * Convert a VT_DISPATCH to a VT_I8.
2236 *
2237 * PARAMS
2238 * pdispIn [I] Source
2239 * lcid [I] LCID for conversion
2240 * pi64Out [O] Destination
2241 *
2242 * RETURNS
2243 * Success: S_OK.
2244 * Failure: E_INVALIDARG, if the source value is invalid
2245 * DISP_E_OVERFLOW, if the value will not fit in the destination
2246 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2247 */
2249{
2250 return VARIANT_FromDisp(pdispIn, lcid, pi64Out, VT_I8, 0);
2251}
2252
2253/************************************************************************
2254 * VarI8FromBool (OLEAUT32.341)
2255 *
2256 * Convert a VT_BOOL to a VT_I8.
2257 *
2258 * PARAMS
2259 * boolIn [I] Source
2260 * pi64Out [O] Destination
2261 *
2262 * RETURNS
2263 * S_OK.
2264 */
2266{
2267 return VarI8FromI2(boolIn, pi64Out);
2268}
2269
2270/************************************************************************
2271 * VarI8FromI1 (OLEAUT32.342)
2272 *
2273 * Convert a VT_I1 to a VT_I8.
2274 *
2275 * PARAMS
2276 * cIn [I] Source
2277 * pi64Out [O] Destination
2278 *
2279 * RETURNS
2280 * S_OK.
2281 */
2282HRESULT WINAPI VarI8FromI1(signed char cIn, LONG64* pi64Out)
2283{
2284 return _VarI8FromI1(cIn, pi64Out);
2285}
2286
2287/************************************************************************
2288 * VarI8FromUI2 (OLEAUT32.343)
2289 *
2290 * Convert a VT_UI2 to a VT_I8.
2291 *
2292 * PARAMS
2293 * usIn [I] Source
2294 * pi64Out [O] Destination
2295 *
2296 * RETURNS
2297 * S_OK.
2298 */
2300{
2301 return _VarI8FromUI2(usIn, pi64Out);
2302}
2303
2304/************************************************************************
2305 * VarI8FromUI4 (OLEAUT32.344)
2306 *
2307 * Convert a VT_UI4 to a VT_I8.
2308 *
2309 * PARAMS
2310 * ulIn [I] Source
2311 * pi64Out [O] Destination
2312 *
2313 * RETURNS
2314 * S_OK.
2315 */
2317{
2318 return _VarI8FromUI4(ulIn, pi64Out);
2319}
2320
2321/************************************************************************
2322 * VarI8FromDec (OLEAUT32.345)
2323 *
2324 * Convert a VT_DECIMAL to a VT_I8.
2325 *
2326 * PARAMS
2327 * pDecIn [I] Source
2328 * pi64Out [O] Destination
2329 *
2330 * RETURNS
2331 * Success: S_OK.
2332 * Failure: E_INVALIDARG, if the source value is invalid
2333 * DISP_E_OVERFLOW, if the value will not fit in the destination
2334 */
2336{
2337 if (!DEC_SCALE(pdecIn))
2338 {
2339 /* This decimal is just a 96 bit integer */
2340 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2341 return E_INVALIDARG;
2342
2343 if (DEC_HI32(pdecIn) || DEC_MID32(pdecIn) & 0x80000000)
2344 return DISP_E_OVERFLOW;
2345
2346 if (DEC_SIGN(pdecIn))
2347 *pi64Out = -DEC_LO64(pdecIn);
2348 else
2349 *pi64Out = DEC_LO64(pdecIn);
2350 return S_OK;
2351 }
2352 else
2353 {
2354 /* Decimal contains a floating point number */
2355 HRESULT hRet;
2356 double dbl;
2357
2358 hRet = VarR8FromDec(pdecIn, &dbl);
2359 if (SUCCEEDED(hRet))
2360 hRet = VarI8FromR8(dbl, pi64Out);
2361 return hRet;
2362 }
2363}
2364
2365/************************************************************************
2366 * VarI8FromUI8 (OLEAUT32.427)
2367 *
2368 * Convert a VT_UI8 to a VT_I8.
2369 *
2370 * PARAMS
2371 * ullIn [I] Source
2372 * pi64Out [O] Destination
2373 *
2374 * RETURNS
2375 * Success: S_OK.
2376 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2377 */
2379{
2380 return _VarI8FromUI8(ullIn, pi64Out);
2381}
2382
2383/* UI8
2384 */
2385
2386/************************************************************************
2387 * VarUI8FromI8 (OLEAUT32.428)
2388 *
2389 * Convert a VT_I8 to a VT_UI8.
2390 *
2391 * PARAMS
2392 * ulIn [I] Source
2393 * pui64Out [O] Destination
2394 *
2395 * RETURNS
2396 * Success: S_OK.
2397 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2398 */
2400{
2401 return _VarUI8FromI8(llIn, pui64Out);
2402}
2403
2404/************************************************************************
2405 * VarUI8FromUI1 (OLEAUT32.429)
2406 *
2407 * Convert a VT_UI1 to a VT_UI8.
2408 *
2409 * PARAMS
2410 * bIn [I] Source
2411 * pui64Out [O] Destination
2412 *
2413 * RETURNS
2414 * S_OK.
2415 */
2417{
2418 return _VarUI8FromUI1(bIn, pui64Out);
2419}
2420
2421/************************************************************************
2422 * VarUI8FromI2 (OLEAUT32.430)
2423 *
2424 * Convert a VT_I2 to a VT_UI8.
2425 *
2426 * PARAMS
2427 * sIn [I] Source
2428 * pui64Out [O] Destination
2429 *
2430 * RETURNS
2431 * S_OK.
2432 */
2434{
2435 return _VarUI8FromI2(sIn, pui64Out);
2436}
2437
2438/************************************************************************
2439 * VarUI8FromR4 (OLEAUT32.431)
2440 *
2441 * Convert a VT_R4 to a VT_UI8.
2442 *
2443 * PARAMS
2444 * fltIn [I] Source
2445 * pui64Out [O] Destination
2446 *
2447 * RETURNS
2448 * Success: S_OK.
2449 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2450 */
2452{
2453 return VarUI8FromR8(fltIn, pui64Out);
2454}
2455
2456/************************************************************************
2457 * VarUI8FromR8 (OLEAUT32.432)
2458 *
2459 * Convert a VT_R8 to a VT_UI8.
2460 *
2461 * PARAMS
2462 * dblIn [I] Source
2463 * pui64Out [O] Destination
2464 *
2465 * RETURNS
2466 * Success: S_OK.
2467 * Failure: E_INVALIDARG, if the source value is invalid
2468 * DISP_E_OVERFLOW, if the value will not fit in the destination
2469 *
2470 * NOTES
2471 * See VarI8FromR8() for details concerning rounding.
2472 */
2473HRESULT WINAPI VarUI8FromR8(double dblIn, ULONG64* pui64Out)
2474{
2475 if (dblIn < -0.5 || dblIn > 1.844674407370955e19)
2476 return DISP_E_OVERFLOW;
2477 VARIANT_DutchRound(ULONG64, dblIn, *pui64Out);
2478 return S_OK;
2479}
2480
2481/************************************************************************
2482 * VarUI8FromCy (OLEAUT32.433)
2483 *
2484 * Convert a VT_CY to a VT_UI8.
2485 *
2486 * PARAMS
2487 * cyIn [I] Source
2488 * pui64Out [O] Destination
2489 *
2490 * RETURNS
2491 * Success: S_OK.
2492 * Failure: E_INVALIDARG, if the source value is invalid
2493 * DISP_E_OVERFLOW, if the value will not fit in the destination
2494 *
2495 * NOTES
2496 * Negative values >= -5000 will be converted to 0.
2497 */
2499{
2500 if (cyIn.int64 < 0)
2501 {
2502 if (cyIn.int64 < -CY_HALF)
2503 return DISP_E_OVERFLOW;
2504 *pui64Out = 0;
2505 }
2506 else
2507 {
2508 *pui64Out = cyIn.int64 / CY_MULTIPLIER;
2509
2510 cyIn.int64 -= *pui64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2511
2512 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pui64Out & 0x1)))
2513 (*pui64Out)++;
2514 }
2515 return S_OK;
2516}
2517
2518/************************************************************************
2519 * VarUI8FromDate (OLEAUT32.434)
2520 *
2521 * Convert a VT_DATE to a VT_UI8.
2522 *
2523 * PARAMS
2524 * dateIn [I] Source
2525 * pui64Out [O] Destination
2526 *
2527 * RETURNS
2528 * Success: S_OK.
2529 * Failure: E_INVALIDARG, if the source value is invalid
2530 * DISP_E_OVERFLOW, if the value will not fit in the destination
2531 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2532 */
2534{
2535 return VarUI8FromR8(dateIn, pui64Out);
2536}
2537
2538/************************************************************************
2539 * VarUI8FromStr (OLEAUT32.435)
2540 *
2541 * Convert a VT_BSTR to a VT_UI8.
2542 *
2543 * PARAMS
2544 * strIn [I] Source
2545 * lcid [I] LCID for the conversion
2546 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2547 * pui64Out [O] Destination
2548 *
2549 * RETURNS
2550 * Success: S_OK.
2551 * Failure: E_INVALIDARG, if the source value is invalid
2552 * DISP_E_OVERFLOW, if the value will not fit in the destination
2553 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2554 */
2556{
2557 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pui64Out, VT_UI8);
2558}
2559
2560/************************************************************************
2561 * VarUI8FromDisp (OLEAUT32.436)
2562 *
2563 * Convert a VT_DISPATCH to a VT_UI8.
2564 *
2565 * PARAMS
2566 * pdispIn [I] Source
2567 * lcid [I] LCID for conversion
2568 * pui64Out [O] Destination
2569 *
2570 * RETURNS
2571 * Success: S_OK.
2572 * Failure: E_INVALIDARG, if the source value is invalid
2573 * DISP_E_OVERFLOW, if the value will not fit in the destination
2574 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2575 */
2577{
2578 return VARIANT_FromDisp(pdispIn, lcid, pui64Out, VT_UI8, 0);
2579}
2580
2581/************************************************************************
2582 * VarUI8FromBool (OLEAUT32.437)
2583 *
2584 * Convert a VT_BOOL to a VT_UI8.
2585 *
2586 * PARAMS
2587 * boolIn [I] Source
2588 * pui64Out [O] Destination
2589 *
2590 * RETURNS
2591 * Success: S_OK.
2592 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2593 */
2595{
2596 return VarI8FromI2(boolIn, (LONG64 *)pui64Out);
2597}
2598/************************************************************************
2599 * VarUI8FromI1 (OLEAUT32.438)
2600 *
2601 * Convert a VT_I1 to a VT_UI8.
2602 *
2603 * PARAMS
2604 * cIn [I] Source
2605 * pui64Out [O] Destination
2606 *
2607 * RETURNS
2608 * Success: S_OK.
2609 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2610 */
2611HRESULT WINAPI VarUI8FromI1(signed char cIn, ULONG64* pui64Out)
2612{
2613 return _VarUI8FromI1(cIn, pui64Out);
2614}
2615
2616/************************************************************************
2617 * VarUI8FromUI2 (OLEAUT32.439)
2618 *
2619 * Convert a VT_UI2 to a VT_UI8.
2620 *
2621 * PARAMS
2622 * usIn [I] Source
2623 * pui64Out [O] Destination
2624 *
2625 * RETURNS
2626 * S_OK.
2627 */
2629{
2630 return _VarUI8FromUI2(usIn, pui64Out);
2631}
2632
2633/************************************************************************
2634 * VarUI8FromUI4 (OLEAUT32.440)
2635 *
2636 * Convert a VT_UI4 to a VT_UI8.
2637 *
2638 * PARAMS
2639 * ulIn [I] Source
2640 * pui64Out [O] Destination
2641 *
2642 * RETURNS
2643 * S_OK.
2644 */
2646{
2647 return _VarUI8FromUI4(ulIn, pui64Out);
2648}
2649
2650/************************************************************************
2651 * VarUI8FromDec (OLEAUT32.441)
2652 *
2653 * Convert a VT_DECIMAL to a VT_UI8.
2654 *
2655 * PARAMS
2656 * pDecIn [I] Source
2657 * pui64Out [O] Destination
2658 *
2659 * RETURNS
2660 * Success: S_OK.
2661 * Failure: E_INVALIDARG, if the source value is invalid
2662 * DISP_E_OVERFLOW, if the value will not fit in the destination
2663 *
2664 * NOTES
2665 * Under native Win32, if the source value has a scale of 0, its sign is
2666 * ignored, i.e. this function takes the absolute value rather than fail
2667 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2668 * (use VarAbs() on pDecIn first if you really want this behaviour).
2669 */
2671{
2672 if (!DEC_SCALE(pdecIn))
2673 {
2674 /* This decimal is just a 96 bit integer */
2675 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2676 return E_INVALIDARG;
2677
2678 if (DEC_HI32(pdecIn))
2679 return DISP_E_OVERFLOW;
2680
2681 if (DEC_SIGN(pdecIn))
2682 {
2683 WARN("Sign would be ignored under Win32!\n");
2684 return DISP_E_OVERFLOW;
2685 }
2686
2687 *pui64Out = DEC_LO64(pdecIn);
2688 return S_OK;
2689 }
2690 else
2691 {
2692 /* Decimal contains a floating point number */
2693 HRESULT hRet;
2694 double dbl;
2695
2696 hRet = VarR8FromDec(pdecIn, &dbl);
2697 if (SUCCEEDED(hRet))
2698 hRet = VarUI8FromR8(dbl, pui64Out);
2699 return hRet;
2700 }
2701}
2702
2703/* R4
2704 */
2705
2706/************************************************************************
2707 * VarR4FromUI1 (OLEAUT32.68)
2708 *
2709 * Convert a VT_UI1 to a VT_R4.
2710 *
2711 * PARAMS
2712 * bIn [I] Source
2713 * pFltOut [O] Destination
2714 *
2715 * RETURNS
2716 * S_OK.
2717 */
2718HRESULT WINAPI VarR4FromUI1(BYTE bIn, float *pFltOut)
2719{
2720 return _VarR4FromUI1(bIn, pFltOut);
2721}
2722
2723/************************************************************************
2724 * VarR4FromI2 (OLEAUT32.69)
2725 *
2726 * Convert a VT_I2 to a VT_R4.
2727 *
2728 * PARAMS
2729 * sIn [I] Source
2730 * pFltOut [O] Destination
2731 *
2732 * RETURNS
2733 * S_OK.
2734 */
2735HRESULT WINAPI VarR4FromI2(SHORT sIn, float *pFltOut)
2736{
2737 return _VarR4FromI2(sIn, pFltOut);
2738}
2739
2740/************************************************************************
2741 * VarR4FromI4 (OLEAUT32.70)
2742 *
2743 * Convert a VT_I4 to a VT_R4.
2744 *
2745 * PARAMS
2746 * sIn [I] Source
2747 * pFltOut [O] Destination
2748 *
2749 * RETURNS
2750 * S_OK.
2751 */
2752HRESULT WINAPI VarR4FromI4(LONG lIn, float *pFltOut)
2753{
2754 return _VarR4FromI4(lIn, pFltOut);
2755}
2756
2757/************************************************************************
2758 * VarR4FromR8 (OLEAUT32.71)
2759 *
2760 * Convert a VT_R8 to a VT_R4.
2761 *
2762 * PARAMS
2763 * dblIn [I] Source
2764 * pFltOut [O] Destination
2765 *
2766 * RETURNS
2767 * Success: S_OK.
2768 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2769 */
2770HRESULT WINAPI VarR4FromR8(double dblIn, float *pFltOut)
2771{
2772 double d = dblIn < 0.0 ? -dblIn : dblIn;
2773 if (d > R4_MAX) return DISP_E_OVERFLOW;
2774 *pFltOut = dblIn;
2775 return S_OK;
2776}
2777
2778/************************************************************************
2779 * VarR4FromCy (OLEAUT32.72)
2780 *
2781 * Convert a VT_CY to a VT_R4.
2782 *
2783 * PARAMS
2784 * cyIn [I] Source
2785 * pFltOut [O] Destination
2786 *
2787 * RETURNS
2788 * S_OK.
2789 */
2790HRESULT WINAPI VarR4FromCy(CY cyIn, float *pFltOut)
2791{
2792 *pFltOut = (double)cyIn.int64 / CY_MULTIPLIER_F;
2793 return S_OK;
2794}
2795
2796/************************************************************************
2797 * VarR4FromDate (OLEAUT32.73)
2798 *
2799 * Convert a VT_DATE to a VT_R4.
2800 *
2801 * PARAMS
2802 * dateIn [I] Source
2803 * pFltOut [O] Destination
2804 *
2805 * RETURNS
2806 * Success: S_OK.
2807 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2808 */
2809HRESULT WINAPI VarR4FromDate(DATE dateIn, float *pFltOut)
2810{
2811 return VarR4FromR8(dateIn, pFltOut);
2812}
2813
2814/************************************************************************
2815 * VarR4FromStr (OLEAUT32.74)
2816 *
2817 * Convert a VT_BSTR to a VT_R4.
2818 *
2819 * PARAMS
2820 * strIn [I] Source
2821 * lcid [I] LCID for the conversion
2822 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2823 * pFltOut [O] Destination
2824 *
2825 * RETURNS
2826 * Success: S_OK.
2827 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2828 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2829 */
2830HRESULT WINAPI VarR4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, float *pFltOut)
2831{
2832 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pFltOut, VT_R4);
2833}
2834
2835/************************************************************************
2836 * VarR4FromDisp (OLEAUT32.75)
2837 *
2838 * Convert a VT_DISPATCH to a VT_R4.
2839 *
2840 * PARAMS
2841 * pdispIn [I] Source
2842 * lcid [I] LCID for conversion
2843 * pFltOut [O] Destination
2844 *
2845 * RETURNS
2846 * Success: S_OK.
2847 * Failure: E_INVALIDARG, if the source value is invalid
2848 * DISP_E_OVERFLOW, if the value will not fit in the destination
2849 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2850 */
2851HRESULT WINAPI VarR4FromDisp(IDispatch* pdispIn, LCID lcid, float *pFltOut)
2852{
2853 return VARIANT_FromDisp(pdispIn, lcid, pFltOut, VT_R4, 0);
2854}
2855
2856/************************************************************************
2857 * VarR4FromBool (OLEAUT32.76)
2858 *
2859 * Convert a VT_BOOL to a VT_R4.
2860 *
2861 * PARAMS
2862 * boolIn [I] Source
2863 * pFltOut [O] Destination
2864 *
2865 * RETURNS
2866 * S_OK.
2867 */
2869{
2870 return VarR4FromI2(boolIn, pFltOut);
2871}
2872
2873/************************************************************************
2874 * VarR4FromI1 (OLEAUT32.213)
2875 *
2876 * Convert a VT_I1 to a VT_R4.
2877 *
2878 * PARAMS
2879 * cIn [I] Source
2880 * pFltOut [O] Destination
2881 *
2882 * RETURNS
2883 * Success: S_OK.
2884 * Failure: E_INVALIDARG, if the source value is invalid
2885 * DISP_E_OVERFLOW, if the value will not fit in the destination
2886 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2887 */
2888HRESULT WINAPI VarR4FromI1(signed char cIn, float *pFltOut)
2889{
2890 return _VarR4FromI1(cIn, pFltOut);
2891}
2892
2893/************************************************************************
2894 * VarR4FromUI2 (OLEAUT32.214)
2895 *
2896 * Convert a VT_UI2 to a VT_R4.
2897 *
2898 * PARAMS
2899 * usIn [I] Source
2900 * pFltOut [O] Destination
2901 *
2902 * RETURNS
2903 * Success: S_OK.
2904 * Failure: E_INVALIDARG, if the source value is invalid
2905 * DISP_E_OVERFLOW, if the value will not fit in the destination
2906 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2907 */
2908HRESULT WINAPI VarR4FromUI2(USHORT usIn, float *pFltOut)
2909{
2910 return _VarR4FromUI2(usIn, pFltOut);
2911}
2912
2913/************************************************************************
2914 * VarR4FromUI4 (OLEAUT32.215)
2915 *
2916 * Convert a VT_UI4 to a VT_R4.
2917 *
2918 * PARAMS
2919 * ulIn [I] Source
2920 * pFltOut [O] Destination
2921 *
2922 * RETURNS
2923 * Success: S_OK.
2924 * Failure: E_INVALIDARG, if the source value is invalid
2925 * DISP_E_OVERFLOW, if the value will not fit in the destination
2926 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2927 */
2928HRESULT WINAPI VarR4FromUI4(ULONG ulIn, float *pFltOut)
2929{
2930 return _VarR4FromUI4(ulIn, pFltOut);
2931}
2932
2933/************************************************************************
2934 * VarR4FromDec (OLEAUT32.216)
2935 *
2936 * Convert a VT_DECIMAL to a VT_R4.
2937 *
2938 * PARAMS
2939 * pDecIn [I] Source
2940 * pFltOut [O] Destination
2941 *
2942 * RETURNS
2943 * Success: S_OK.
2944 * Failure: E_INVALIDARG, if the source value is invalid.
2945 */
2946HRESULT WINAPI VarR4FromDec(DECIMAL* pDecIn, float *pFltOut)
2947{
2948 BYTE scale = DEC_SCALE(pDecIn);
2949 double divisor = 1.0;
2950 double highPart;
2951
2952 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
2953 return E_INVALIDARG;
2954
2955 while (scale--)
2956 divisor *= 10.0;
2957
2958 if (DEC_SIGN(pDecIn))
2959 divisor = -divisor;
2960
2961 if (DEC_HI32(pDecIn))
2962 {
2963 highPart = (double)DEC_HI32(pDecIn) / divisor;
2964 highPart *= 4294967296.0F;
2965 highPart *= 4294967296.0F;
2966 }
2967 else
2968 highPart = 0.0;
2969
2970 *pFltOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
2971 return S_OK;
2972}
2973
2974/************************************************************************
2975 * VarR4FromI8 (OLEAUT32.360)
2976 *
2977 * Convert a VT_I8 to a VT_R4.
2978 *
2979 * PARAMS
2980 * ullIn [I] Source
2981 * pFltOut [O] Destination
2982 *
2983 * RETURNS
2984 * S_OK.
2985 */
2986HRESULT WINAPI VarR4FromI8(LONG64 llIn, float *pFltOut)
2987{
2988 return _VarR4FromI8(llIn, pFltOut);
2989}
2990
2991/************************************************************************
2992 * VarR4FromUI8 (OLEAUT32.361)
2993 *
2994 * Convert a VT_UI8 to a VT_R4.
2995 *
2996 * PARAMS
2997 * ullIn [I] Source
2998 * pFltOut [O] Destination
2999 *
3000 * RETURNS
3001 * S_OK.
3002 */
3003HRESULT WINAPI VarR4FromUI8(ULONG64 ullIn, float *pFltOut)
3004{
3005 return _VarR4FromUI8(ullIn, pFltOut);
3006}
3007
3008/************************************************************************
3009 * VarR4CmpR8 (OLEAUT32.316)
3010 *
3011 * Compare a VT_R4 to a VT_R8.
3012 *
3013 * PARAMS
3014 * fltLeft [I] Source
3015 * dblRight [I] Value to compare
3016 *
3017 * RETURNS
3018 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3019 * equal to or greater than dblRight respectively.
3020 */
3021HRESULT WINAPI VarR4CmpR8(float fltLeft, double dblRight)
3022{
3023 if (fltLeft < dblRight)
3024 return VARCMP_LT;
3025 else if (fltLeft > dblRight)
3026 return VARCMP_GT;
3027 return VARCMP_EQ;
3028}
3029
3030/* R8
3031 */
3032
3033/************************************************************************
3034 * VarR8FromUI1 (OLEAUT32.78)
3035 *
3036 * Convert a VT_UI1 to a VT_R8.
3037 *
3038 * PARAMS
3039 * bIn [I] Source
3040 * pDblOut [O] Destination
3041 *
3042 * RETURNS
3043 * S_OK.
3044 */
3045HRESULT WINAPI VarR8FromUI1(BYTE bIn, double *pDblOut)
3046{
3047 return _VarR8FromUI1(bIn, pDblOut);
3048}
3049
3050/************************************************************************
3051 * VarR8FromI2 (OLEAUT32.79)
3052 *
3053 * Convert a VT_I2 to a VT_R8.
3054 *
3055 * PARAMS
3056 * sIn [I] Source
3057 * pDblOut [O] Destination
3058 *
3059 * RETURNS
3060 * S_OK.
3061 */
3062HRESULT WINAPI VarR8FromI2(SHORT sIn, double *pDblOut)
3063{
3064 return _VarR8FromI2(sIn, pDblOut);
3065}
3066
3067/************************************************************************
3068 * VarR8FromI4 (OLEAUT32.80)
3069 *
3070 * Convert a VT_I4 to a VT_R8.
3071 *
3072 * PARAMS
3073 * sIn [I] Source
3074 * pDblOut [O] Destination
3075 *
3076 * RETURNS
3077 * S_OK.
3078 */
3079HRESULT WINAPI VarR8FromI4(LONG lIn, double *pDblOut)
3080{
3081 return _VarR8FromI4(lIn, pDblOut);
3082}
3083
3084/************************************************************************
3085 * VarR8FromR4 (OLEAUT32.81)
3086 *
3087 * Convert a VT_R4 to a VT_R8.
3088 *
3089 * PARAMS
3090 * fltIn [I] Source
3091 * pDblOut [O] Destination
3092 *
3093 * RETURNS
3094 * S_OK.
3095 */
3096HRESULT WINAPI VarR8FromR4(FLOAT fltIn, double *pDblOut)
3097{
3098 return _VarR8FromR4(fltIn, pDblOut);
3099}
3100
3101/************************************************************************
3102 * VarR8FromCy (OLEAUT32.82)
3103 *
3104 * Convert a VT_CY to a VT_R8.
3105 *
3106 * PARAMS
3107 * cyIn [I] Source
3108 * pDblOut [O] Destination
3109 *
3110 * RETURNS
3111 * S_OK.
3112 */
3113HRESULT WINAPI VarR8FromCy(CY cyIn, double *pDblOut)
3114{
3115 return _VarR8FromCy(cyIn, pDblOut);
3116}
3117
3118/************************************************************************
3119 * VarR8FromDate (OLEAUT32.83)
3120 *
3121 * Convert a VT_DATE to a VT_R8.
3122 *
3123 * PARAMS
3124 * dateIn [I] Source
3125 * pDblOut [O] Destination
3126 *
3127 * RETURNS
3128 * S_OK.
3129 */
3130HRESULT WINAPI VarR8FromDate(DATE dateIn, double *pDblOut)
3131{
3132 return _VarR8FromDate(dateIn, pDblOut);
3133}
3134
3135/************************************************************************
3136 * VarR8FromStr (OLEAUT32.84)
3137 *
3138 * Convert a VT_BSTR to a VT_R8.
3139 *
3140 * PARAMS
3141 * strIn [I] Source
3142 * lcid [I] LCID for the conversion
3143 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3144 * pDblOut [O] Destination
3145 *
3146 * RETURNS
3147 * Success: S_OK.
3148 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3149 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3150 */
3151HRESULT WINAPI VarR8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, double *pDblOut)
3152{
3153 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDblOut, VT_R8);
3154}
3155
3156/************************************************************************
3157 * VarR8FromDisp (OLEAUT32.85)
3158 *
3159 * Convert a VT_DISPATCH to a VT_R8.
3160 *
3161 * PARAMS
3162 * pdispIn [I] Source
3163 * lcid [I] LCID for conversion
3164 * pDblOut [O] Destination
3165 *
3166 * RETURNS
3167 * Success: S_OK.
3168 * Failure: E_INVALIDARG, if the source value is invalid
3169 * DISP_E_OVERFLOW, if the value will not fit in the destination
3170 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3171 */
3172HRESULT WINAPI VarR8FromDisp(IDispatch* pdispIn, LCID lcid, double *pDblOut)
3173{
3174 return VARIANT_FromDisp(pdispIn, lcid, pDblOut, VT_R8, 0);
3175}
3176
3177/************************************************************************
3178 * VarR8FromBool (OLEAUT32.86)
3179 *
3180 * Convert a VT_BOOL to a VT_R8.
3181 *
3182 * PARAMS
3183 * boolIn [I] Source
3184 * pDblOut [O] Destination
3185 *
3186 * RETURNS
3187 * S_OK.
3188 */
3190{
3191 return VarR8FromI2(boolIn, pDblOut);
3192}
3193
3194/************************************************************************
3195 * VarR8FromI1 (OLEAUT32.217)
3196 *
3197 * Convert a VT_I1 to a VT_R8.
3198 *
3199 * PARAMS
3200 * cIn [I] Source
3201 * pDblOut [O] Destination
3202 *
3203 * RETURNS
3204 * Success: S_OK.
3205 * Failure: E_INVALIDARG, if the source value is invalid
3206 * DISP_E_OVERFLOW, if the value will not fit in the destination
3207 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3208 */
3209HRESULT WINAPI VarR8FromI1(signed char cIn, double *pDblOut)
3210{
3211 return _VarR8FromI1(cIn, pDblOut);
3212}
3213
3214/************************************************************************
3215 * VarR8FromUI2 (OLEAUT32.218)
3216 *
3217 * Convert a VT_UI2 to a VT_R8.
3218 *
3219 * PARAMS
3220 * usIn [I] Source
3221 * pDblOut [O] Destination
3222 *
3223 * RETURNS
3224 * Success: S_OK.
3225 * Failure: E_INVALIDARG, if the source value is invalid
3226 * DISP_E_OVERFLOW, if the value will not fit in the destination
3227 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3228 */
3229HRESULT WINAPI VarR8FromUI2(USHORT usIn, double *pDblOut)
3230{
3231 return _VarR8FromUI2(usIn, pDblOut);
3232}
3233
3234/************************************************************************
3235 * VarR8FromUI4 (OLEAUT32.219)
3236 *
3237 * Convert a VT_UI4 to a VT_R8.
3238 *
3239 * PARAMS
3240 * ulIn [I] Source
3241 * pDblOut [O] Destination
3242 *
3243 * RETURNS
3244 * Success: S_OK.
3245 * Failure: E_INVALIDARG, if the source value is invalid
3246 * DISP_E_OVERFLOW, if the value will not fit in the destination
3247 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3248 */
3249HRESULT WINAPI VarR8FromUI4(ULONG ulIn, double *pDblOut)
3250{
3251 return _VarR8FromUI4(ulIn, pDblOut);
3252}
3253
3254/************************************************************************
3255 * VarR8FromDec (OLEAUT32.220)
3256 *
3257 * Convert a VT_DECIMAL to a VT_R8.
3258 *
3259 * PARAMS
3260 * pDecIn [I] Source
3261 * pDblOut [O] Destination
3262 *
3263 * RETURNS
3264 * Success: S_OK.
3265 * Failure: E_INVALIDARG, if the source value is invalid.
3266 */
3267HRESULT WINAPI VarR8FromDec(const DECIMAL* pDecIn, double *pDblOut)
3268{
3269 BYTE scale = DEC_SCALE(pDecIn);
3270 double divisor = 1.0, highPart;
3271
3272 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
3273 return E_INVALIDARG;
3274
3275 while (scale--)
3276 divisor *= 10;
3277
3278 if (DEC_SIGN(pDecIn))
3279 divisor = -divisor;
3280
3281 if (DEC_HI32(pDecIn))
3282 {
3283 highPart = (double)DEC_HI32(pDecIn) / divisor;
3284 highPart *= 4294967296.0F;
3285 highPart *= 4294967296.0F;
3286 }
3287 else
3288 highPart = 0.0;
3289
3290 *pDblOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
3291 return S_OK;
3292}
3293
3294/************************************************************************
3295 * VarR8FromI8 (OLEAUT32.362)
3296 *
3297 * Convert a VT_I8 to a VT_R8.
3298 *
3299 * PARAMS
3300 * ullIn [I] Source
3301 * pDblOut [O] Destination
3302 *
3303 * RETURNS
3304 * S_OK.
3305 */
3306HRESULT WINAPI VarR8FromI8(LONG64 llIn, double *pDblOut)
3307{
3308 return _VarR8FromI8(llIn, pDblOut);
3309}
3310
3311/************************************************************************
3312 * VarR8FromUI8 (OLEAUT32.363)
3313 *
3314 * Convert a VT_UI8 to a VT_R8.
3315 *
3316 * PARAMS
3317 * ullIn [I] Source
3318 * pDblOut [O] Destination
3319 *
3320 * RETURNS
3321 * S_OK.
3322 */
3323HRESULT WINAPI VarR8FromUI8(ULONG64 ullIn, double *pDblOut)
3324{
3325 return _VarR8FromUI8(ullIn, pDblOut);
3326}
3327
3328/************************************************************************
3329 * VarR8Pow (OLEAUT32.315)
3330 *
3331 * Raise a VT_R8 to a power.
3332 *
3333 * PARAMS
3334 * dblLeft [I] Source
3335 * dblPow [I] Power to raise dblLeft by
3336 * pDblOut [O] Destination
3337 *
3338 * RETURNS
3339 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3340 */
3341HRESULT WINAPI VarR8Pow(double dblLeft, double dblPow, double *pDblOut)
3342{
3343 *pDblOut = pow(dblLeft, dblPow);
3344 return S_OK;
3345}
3346
3347/************************************************************************
3348 * VarR8Round (OLEAUT32.317)
3349 *
3350 * Round a VT_R8 to a given number of decimal points.
3351 *
3352 * PARAMS
3353 * dblIn [I] Source
3354 * nDig [I] Number of decimal points to round to
3355 * pDblOut [O] Destination for rounded number
3356 *
3357 * RETURNS
3358 * Success: S_OK. pDblOut is rounded to nDig digits.
3359 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3360 *
3361 * NOTES
3362 * The native version of this function rounds using the internal
3363 * binary representation of the number. Wine uses the dutch rounding
3364 * convention, so therefore small differences can occur in the value returned.
3365 * MSDN says that you should use your own rounding function if you want
3366 * rounding to be predictable in your application.
3367 */
3368HRESULT WINAPI VarR8Round(double dblIn, int nDig, double *pDblOut)
3369{
3370 double scale, whole, fract;
3371
3372 if (nDig < 0)
3373 return E_INVALIDARG;
3374
3375 scale = pow(10.0, nDig);
3376
3377 dblIn *= scale;
3378 whole = dblIn < 0 ? ceil(dblIn) : floor(dblIn);
3379 fract = dblIn - whole;
3380
3381 if (fract > 0.5)
3382 dblIn = whole + 1.0;
3383 else if (fract == 0.5)
3384 dblIn = whole + fmod(whole, 2.0);
3385 else if (fract >= 0.0)
3386 dblIn = whole;
3387 else if (fract == -0.5)
3388 dblIn = whole - fmod(whole, 2.0);
3389 else if (fract > -0.5)
3390 dblIn = whole;
3391 else
3392 dblIn = whole - 1.0;
3393
3394 *pDblOut = dblIn / scale;
3395 return S_OK;
3396}
3397
3398/* CY
3399 */
3400
3401/* Powers of 10 from 0..4 D.P. */
3402static const int CY_Divisors[5] = { CY_MULTIPLIER/10000, CY_MULTIPLIER/1000,
3404
3405/************************************************************************
3406 * VarCyFromUI1 (OLEAUT32.98)
3407 *
3408 * Convert a VT_UI1 to a VT_CY.
3409 *
3410 * PARAMS
3411 * bIn [I] Source
3412 * pCyOut [O] Destination
3413 *
3414 * RETURNS
3415 * Success: S_OK.
3416 * Failure: E_INVALIDARG, if the source value is invalid
3417 * DISP_E_OVERFLOW, if the value will not fit in the destination
3418 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3419 */
3421{
3422 pCyOut->int64 = (ULONG64)bIn * CY_MULTIPLIER;
3423 return S_OK;
3424}
3425
3426/************************************************************************
3427 * VarCyFromI2 (OLEAUT32.99)
3428 *
3429 * Convert a VT_I2 to a VT_CY.
3430 *
3431 * PARAMS
3432 * sIn [I] Source
3433 * pCyOut [O] Destination
3434 *
3435 * RETURNS
3436 * Success: S_OK.
3437 * Failure: E_INVALIDARG, if the source value is invalid
3438 * DISP_E_OVERFLOW, if the value will not fit in the destination
3439 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3440 */
3442{
3443 pCyOut->int64 = (LONG64)sIn * CY_MULTIPLIER;
3444 return S_OK;
3445}
3446
3447/************************************************************************
3448 * VarCyFromI4 (OLEAUT32.100)
3449 *
3450 * Convert a VT_I4 to a VT_CY.
3451 *
3452 * PARAMS
3453 * sIn [I] Source
3454 * pCyOut [O] Destination
3455 *
3456 * RETURNS
3457 * Success: S_OK.
3458 * Failure: E_INVALIDARG, if the source value is invalid
3459 * DISP_E_OVERFLOW, if the value will not fit in the destination
3460 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3461 */
3463{
3464 pCyOut->int64 = (LONG64)lIn * CY_MULTIPLIER;
3465 return S_OK;
3466}
3467
3468/************************************************************************
3469 * VarCyFromR4 (OLEAUT32.101)
3470 *
3471 * Convert a VT_R4 to a VT_CY.
3472 *
3473 * PARAMS
3474 * fltIn [I] Source
3475 * pCyOut [O] Destination
3476 *
3477 * RETURNS
3478 * Success: S_OK.
3479 * Failure: E_INVALIDARG, if the source value is invalid
3480 * DISP_E_OVERFLOW, if the value will not fit in the destination
3481 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3482 */
3484{
3485 return VarCyFromR8(fltIn, pCyOut);
3486}
3487
3488/************************************************************************
3489 * VarCyFromR8 (OLEAUT32.102)
3490 *
3491 * Convert a VT_R8 to a VT_CY.
3492 *
3493 * PARAMS
3494 * dblIn [I] Source
3495 * pCyOut [O] Destination
3496 *
3497 * RETURNS
3498 * Success: S_OK.
3499 * Failure: E_INVALIDARG, if the source value is invalid
3500 * DISP_E_OVERFLOW, if the value will not fit in the destination
3501 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3502 */
3503HRESULT WINAPI VarCyFromR8(double dblIn, CY* pCyOut)
3504{
3505#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3506 /* This code gives identical results to Win32 on Intel.
3507 * Here we use fp exceptions to catch overflows when storing the value.
3508 */
3509 static const unsigned short r8_fpcontrol = 0x137f;
3510 static const double r8_multiplier = CY_MULTIPLIER_F;
3511 unsigned short old_fpcontrol, result_fpstatus;
3512
3513 /* Clear exceptions, save the old fp state and load the new state */
3514 __asm__ __volatile__( "fnclex" );
3515 __asm__ __volatile__( "fstcw %0" : "=m" (old_fpcontrol) : );
3516 __asm__ __volatile__( "fldcw %0" : : "m" (r8_fpcontrol) );
3517 /* Perform the conversion. */
3518 __asm__ __volatile__( "fldl %0" : : "m" (dblIn) );
3519 __asm__ __volatile__( "fmull %0" : : "m" (r8_multiplier) );
3520 __asm__ __volatile__( "fistpll %0" : : "m" (*pCyOut) );
3521 /* Save the resulting fp state, load the old state and clear exceptions */
3522 __asm__ __volatile__( "fstsw %0" : "=m" (result_fpstatus) : );
3523 __asm__ __volatile__( "fnclex" );
3524 __asm__ __volatile__( "fldcw %0" : : "m" (old_fpcontrol) );
3525
3526 if (result_fpstatus & 0x9) /* Overflow | Invalid */
3527 return DISP_E_OVERFLOW;
3528#else
3529 /* This version produces slightly different results for boundary cases */
3530 if (dblIn < -922337203685477.5807 || dblIn >= 922337203685477.5807)
3531 return DISP_E_OVERFLOW;
3532 dblIn *= CY_MULTIPLIER_F;
3533 VARIANT_DutchRound(LONG64, dblIn, pCyOut->int64);
3534#endif
3535 return S_OK;
3536}
3537
3538/************************************************************************
3539 * VarCyFromDate (OLEAUT32.103)
3540 *
3541 * Convert a VT_DATE to a VT_CY.
3542 *
3543 * PARAMS
3544 * dateIn [I] Source
3545 * pCyOut [O] Destination
3546 *
3547 * RETURNS
3548 * Success: S_OK.
3549 * Failure: E_INVALIDARG, if the source value is invalid
3550 * DISP_E_OVERFLOW, if the value will not fit in the destination
3551 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3552 */
3554{
3555 return VarCyFromR8(dateIn, pCyOut);
3556}
3557
3558/************************************************************************
3559 * VarCyFromStr (OLEAUT32.104)
3560 *
3561 * Convert a VT_BSTR to a VT_CY.
3562 *
3563 * PARAMS
3564 * strIn [I] Source
3565 * lcid [I] LCID for the conversion
3566 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3567 * pCyOut [O] Destination
3568 *
3569 * RETURNS
3570 * Success: S_OK.
3571 * Failure: E_INVALIDARG, if the source value is invalid
3572 * DISP_E_OVERFLOW, if the value will not fit in the destination
3573 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3574 */
3576{
3577 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pCyOut, VT_CY);
3578}
3579
3580/************************************************************************
3581 * VarCyFromDisp (OLEAUT32.105)
3582 *
3583 * Convert a VT_DISPATCH to a VT_CY.
3584 *
3585 * PARAMS
3586 * pdispIn [I] Source
3587 * lcid [I] LCID for conversion
3588 * pCyOut [O] Destination
3589 *
3590 * RETURNS
3591 * Success: S_OK.
3592 * Failure: E_INVALIDARG, if the source value is invalid
3593 * DISP_E_OVERFLOW, if the value will not fit in the destination
3594 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3595 */
3597{
3598 return VARIANT_FromDisp(pdispIn, lcid, pCyOut, VT_CY, 0);
3599}
3600
3601/************************************************************************
3602 * VarCyFromBool (OLEAUT32.106)
3603 *
3604 * Convert a VT_BOOL to a VT_CY.
3605 *
3606 * PARAMS
3607 * boolIn [I] Source
3608 * pCyOut [O] Destination
3609 *
3610 * RETURNS
3611 * Success: S_OK.
3612 * Failure: E_INVALIDARG, if the source value is invalid
3613 * DISP_E_OVERFLOW, if the value will not fit in the destination
3614 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3615 *
3616 * NOTES
3617 * While the sign of the boolean is stored in the currency, the value is
3618 * converted to either 0 or 1.
3619 */
3621{
3622 pCyOut->int64 = (LONG64)boolIn * CY_MULTIPLIER;
3623 return S_OK;
3624}
3625
3626/************************************************************************
3627 * VarCyFromI1 (OLEAUT32.225)
3628 *
3629 * Convert a VT_I1 to a VT_CY.
3630 *
3631 * PARAMS
3632 * cIn [I] Source
3633 * pCyOut [O] Destination
3634 *
3635 * RETURNS
3636 * Success: S_OK.
3637 * Failure: E_INVALIDARG, if the source value is invalid
3638 * DISP_E_OVERFLOW, if the value will not fit in the destination
3639 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3640 */
3641HRESULT WINAPI VarCyFromI1(signed char cIn, CY* pCyOut)
3642{
3643 pCyOut->int64 = (LONG64)cIn * CY_MULTIPLIER;
3644 return S_OK;
3645}
3646
3647/************************************************************************
3648 * VarCyFromUI2 (OLEAUT32.226)
3649 *
3650 * Convert a VT_UI2 to a VT_CY.
3651 *
3652 * PARAMS
3653 * usIn [I] Source
3654 * pCyOut [O] Destination
3655 *
3656 * RETURNS
3657 * Success: S_OK.
3658 * Failure: E_INVALIDARG, if the source value is invalid
3659 * DISP_E_OVERFLOW, if the value will not fit in the destination
3660 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3661 */
3663{
3664 pCyOut->int64 = (ULONG64)usIn * CY_MULTIPLIER;
3665 return S_OK;
3666}
3667
3668/************************************************************************
3669 * VarCyFromUI4 (OLEAUT32.227)
3670 *
3671 * Convert a VT_UI4 to a VT_CY.
3672 *
3673 * PARAMS
3674 * ulIn [I] Source
3675 * pCyOut [O] Destination
3676 *
3677 * RETURNS
3678 * Success: S_OK.
3679 * Failure: E_INVALIDARG, if the source value is invalid
3680 * DISP_E_OVERFLOW, if the value will not fit in the destination
3681 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3682 */
3684{
3685 pCyOut->int64 = (ULONG64)ulIn * CY_MULTIPLIER;
3686 return S_OK;
3687}
3688
3689/************************************************************************
3690 * VarCyFromDec (OLEAUT32.228)
3691 *
3692 * Convert a VT_DECIMAL to a VT_CY.
3693 *
3694 * PARAMS
3695 * pdecIn [I] Source
3696 * pCyOut [O] Destination
3697 *
3698 * RETURNS
3699 * Success: S_OK.
3700 * Failure: E_INVALIDARG, if the source value is invalid
3701 * DISP_E_OVERFLOW, if the value will not fit in the destination
3702 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3703 */
3705{
3706 DECIMAL rounded;
3707 HRESULT hRet;
3708
3709 hRet = VarDecRound(pdecIn, 4, &rounded);
3710
3711 if (SUCCEEDED(hRet))
3712 {
3713 double d;
3714
3715 if (DEC_HI32(&rounded))
3716 return DISP_E_OVERFLOW;
3717
3718 /* Note: Without the casts this promotes to int64 which loses precision */
3719 d = (double)DEC_LO64(&rounded) / (double)CY_Divisors[DEC_SCALE(&rounded)];
3720 if (DEC_SIGN(&rounded))
3721 d = -d;
3722 return VarCyFromR8(d, pCyOut);
3723 }
3724 return hRet;
3725}
3726
3727/************************************************************************
3728 * VarCyFromI8 (OLEAUT32.366)
3729 *
3730 * Convert a VT_I8 to a VT_CY.
3731 *
3732 * PARAMS
3733 * ullIn [I] Source
3734 * pCyOut [O] Destination
3735 *
3736 * RETURNS
3737 * Success: S_OK.
3738 * Failure: E_INVALIDARG, if the source value is invalid
3739 * DISP_E_OVERFLOW, if the value will not fit in the destination
3740 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3741 */
3743{
3744 if (llIn <= (I8_MIN/CY_MULTIPLIER) || llIn >= (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3745 pCyOut->int64 = llIn * CY_MULTIPLIER;
3746 return S_OK;
3747}
3748
3749/************************************************************************
3750 * VarCyFromUI8 (OLEAUT32.375)
3751 *
3752 * Convert a VT_UI8 to a VT_CY.
3753 *
3754 * PARAMS
3755 * ullIn [I] Source
3756 * pCyOut [O] Destination
3757 *
3758 * RETURNS
3759 * Success: S_OK.
3760 * Failure: E_INVALIDARG, if the source value is invalid
3761 * DISP_E_OVERFLOW, if the value will not fit in the destination
3762 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3763 */
3765{
3766 if (ullIn > (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3767 pCyOut->int64 = ullIn * CY_MULTIPLIER;
3768 return S_OK;
3769}
3770
3771/************************************************************************
3772 * VarCyAdd (OLEAUT32.299)
3773 *
3774 * Add one CY to another.
3775 *
3776 * PARAMS
3777 * cyLeft [I] Source
3778 * cyRight [I] Value to add
3779 * pCyOut [O] Destination
3780 *
3781 * RETURNS
3782 * Success: S_OK.
3783 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3784 */
3785HRESULT WINAPI VarCyAdd(CY cyLeft, CY cyRight, CY* pCyOut)
3786{
3787 double l,r;
3788 _VarR8FromCy(cyLeft, &l);
3789 _VarR8FromCy(cyRight, &r);
3790 l = l + r;
3791 return VarCyFromR8(l, pCyOut);
3792}
3793
3794/************************************************************************
3795 * VarCyMul (OLEAUT32.303)
3796 *
3797 * Multiply one CY by another.
3798 *
3799 * PARAMS
3800 * cyLeft [I] Source
3801 * cyRight [I] Value to multiply by
3802 * pCyOut [O] Destination
3803 *
3804 * RETURNS
3805 * Success: S_OK.
3806 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3807 */
3808HRESULT WINAPI VarCyMul(CY cyLeft, CY cyRight, CY* pCyOut)
3809{
3810 double l,r;
3811 _VarR8FromCy(cyLeft, &l);
3812 _VarR8FromCy(cyRight, &r);
3813 l = l * r;
3814 return VarCyFromR8(l, pCyOut);
3815}
3816
3817/************************************************************************
3818 * VarCyMulI4 (OLEAUT32.304)
3819 *
3820 * Multiply one CY by a VT_I4.
3821 *
3822 * PARAMS
3823 * cyLeft [I] Source
3824 * lRight [I] Value to multiply by
3825 * pCyOut [O] Destination
3826 *
3827 * RETURNS
3828 * Success: S_OK.
3829 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3830 */
3831HRESULT WINAPI VarCyMulI4(CY cyLeft, LONG lRight, CY* pCyOut)
3832{
3833 double d;
3834
3835 _VarR8FromCy(cyLeft, &d);
3836 d = d * lRight;
3837 return VarCyFromR8(d, pCyOut);
3838}
3839
3840/************************************************************************
3841 * VarCySub (OLEAUT32.305)
3842 *
3843 * Subtract one CY from another.
3844 *
3845 * PARAMS
3846 * cyLeft [I] Source
3847 * cyRight [I] Value to subtract
3848 * pCyOut [O] Destination
3849 *
3850 * RETURNS
3851 * Success: S_OK.
3852 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3853 */
3854HRESULT WINAPI VarCySub(CY cyLeft, CY cyRight, CY* pCyOut)
3855{
3856 double l,r;
3857 _VarR8FromCy(cyLeft, &l);
3858 _VarR8FromCy(cyRight, &r);
3859 l = l - r;
3860 return VarCyFromR8(l, pCyOut);
3861}
3862
3863/************************************************************************
3864 * VarCyAbs (OLEAUT32.306)
3865 *
3866 * Convert a VT_CY into its absolute value.
3867 *
3868 * PARAMS
3869 * cyIn [I] Source
3870 * pCyOut [O] Destination
3871 *
3872 * RETURNS
3873 * Success: S_OK. pCyOut contains the absolute value.
3874 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3875 */
3877{
3878 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3879 return DISP_E_OVERFLOW;
3880
3881 pCyOut->int64 = cyIn.int64 < 0 ? -cyIn.int64 : cyIn.int64;
3882 return S_OK;
3883}
3884
3885/************************************************************************
3886 * VarCyFix (OLEAUT32.307)
3887 *
3888 * Return the integer part of a VT_CY.
3889 *
3890 * PARAMS
3891 * cyIn [I] Source
3892 * pCyOut [O] Destination
3893 *
3894 * RETURNS
3895 * Success: S_OK.
3896 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3897 *
3898 * NOTES
3899 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3900 * negative numbers away from 0, while this function rounds them towards zero.
3901 */
3903{
3904 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3905 pCyOut->int64 *= CY_MULTIPLIER;
3906 return S_OK;
3907}
3908
3909/************************************************************************
3910 * VarCyInt (OLEAUT32.308)
3911 *
3912 * Return the integer part of a VT_CY.
3913 *
3914 * PARAMS
3915 * cyIn [I] Source
3916 * pCyOut [O] Destination
3917 *
3918 * RETURNS
3919 * Success: S_OK.
3920 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3921 *
3922 * NOTES
3923 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3924 * negative numbers towards 0, while this function rounds them away from zero.
3925 */
3927{
3928 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3929 pCyOut->int64 *= CY_MULTIPLIER;
3930
3931 if (cyIn.int64 < 0 && cyIn.int64 % CY_MULTIPLIER != 0)
3932 {
3933 pCyOut->int64 -= CY_MULTIPLIER;
3934 }
3935 return S_OK;
3936}
3937
3938/************************************************************************
3939 * VarCyNeg (OLEAUT32.309)
3940 *
3941 * Change the sign of a VT_CY.
3942 *
3943 * PARAMS
3944 * cyIn [I] Source
3945 * pCyOut [O] Destination
3946 *
3947 * RETURNS
3948 * Success: S_OK.
3949 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3950 */
3952{
3953 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3954 return DISP_E_OVERFLOW;
3955
3956 pCyOut->int64 = -cyIn.int64;
3957 return S_OK;
3958}
3959
3960/************************************************************************
3961 * VarCyRound (OLEAUT32.310)
3962 *
3963 * Change the precision of a VT_CY.
3964 *
3965 * PARAMS
3966 * cyIn [I] Source
3967 * cDecimals [I] New number of decimals to keep
3968 * pCyOut [O] Destination
3969 *
3970 * RETURNS
3971 * Success: S_OK.
3972 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3973 */
3974HRESULT WINAPI VarCyRound(CY cyIn, int cDecimals, CY* pCyOut)
3975{
3976 if (cDecimals < 0)
3977 return E_INVALIDARG;
3978
3979 if (cDecimals > 3)
3980 {
3981 /* Rounding to more precision than we have */
3982 *pCyOut = cyIn;
3983 return S_OK;
3984 }
3985 else
3986 {
3987 double d, div = CY_Divisors[cDecimals];
3988
3989 _VarR8FromCy(cyIn, &d);
3990 d = d * div;
3992 d = (double)pCyOut->int64 / div * CY_MULTIPLIER_F;
3994 return S_OK;
3995 }
3996}
3997
3998/************************************************************************
3999 * VarCyCmp (OLEAUT32.311)
4000 *
4001 * Compare two VT_CY values.
4002 *
4003 * PARAMS
4004 * cyLeft [I] Source
4005 * cyRight [I] Value to compare
4006 *
4007 * RETURNS
4008 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4009 * compare is less, equal or greater than source respectively.
4010 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4011 */
4012HRESULT WINAPI VarCyCmp(CY cyLeft, CY cyRight)
4013{
4014 HRESULT hRet;
4015 CY result;
4016
4017 /* Subtract right from left, and compare the result to 0 */
4018 hRet = VarCySub(cyLeft, cyRight, &result);
4019
4020 if (SUCCEEDED(hRet))
4021 {
4022 if (result.int64 < 0)
4023 hRet = (HRESULT)VARCMP_LT;
4024 else if (result.int64 > 0)
4025 hRet = (HRESULT)VARCMP_GT;
4026 else
4027 hRet = (HRESULT)VARCMP_EQ;
4028 }
4029 return hRet;
4030}
4031
4032/************************************************************************
4033 * VarCyCmpR8 (OLEAUT32.312)
4034 *
4035 * Compare a VT_CY to a double
4036 *
4037 * PARAMS
4038 * cyLeft [I] Currency Source
4039 * dblRight [I] double to compare to cyLeft
4040 *
4041 * RETURNS
4042 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4043 * less than, equal to or greater than cyLeft respectively.
4044 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4045 */
4046HRESULT WINAPI VarCyCmpR8(CY cyLeft, double dblRight)
4047{
4048 HRESULT hRet;
4049 CY cyRight;
4050
4051 hRet = VarCyFromR8(dblRight, &cyRight);
4052
4053 if (SUCCEEDED(hRet))
4054 hRet = VarCyCmp(cyLeft, cyRight);
4055
4056 return hRet;
4057}
4058
4059/************************************************************************
4060 * VarCyMulI8 (OLEAUT32.329)
4061 *
4062 * Multiply a VT_CY by a VT_I8.
4063 *
4064 * PARAMS
4065 * cyLeft [I] Source
4066 * llRight [I] Value to multiply by
4067 * pCyOut [O] Destination
4068 *
4069 * RETURNS
4070 * Success: S_OK.
4071 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4072 */
4073HRESULT WINAPI VarCyMulI8(CY cyLeft, LONG64 llRight, CY* pCyOut)
4074{
4075 double d;
4076
4077 _VarR8FromCy(cyLeft, &d);
4078 d = d * (double)llRight;
4079 return VarCyFromR8(d, pCyOut);
4080}
4081
4082/* DECIMAL
4083 */
4084
4085/************************************************************************
4086 * VarDecFromUI1 (OLEAUT32.190)
4087 *
4088 * Convert a VT_UI1 to a DECIMAL.
4089 *
4090 * PARAMS
4091 * bIn [I] Source
4092 * pDecOut [O] Destination
4093 *
4094 * RETURNS
4095 * S_OK.
4096 */
4098{
4099 return VarDecFromUI4(bIn, pDecOut);
4100}
4101
4102/************************************************************************
4103 * VarDecFromI2 (OLEAUT32.191)
4104 *
4105 * Convert a VT_I2 to a DECIMAL.
4106 *
4107 * PARAMS
4108 * sIn [I] Source
4109 * pDecOut [O] Destination
4110 *
4111 * RETURNS
4112 * S_OK.
4113 */
4115{
4116 return VarDecFromI4(sIn, pDecOut);
4117}
4118
4119/************************************************************************
4120 * VarDecFromI4 (OLEAUT32.192)
4121 *
4122 * Convert a VT_I4 to a DECIMAL.
4123 *
4124 * PARAMS
4125 * sIn [I] Source
4126 * pDecOut [O] Destination
4127 *
4128 * RETURNS
4129 * S_OK.
4130 */
4132{
4133 DEC_HI32(pDecOut) = 0;
4134 DEC_MID32(pDecOut) = 0;
4135
4136 if (lIn < 0)
4137 {
4138 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4139 DEC_LO32(pDecOut) = -lIn;
4140 }
4141 else
4142 {
4143 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4144 DEC_LO32(pDecOut) = lIn;
4145 }
4146 return S_OK;
4147}
4148
4149/* internal representation of the value stored in a DECIMAL. The bytes are
4150 stored from LSB at index 0 to MSB at index 11
4151 */
4152typedef struct DECIMAL_internal
4153{
4154 DWORD bitsnum[3]; /* 96 significant bits, unsigned */
4155 unsigned char scale; /* number scaled * 10 ^ -(scale) */
4156 unsigned int sign : 1; /* 0 - positive, 1 - negative */
4158
4161static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to);
4162static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to);
4163static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor);
4164static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n);
4165
4166/************************************************************************
4167 * VarDecFromR4 (OLEAUT32.193)
4168 *
4169 * Convert a VT_R4 to a DECIMAL.
4170 *
4171 * PARAMS
4172 * fltIn [I] Source
4173 * pDecOut [O] Destination
4174 *
4175 * RETURNS
4176 * S_OK.
4177 */
4179{
4180 VARIANT_DI di;
4181 HRESULT hres;
4182
4183 hres = VARIANT_DI_FromR4(fltIn, &di);
4184 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4185 return hres;
4186}
4187
4188/************************************************************************
4189 * VarDecFromR8 (OLEAUT32.194)
4190 *
4191 * Convert a VT_R8 to a DECIMAL.
4192 *
4193 * PARAMS
4194 * dblIn [I] Source
4195 * pDecOut [O] Destination
4196 *
4197 * RETURNS
4198 * S_OK.
4199 */
4200HRESULT WINAPI VarDecFromR8(double dblIn, DECIMAL* pDecOut)
4201{
4202 VARIANT_DI di;
4203 HRESULT hres;
4204
4205 hres = VARIANT_DI_FromR8(dblIn, &di);
4206 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4207 return hres;
4208}
4209
4210/************************************************************************
4211 * VarDecFromDate (OLEAUT32.195)
4212 *
4213 * Convert a VT_DATE to a DECIMAL.
4214 *
4215 * PARAMS
4216 * dateIn [I] Source
4217 * pDecOut [O] Destination
4218 *
4219 * RETURNS
4220 * S_OK.
4221 */
4223{
4224 return VarDecFromR8(dateIn, pDecOut);
4225}
4226
4227/************************************************************************
4228 * VarDecFromCy (OLEAUT32.196)
4229 *
4230 * Convert a VT_CY to a DECIMAL.
4231 *
4232 * PARAMS
4233 * cyIn [I] Source
4234 * pDecOut [O] Destination
4235 *
4236 * RETURNS
4237 * S_OK.
4238 */
4240{
4241 DEC_HI32(pDecOut) = 0;
4242
4243 /* Note: This assumes 2s complement integer representation */
4244 if (cyIn.s.Hi & 0x80000000)
4245 {
4246 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,4);
4247 DEC_LO64(pDecOut) = -cyIn.int64;
4248 }
4249 else
4250 {
4251 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,4);
4252 DEC_MID32(pDecOut) = cyIn.s.Hi;
4253 DEC_LO32(pDecOut) = cyIn.s.Lo;
4254 }
4255 return S_OK;
4256}
4257
4258/************************************************************************
4259 * VarDecFromStr (OLEAUT32.197)
4260 *
4261 * Convert a VT_BSTR to a DECIMAL.
4262 *
4263 * PARAMS
4264 * strIn [I] Source
4265 * lcid [I] LCID for the conversion
4266 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4267 * pDecOut [O] Destination
4268 *
4269 * RETURNS
4270 * Success: S_OK.
4271 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4272 */
4274{
4275 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDecOut, VT_DECIMAL);
4276}
4277
4278/************************************************************************
4279 * VarDecFromDisp (OLEAUT32.198)
4280 *
4281 * Convert a VT_DISPATCH to a DECIMAL.
4282 *
4283 * PARAMS
4284 * pdispIn [I] Source
4285 * lcid [I] LCID for conversion
4286 * pDecOut [O] Destination
4287 *
4288 * RETURNS
4289 * Success: S_OK.
4290 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4291 */
4293{
4294 return VARIANT_FromDisp(pdispIn, lcid, pDecOut, VT_DECIMAL, 0);
4295}
4296
4297/************************************************************************
4298 * VarDecFromBool (OLEAUT32.199)
4299 *
4300 * Convert a VT_BOOL to a DECIMAL.
4301 *
4302 * PARAMS
4303 * bIn [I] Source
4304 * pDecOut [O] Destination
4305 *
4306 * RETURNS
4307 * S_OK.
4308 *
4309 * NOTES
4310 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4311 */
4313{
4314 DEC_HI32(pDecOut) = 0;
4315 DEC_MID32(pDecOut) = 0;
4316 if (bIn)
4317 {
4318 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4319 DEC_LO32(pDecOut) = 1;
4320 }
4321 else
4322 {
4323 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4324 DEC_LO32(pDecOut) = 0;
4325 }
4326 return S_OK;
4327}
4328
4329/************************************************************************
4330 * VarDecFromI1 (OLEAUT32.241)
4331 *
4332 * Convert a VT_I1 to a DECIMAL.
4333 *
4334 * PARAMS
4335 * cIn [I] Source
4336 * pDecOut [O] Destination
4337 *
4338 * RETURNS
4339 * S_OK.
4340 */
4341HRESULT WINAPI VarDecFromI1(signed char cIn, DECIMAL* pDecOut)
4342{
4343 return VarDecFromI4(cIn, pDecOut);
4344}
4345
4346/************************************************************************
4347 * VarDecFromUI2 (OLEAUT32.242)
4348 *
4349 * Convert a VT_UI2 to a DECIMAL.
4350 *
4351 * PARAMS
4352 * usIn [I] Source
4353 * pDecOut [O] Destination
4354 *
4355 * RETURNS
4356 * S_OK.
4357 */
4359{
4360 return VarDecFromUI4(usIn, pDecOut);
4361}
4362
4363/************************************************************************
4364 * VarDecFromUI4 (OLEAUT32.243)
4365 *
4366 * Convert a VT_UI4 to a DECIMAL.
4367 *
4368 * PARAMS
4369 * ulIn [I] Source
4370 * pDecOut [O] Destination
4371 *
4372 * RETURNS
4373 * S_OK.
4374 */
4376{
4377 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4378 DEC_HI32(pDecOut) = 0;
4379 DEC_MID32(pDecOut) = 0;
4380 DEC_LO32(pDecOut) = ulIn;
4381 return S_OK;
4382}
4383
4384/************************************************************************
4385 * VarDecFromI8 (OLEAUT32.374)
4386 *
4387 * Convert a VT_I8 to a DECIMAL.
4388 *
4389 * PARAMS
4390 * llIn [I] Source
4391 * pDecOut [O] Destination
4392 *
4393 * RETURNS
4394 * S_OK.
4395 */
4397{
4398 PULARGE_INTEGER pLi = (PULARGE_INTEGER)&llIn;
4399
4400 DEC_HI32(pDecOut) = 0;
4401
4402 /* Note: This assumes 2s complement integer representation */
4403 if (pLi->u.HighPart & 0x80000000)
4404 {
4405 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4406 DEC_LO64(pDecOut) = -pLi->QuadPart;
4407 }
4408 else
4409 {
4410 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4411 DEC_MID32(pDecOut) = pLi->u.HighPart;
4412 DEC_LO32(pDecOut) = pLi->u.LowPart;
4413 }
4414 return S_OK;
4415}
4416
4417/************************************************************************
4418 * VarDecFromUI8 (OLEAUT32.375)
4419 *
4420 * Convert a VT_UI8 to a DECIMAL.
4421 *
4422 * PARAMS
4423 * ullIn [I] Source
4424 * pDecOut [O] Destination
4425 *
4426 * RETURNS
4427 * S_OK.
4428 */
4430{
4431 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4432 DEC_HI32(pDecOut) = 0;
4433 DEC_LO64(pDecOut) = ullIn;
4434 return S_OK;
4435}
4436
4437/* Make two DECIMALS the same scale; used by math functions below */
4438static HRESULT VARIANT_DecScale(const DECIMAL** ppDecLeft,
4439 const DECIMAL** ppDecRight,
4440 DECIMAL pDecOut[2])
4441{
4442 static DECIMAL scaleFactor;
4443 unsigned char remainder;
4444 DECIMAL decTemp;
4445 VARIANT_DI di;
4446 int scaleAmount, i;
4447
4448 if (DEC_SIGN(*ppDecLeft) & ~DECIMAL_NEG || DEC_SIGN(*ppDecRight) & ~DECIMAL_NEG)
4449 return E_INVALIDARG;
4450
4451 DEC_LO32(&scaleFactor) = 10;
4452
4453 i = scaleAmount = DEC_SCALE(*ppDecLeft) - DEC_SCALE(*ppDecRight);
4454
4455 if (!scaleAmount)
4456 return S_OK; /* Same scale */
4457
4458 if (scaleAmount > 0)
4459 {
4460 decTemp = *(*ppDecRight); /* Left is bigger - scale the right hand side */
4461 *ppDecRight = &pDecOut[0];
4462 }
4463 else
4464 {
4465 decTemp = *(*ppDecLeft); /* Right is bigger - scale the left hand side */
4466 *ppDecLeft = &pDecOut[0];
4467 i = -scaleAmount;
4468 }
4469
4470 /* Multiply up the value to be scaled by the correct amount (if possible) */
4471 while (i > 0 && SUCCEEDED(VarDecMul(&decTemp, &scaleFactor, &pDecOut[0])))
4472 {
4473 decTemp = pDecOut[0];
4474 i--;
4475 }
4476
4477 if (!i)
4478 {
4479 DEC_SCALE(&pDecOut[0]) += (scaleAmount > 0) ? scaleAmount : (-scaleAmount);
4480 return S_OK; /* Same scale */
4481 }
4482
4483 /* Scaling further not possible, reduce accuracy of other argument */
4484 pDecOut[0] = decTemp;
4485 if (scaleAmount > 0)
4486 {
4487 DEC_SCALE(&pDecOut[0]) += scaleAmount - i;
4488 VARIANT_DIFromDec(*ppDecLeft, &di);
4489 *ppDecLeft = &pDecOut[1];
4490 }
4491 else
4492 {
4493 DEC_SCALE(&pDecOut[0]) += (-scaleAmount) - i;
4494 VARIANT_DIFromDec(*ppDecRight, &di);
4495 *ppDecRight = &pDecOut[1];
4496 }
4497
4498 di.scale -= i;
4499 remainder = 0;
4500 while (i-- > 0 && !VARIANT_int_iszero(di.bitsnum, ARRAY_SIZE(di.bitsnum)))
4501 {
4503 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4504 }
4505
4506 /* round up the result - native oleaut32 does this */
4507 if (remainder >= 5) {
4508 for (remainder = 1, i = 0; i < ARRAY_SIZE(di.bitsnum) && remainder; i++) {
4509 ULONGLONG digit = di.bitsnum[i] + 1;
4510 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4511 di.bitsnum[i] = digit & 0xFFFFFFFF;
4512 }
4513 }
4514
4515 VARIANT_DecFromDI(&di, &pDecOut[1]);
4516 return S_OK;
4517}
4518
4519/* Add two unsigned 32 bit values with overflow */
4520static ULONG VARIANT_Add(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4521{
4522 ULARGE_INTEGER ul64;
4523
4524 ul64.QuadPart = (ULONG64)ulLeft + (ULONG64)ulRight + (ULONG64)*pulHigh;
4525 *pulHigh = ul64.u.HighPart;
4526 return ul64.u.LowPart;
4527}
4528
4529/* Subtract two unsigned 32 bit values with underflow */
4530static ULONG VARIANT_Sub(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4531{
4532 BOOL invert = FALSE;
4533 ULARGE_INTEGER ul64;
4534
4535 ul64.QuadPart = (LONG64)ulLeft - (ULONG64)ulRight;
4536 if (ulLeft < ulRight)
4537 invert = TRUE;
4538
4539 if (ul64.QuadPart > (ULONG64)*pulHigh)
4540 ul64.QuadPart -= (ULONG64)*pulHigh;
4541 else
4542 {
4543 ul64.QuadPart -= (ULONG64)*pulHigh;
4544 invert = TRUE;
4545 }
4546 if (invert)
4547 ul64.u.HighPart = -ul64.u.HighPart ;
4548
4549 *pulHigh = ul64.u.HighPart;
4550 return ul64.u.LowPart;
4551}
4552
4553/* Multiply two unsigned 32 bit values with overflow */
4554static ULONG VARIANT_Mul(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4555{
4556 ULARGE_INTEGER ul64;
4557
4558 ul64.QuadPart = (ULONG64)ulLeft * (ULONG64)ulRight + (ULONG64)*pulHigh;
4559 *pulHigh = ul64.u.HighPart;
4560 return ul64.u.LowPart;
4561}
4562
4563/* Compare two decimals that have the same scale */
4564static inline int VARIANT_DecCmp(const DECIMAL *pDecLeft, const DECIMAL *pDecRight)
4565{
4566 if ( DEC_HI32(pDecLeft) < DEC_HI32(pDecRight) ||
4567 (DEC_HI32(pDecLeft) <= DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) < DEC_LO64(pDecRight)))
4568 return -1;
4569 else if (DEC_HI32(pDecLeft) == DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) == DEC_LO64(pDecRight))
4570 return 0;
4571 return 1;
4572}
4573
4574/************************************************************************
4575 * VarDecAdd (OLEAUT32.177)
4576 *
4577 * Add one DECIMAL to another.
4578 *
4579 * PARAMS
4580 * pDecLeft [I] Source
4581 * pDecRight [I] Value to add
4582 * pDecOut [O] Destination
4583 *
4584 * RETURNS
4585 * Success: S_OK.
4586 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4587 */
4588HRESULT WINAPI VarDecAdd(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
4589{
4590 HRESULT hRet;
4591 DECIMAL scaled[2];
4592
4593 hRet = VARIANT_DecScale(&pDecLeft, &pDecRight, scaled);
4594
4595 if (SUCCEEDED(hRet))
4596 {
4597 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4598 ULONG overflow = 0;
4600 int cmp;
4601
4602 /* Correct for the sign of the result */
4603 if (DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4604 {
4605 /* -x + -y : Negative */
4606 sign = DECIMAL_NEG;
4607 goto VarDecAdd_AsPositive;
4608 }
4609 else if (DEC_SIGN(pDecLeft) && !DEC_SIGN(pDecRight))
4610 {
4611 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4612
4613 /* -x + y : Negative if x > y */
4614 if (cmp > 0)
4615 {
4616 sign = DECIMAL_NEG;
4617VarDecAdd_AsNegative:
4618 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4619 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4620 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4621 }
4622 else
4623 {
4624VarDecAdd_AsInvertedNegative:
4625 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecRight), DEC_LO32(pDecLeft), &overflow);
4626 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecRight), DEC_MID32(pDecLeft), &overflow);
4627 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecRight), DEC_HI32(pDecLeft), &overflow);
4628 }
4629 }
4630 else if (!DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4631 {
4632 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4633
4634 /* x + -y : Negative if x <= y */
4635 if (cmp <= 0)
4636 {
4637 sign = DECIMAL_NEG;
4638 goto VarDecAdd_AsInvertedNegative;
4639 }
4640 goto VarDecAdd_AsNegative;
4641 }
4642 else
4643 {
4644 /* x + y : Positive */
4645VarDecAdd_AsPositive:
4646 DEC_LO32(pDecOut) = VARIANT_Add(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4647 DEC_MID32(pDecOut) = VARIANT_Add(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4648 DEC_HI32(pDecOut) = VARIANT_Add(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4649 }
4650
4651 if (overflow)
4652 return DISP_E_OVERFLOW; /* overflowed */
4653
4654 DEC_SCALE(pDecOut) = DEC_SCALE(pDecLeft);
4655 DEC_SIGN(pDecOut) = sign;
4656 }
4657 return hRet;
4658}
4659
4660/* translate from external DECIMAL format into an internal representation */
4661static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to)
4662{
4663 to->scale = DEC_SCALE(from);
4664 to->sign = DEC_SIGN(from) ? 1 : 0;
4665
4666 to->bitsnum[0] = DEC_LO32(from);
4667 to->bitsnum[1] = DEC_MID32(from);
4668 to->bitsnum[2] = DEC_HI32(from);
4669}
4670
4671static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to)
4672{
4673 if (from->sign) {
4674 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_NEG, from->scale);
4675 } else {
4676 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_POS, from->scale);
4677 }
4678
4679 DEC_LO32(to) = from->bitsnum[0];
4680 DEC_MID32(to) = from->bitsnum[1];
4681 DEC_HI32(to) = from->bitsnum[2];
4682}
4683
4684/* clear an internal representation of a DECIMAL */
4686{
4687 memset(i, 0, sizeof(VARIANT_DI));
4688}
4689
4690/* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4691 size is supported. The value in p is replaced by the quotient of the division, and
4692 the remainder is returned as a result. This routine is most often used with a divisor
4693 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4694 */
4695static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor)
4696{
4697 if (divisor == 0) {
4698 /* division by 0 */
4699 return 0xFF;
4700 } else if (divisor == 1) {
4701 /* dividend remains unchanged */
4702 return 0;
4703 } else {
4704 unsigned char remainder = 0;
4705 ULONGLONG iTempDividend;
4706 signed int i;
4707
4708 for (i = n - 1; i >= 0 && !p[i]; i--); /* skip leading zeros */
4709 for (; i >= 0; i--) {
4710 iTempDividend = ((ULONGLONG)remainder << 32) + p[i];
4711 remainder = iTempDividend % divisor;
4712 p[i] = iTempDividend / divisor;
4713 }
4714
4715 return remainder;
4716 }
4717}
4718
4719/* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4720static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n)
4721{
4722 for (; n > 0; n--) if (*p++ != 0) return FALSE;
4723 return TRUE;
4724}
4725
4726/* multiply two DECIMALS, without changing either one, and place result in third
4727 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4728 digits when scale > 0 in order to fit an overflowing result. Final overflow
4729 flag is returned.
4730 */
4731static int VARIANT_DI_mul(const VARIANT_DI * a, const VARIANT_DI * b, VARIANT_DI * result)
4732{
4733 BOOL r_overflow = FALSE;
4734 DWORD running[6];
4735 signed int mulstart;
4736
4738 result->sign = (a->sign ^ b->sign) ? 1 : 0;
4739
4740 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4741 of the result is formed by adding the scales of the operands.
4742 */
4743 result->scale = a->scale + b->scale;
4744 memset(running, 0, sizeof(running));
4745
4746 /* count number of leading zero-bytes in operand A */
4747 for (mulstart = ARRAY_SIZE(a->bitsnum) - 1; mulstart >= 0 && !a->bitsnum[mulstart]; mulstart--);
4748 if (mulstart < 0) {
4749 /* result is 0, because operand A is 0 */
4750 result->scale = 0;
4751 result->sign = 0;
4752 } else {
4753 unsigned char remainder = 0;
4754 int iA;
4755
4756 /* perform actual multiplication */
4757 for (iA = 0; iA <= mulstart; iA++) {
4758 ULONG iOverflowMul;
4759 int iB;
4760
4761 for (iOverflowMul = 0, iB = 0; iB < ARRAY_SIZE(b->bitsnum); iB++) {
4762 ULONG iRV;
4763 int iR;
4764
4765 iRV = VARIANT_Mul(b->bitsnum[iB], a->bitsnum[iA], &iOverflowMul);
4766 iR = iA + iB;
4767 do {
4768 running[iR] = VARIANT_Add(running[iR], 0, &iRV);
4769 iR++;
4770 } while (iRV);
4771 }
4772 }
4773
4774/* Too bad - native oleaut does not do this, so we should not either */
4775#if 0
4776 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4777 This operation should not lose significant digits, and gives an
4778 opportunity to reduce the possibility of overflows in future
4779 operations issued by the application.
4780 */
4781 while (result->scale > 0) {
4782 memcpy(quotient, running, sizeof(quotient));
4783 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4784 if (remainder > 0) break;
4785 memcpy(running, quotient, sizeof(quotient));
4786 result->scale--;
4787 }
4788#endif
4789 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4790 This operation *will* lose significant digits of the result because
4791 all the factors of 10 were consumed by the previous operation.
4792 */
4793 while (result->scale > 0 && !VARIANT_int_iszero(running + ARRAY_SIZE(result->bitsnum),
4794 ARRAY_SIZE(running) - ARRAY_SIZE(result->bitsnum))) {
4795
4796 remainder = VARIANT_int_divbychar(running, ARRAY_SIZE(running), 10);
4797 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4798 result->scale--;
4799 }
4800
4801 /* round up the result - native oleaut32 does this */
4802 if (remainder >= 5) {
4803 unsigned int i;
4804 for (remainder = 1, i = 0; i < ARRAY_SIZE(running) && remainder; i++) {
4805 ULONGLONG digit = running[i] + 1;
4806 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4807 running[i] = digit & 0xFFFFFFFF;
4808 }
4809 }
4810
4811 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4812 and copy result bits into result structure
4813 */
4814 r_overflow = !VARIANT_int_iszero(running + ARRAY_SIZE(result->bitsnum),
4815 ARRAY_SIZE(running) - ARRAY_SIZE(result->bitsnum));
4816 memcpy(result->bitsnum, running, sizeof(result->bitsnum));
4817 }
4818 return r_overflow;
4819}
4820
4821/* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4822 hardcoded (period for decimal separator, dash as negative sign). Returns TRUE for
4823 success, FALSE if insufficient space in output buffer.
4824 */
4825static BOOL VARIANT_DI_tostringW(const VARIANT_DI * a, WCHAR * s, unsigned int n)
4826{
4827 BOOL overflow = FALSE;
4828 DWORD quotient[3];
4829 unsigned char remainder;
4830 unsigned int i;
4831
4832 /* place negative sign */
4833 if (!VARIANT_int_iszero(a->bitsnum, ARRAY_SIZE(a->bitsnum)) && a->sign) {
4834 if (n > 0) {
4835 *s++ = '-';
4836 n--;
4837 }
4838 else overflow = TRUE;
4839 }
4840
4841 /* prepare initial 0 */
4842 if (!overflow) {
4843 if (n >= 2) {
4844 s[0] = '0';
4845 s[1] = '\0';
4846 } else overflow = TRUE;
4847 }
4848
4849 i = 0;
4850 memcpy(quotient, a->bitsnum, sizeof(a->bitsnum));
4851 while (!overflow && !VARIANT_int_iszero(quotient, ARRAY_SIZE(quotient))) {
4852 remainder = VARIANT_int_divbychar(quotient, ARRAY_SIZE(quotient), 10);
4853 if (i + 2 > n) {
4854 overflow = TRUE;
4855 } else {
4856 s[i++] = '0' + remainder;
4857 s[i] = '\0';
4858 }
4859 }
4860
4861 if (!overflow && !VARIANT_int_iszero(a->bitsnum, ARRAY_SIZE(a->bitsnum))) {
4862
4863 /* reverse order of digits */
4864 WCHAR * x = s; WCHAR * y = s + i - 1;
4865 while (x < y) {
4866 *x ^= *y;
4867 *y ^= *x;
4868 *x++ ^= *y--;
4869 }
4870
4871 /* check for decimal point. "i" now has string length */
4872 if (i <= a->scale) {
4873 unsigned int numzeroes = a->scale + 1 - i;
4874 if (i + 1 + numzeroes >= n) {
4875 overflow = TRUE;
4876 } else {
4877 memmove(s + numzeroes, s, (i + 1) * sizeof(WCHAR));
4878 i += numzeroes;
4879 while (numzeroes > 0) {
4880 s[--numzeroes] = '0';
4881 }
4882 }
4883 }
4884
4885 /* place decimal point */
4886 if (a->scale > 0) {
4887 unsigned int periodpos = i - a->scale;
4888 if (i + 2 >= n) {
4889 overflow = TRUE;
4890 } else {
4891 memmove(s + periodpos + 1, s + periodpos, (i + 1 - periodpos) * sizeof(WCHAR));
4892 s[periodpos] = '.'; i++;
4893
4894 /* remove extra zeros at the end, if any */
4895 while (s[i - 1] == '0') s[--i] = '\0';
4896 if (s[i - 1] == '.') s[--i] = '\0';
4897 }
4898 }
4899 }
4900
4901 return !overflow;
4902}
4903
4904/* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4905static void VARIANT_int_shiftleft(DWORD * p, unsigned int n, unsigned int shift)
4906{
4907 DWORD shifted;
4908 unsigned int i;
4909
4910 /* shift whole DWORDs to the left */
4911 while (shift >= 32)
4912 {
4913 memmove(p + 1, p, (n - 1) * sizeof(DWORD));
4914 *p = 0; shift -= 32;
4915 }
4916
4917 /* shift remainder (1..31 bits) */
4918 shifted = 0;
4919 if (shift > 0) for (i = 0; i < n; i++)
4920 {
4921 DWORD b;
4922 b = p[i] >> (32 - shift);
4923 p[i] = (p[i] << shift) | shifted;
4924 shifted = b;
4925 }
4926}
4927
4928/* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4929 Value at v is incremented by the value at p. Any size is supported, provided
4930 that v is not shorter than p. Any unapplied carry is returned as a result.
4931 */
4932static unsigned char VARIANT_int_add(DWORD * v, unsigned int nv, const DWORD * p,
4933 unsigned int np)
4934{
4935 unsigned char carry = 0;
4936
4937 if (nv >= np) {
4938 ULONGLONG sum;
4939 unsigned int i;
4940
4941 for (i = 0; i < np; i++) {
4942 sum = (ULONGLONG)v[i]
4943 + (ULONGLONG)p[i]
4944 + (ULONGLONG)carry;
4945 v[i] = sum & 0xffffffff;
4946 carry = sum >> 32;
4947 }
4948 for (; i < nv && carry; i++) {
4949 sum = (ULONGLONG)v[i]
4950 + (ULONGLONG)carry;
4951 v[i] = sum & 0xffffffff;
4952 carry = sum >> 32;
4953 }
4954 }
4955 return carry;
4956}
4957
4958/* perform integral division with operand p as dividend. Parameter n indicates
4959 number of available DWORDs in divisor p, but available space in p must be
4960 actually at least 2 * n DWORDs, because the remainder of the integral
4961 division is built in the next n DWORDs past the start of the quotient. This
4962 routine replaces the dividend in p with the quotient, and appends n
4963 additional DWORDs for the remainder.
4964
4965 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4966 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4967 source code to the VLI (Very Large Integer) division operator. This algorithm
4968 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4969 variably-scaled integers such as the MS DECIMAL representation.
4970 */
4971static void VARIANT_int_div(DWORD * p, unsigned int n, const DWORD * divisor,
4972 unsigned int dn)
4973{
4974 unsigned int i;
4975 DWORD tempsub[8];
4976 DWORD * negdivisor = tempsub + n;
4977
4978 /* build 2s-complement of divisor */
4979 for (i = 0; i < n; i++) negdivisor[i] = (i < dn) ? ~divisor[i] : 0xFFFFFFFF;
4980 p[n] = 1;
4981 VARIANT_int_add(negdivisor, n, p + n, 1);
4982 memset(p + n, 0, n * sizeof(DWORD));
4983
4984 /* skip all leading zero DWORDs in quotient */
4985 for (i = 0; i < n && !p[n - 1]; i++) VARIANT_int_shiftleft(p, n, 32);
4986 /* i is now number of DWORDs left to process */
4987 for (i <<= 5; i < (n << 5); i++) {
4988 VARIANT_int_shiftleft(p, n << 1, 1); /* shl quotient+remainder */
4989
4990 /* trial subtraction */
4991 memcpy(tempsub, p + n, n * sizeof(DWORD));
4992 VARIANT_int_add(tempsub, n, negdivisor, n);
4993
4994 /* check whether result of subtraction was negative */
4995 if ((tempsub[n - 1] & 0x80000000) == 0) {
4996 memcpy(p + n, tempsub, n * sizeof(DWORD));
4997 p[0] |= 1;
4998 }
4999 }
5000}
5001
5002/* perform integral multiplication by a byte operand. Used for scaling by 10 */
5003static unsigned char VARIANT_int_mulbychar(DWORD * p, unsigned int n, unsigned char m)
5004{
5005 unsigned int i;
5006 ULONG iOverflowMul;
5007
5008 for (iOverflowMul = 0, i = 0; i < n; i++)
5009 p[i] = VARIANT_Mul(p[i], m, &iOverflowMul);
5010 return (unsigned char)iOverflowMul;
5011}
5012
5013/* increment value in A by the value indicated in B, with scale adjusting.
5014 Modifies parameters by adjusting scales. Returns 0 if addition was
5015 successful, nonzero if a parameter underflowed before it could be
5016 successfully used in the addition.
5017 */
5019 DWORD * a, int * ascale, unsigned int an,
5020 DWORD * b, int * bscale, unsigned int bn)
5021{
5022 int underflow = 0;
5023
5024 if (VARIANT_int_iszero(a, an)) {
5025 /* if A is zero, copy B into A, after removing digits */
5026 while (bn > an && !VARIANT_int_iszero(b + an, bn - an)) {
5027 VARIANT_int_divbychar(b, bn, 10);
5028 (*bscale)--;
5029 }
5030 memcpy(a, b, an * sizeof(DWORD));
5031 *ascale = *bscale;
5032 } else if (!VARIANT_int_iszero(b, bn)) {
5033 unsigned int tn = an + 1;
5034 DWORD t[5];
5035
5036 if (bn + 1 > tn) tn = bn + 1;
5037 if (*ascale != *bscale) {
5038 /* first (optimistic) try - try to scale down the one with the bigger
5039 scale, while this number is divisible by 10 */
5040 DWORD * digitchosen;
5041 unsigned int nchosen;
5042 int * scalechosen;
5043 int targetscale;
5044
5045 if (*ascale < *bscale) {
5046 targetscale = *ascale;
5047 scalechosen = bscale;
5048 digitchosen = b;
5049 nchosen = bn;
5050 } else {
5051 targetscale = *bscale;
5052 scalechosen = ascale;
5053 digitchosen = a;
5054 nchosen = an;
5055 }
5056 memset(t, 0, tn * sizeof(DWORD));
5057 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5058
5059 /* divide by 10 until target scale is reached */
5060 while (*scalechosen > targetscale) {
5061 unsigned char remainder = VARIANT_int_divbychar(t, tn, 10);
5062 if (!remainder) {
5063 (*scalechosen)--;
5064 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5065 } else break;
5066 }
5067 }
5068
5069 if (*ascale != *bscale) {
5070 DWORD * digitchosen;
5071 unsigned int nchosen;
5072 int * scalechosen;
5073 int targetscale;
5074
5075 /* try to scale up the one with the smaller scale */
5076 if (*ascale > *bscale) {
5077 targetscale = *ascale;
5078 scalechosen = bscale;
5079 digitchosen = b;
5080 nchosen = bn;
5081 } else {
5082 targetscale = *bscale;
5083 scalechosen = ascale;
5084 digitchosen = a;
5085 nchosen = an;
5086 }
5087 memset(t, 0, tn * sizeof(DWORD));
5088 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5089
5090 /* multiply by 10 until target scale is reached, or
5091 significant bytes overflow the number
5092 */
5093 while (*scalechosen < targetscale && t[nchosen] == 0) {
5094 VARIANT_int_mulbychar(t, tn, 10);
5095 if (t[nchosen] == 0) {
5096 /* still does not overflow */
5097 (*scalechosen)++;
5098 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5099 }
5100 }
5101 }
5102
5103 if (*ascale != *bscale) {
5104 /* still different? try to scale down the one with the bigger scale
5105 (this *will* lose significant digits) */
5106 DWORD * digitchosen;
5107 unsigned int nchosen;
5108 int * scalechosen;
5109 int targetscale;
5110
5111 if (*ascale < *bscale) {
5112 targetscale = *ascale;
5113 scalechosen = bscale;
5114 digitchosen = b;
5115 nchosen = bn;
5116 } else {
5117 targetscale = *bscale;
5118 scalechosen = ascale;
5119 digitchosen = a;
5120 nchosen = an;
5121 }
5122 memset(t, 0, tn * sizeof(DWORD));
5123 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5124
5125 /* divide by 10 until target scale is reached */
5126 while (*scalechosen > targetscale) {
5127 VARIANT_int_divbychar(t, tn, 10);
5128 (*scalechosen)--;
5129 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5130 }
5131 }
5132
5133 /* check whether any of the operands still has significant digits
5134 (underflow case 1)
5135 */
5136 if (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn)) {
5137 underflow = 1;
5138 } else {
5139 /* at this step, both numbers have the same scale and can be added
5140 as integers. However, the result might not fit in A, so further
5141 scaling down might be necessary.
5142 */
5143 while (!underflow) {
5144 memset(t, 0, tn * sizeof(DWORD));
5145 memcpy(t, a, an * sizeof(DWORD));
5146
5147 VARIANT_int_add(t, tn, b, bn);
5148 if (VARIANT_int_iszero(t + an, tn - an)) {
5149 /* addition was successful */
5150 memcpy(a, t, an * sizeof(DWORD));
5151 break;
5152 } else {
5153 /* addition overflowed - remove significant digits
5154 from both operands and try again */
5155 VARIANT_int_divbychar(a, an, 10); (*ascale)--;
5156 VARIANT_int_divbychar(b, bn, 10); (*bscale)--;
5157 /* check whether any operand keeps significant digits after
5158 scaledown (underflow case 2)
5159 */
5160 underflow = (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn));
5161 }
5162 }
5163 }
5164 }
5165 return underflow;
5166}
5167
5168/* perform complete DECIMAL division in the internal representation. Returns
5169 0 if the division was completed (even if quotient is set to 0), or nonzero
5170 in case of quotient overflow.
5171 */
5172static HRESULT VARIANT_DI_div(const VARIANT_DI * dividend, const VARIANT_DI * divisor,
5173 VARIANT_DI * quotient, BOOL round_remainder)
5174{
5175 HRESULT r_overflow = S_OK;
5176
5177 if (VARIANT_int_iszero(divisor->bitsnum, ARRAY_SIZE(divisor->bitsnum))) {
5178 /* division by 0 */
5179 r_overflow = DISP_E_DIVBYZERO;
5180 } else if (VARIANT_int_iszero(dividend->bitsnum, ARRAY_SIZE(dividend->bitsnum))) {
5181 VARIANT_DI_clear(quotient);
5182 } else {
5183 int quotientscale, remainderscale, tempquotientscale;
5184 DWORD remainderplusquotient[8];
5185 int underflow;
5186
5187 quotientscale = remainderscale = (int)dividend->scale - (int)divisor->scale;
5188 tempquotientscale = quotientscale;
5189 VARIANT_DI_clear(quotient);
5190 quotient->sign = (dividend->sign ^ divisor->sign) ? 1 : 0;
5191
5192 /* The following strategy is used for division
5193 1) if there was a nonzero remainder from previous iteration, use it as
5194 dividend for this iteration, else (for first iteration) use intended
5195 dividend
5196 2) perform integer division in temporary buffer, develop quotient in
5197 low-order part, remainder in high-order part
5198 3) add quotient from step 2 to final result, with possible loss of
5199 significant digits
5200 4) multiply integer part of remainder by 10, while incrementing the
5201 scale of the remainder. This operation preserves the intended value
5202 of the remainder.
5203 5) loop to step 1 until one of the following is true:
5204 a) remainder is zero (exact division achieved)
5205 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5206 */
5207 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5208 memcpy(remainderplusquotient, dividend->bitsnum, sizeof(dividend->bitsnum));
5209 do {
5210 VARIANT_int_div(remainderplusquotient, 4, divisor->bitsnum, ARRAY_SIZE(divisor->bitsnum));
5211 underflow = VARIANT_int_addlossy( quotient->bitsnum, &quotientscale,
5212 ARRAY_SIZE(quotient->bitsnum), remainderplusquotient, &tempquotientscale, 4);
5213 if (round_remainder) {
5214 if(remainderplusquotient[4] >= 5){
5215 unsigned int i;
5216 unsigned char remainder = 1;
5217 for (i = 0; i < ARRAY_SIZE(quotient->bitsnum) && remainder; i++) {
5218 ULONGLONG digit = quotient->bitsnum[i] + 1;
5219 remaind