ReactOS 0.4.16-dev-716-g2b2bdab
variant.c
Go to the documentation of this file.
1/*
2 * VARIANT
3 *
4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
8 *
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
12 *
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
17 *
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
22 *
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26 */
27
28#include <string.h>
29#include <stdlib.h>
30#include <stdarg.h>
31
32#define COBJMACROS
33#define NONAMELESSUNION
34#define NONAMELESSSTRUCT
35
36#include "windef.h"
37#include "winbase.h"
38#include "winerror.h"
39#include "variant.h"
40#include "resource.h"
41#include "wine/debug.h"
42
44
47{
48 0, 0, &cache_cs,
50 0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
51};
52static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
53
54/* Convert a variant from one type to another */
57{
59 VARTYPE vtFrom = V_TYPE(ps);
60 DWORD dwFlags = 0;
61
62 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
63 debugstr_variant(ps), debugstr_vt(vt));
64
65 if (vt == VT_BSTR || vtFrom == VT_BSTR)
66 {
67 /* All flags passed to low level function are only used for
68 * changing to or from strings. Map these here.
69 */
82 }
83
84 /* Map int/uint to i4/ui4 */
85 if (vt == VT_INT)
86 vt = VT_I4;
87 else if (vt == VT_UINT)
88 vt = VT_UI4;
89
90 if (vtFrom == VT_INT)
91 vtFrom = VT_I4;
92 else if (vtFrom == VT_UINT)
93 vtFrom = VT_UI4;
94
95 if (vt == vtFrom)
96 return VariantCopy(pd, ps);
97
98 if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
99 {
100 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
101 * accessing the default object property.
102 */
103 return DISP_E_TYPEMISMATCH;
104 }
105
106 switch (vt)
107 {
108 case VT_EMPTY:
109 if (vtFrom == VT_NULL)
110 return DISP_E_TYPEMISMATCH;
111 /* ... Fall through */
112 case VT_NULL:
113 if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
114 {
115 res = VariantClear( pd );
116 if (vt == VT_NULL && SUCCEEDED(res))
117 V_VT(pd) = VT_NULL;
118 }
119 return res;
120
121 case VT_I1:
122 switch (vtFrom)
123 {
124 case VT_EMPTY: V_I1(pd) = 0; return S_OK;
125 case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
126 case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
127 case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
128 case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
129 case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
130 case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
131 case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
132 case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
133 case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
134 case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
135 case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
136 case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
137 case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
138 case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
139 case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
140 }
141 break;
142
143 case VT_I2:
144 switch (vtFrom)
145 {
146 case VT_EMPTY: V_I2(pd) = 0; return S_OK;
147 case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
148 case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
149 case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
150 case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
151 case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
152 case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
153 case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
154 case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
155 case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
156 case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
157 case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
158 case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
159 case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
160 case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
161 case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
162 }
163 break;
164
165 case VT_I4:
166 switch (vtFrom)
167 {
168 case VT_EMPTY: V_I4(pd) = 0; return S_OK;
169 case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
170 case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
171 case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
172 case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
173 case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
174 case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
175 case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
176 case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
177 case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
178 case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
179 case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
180 case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
181 case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
182 case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
183 case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
184 }
185 break;
186
187 case VT_UI1:
188 switch (vtFrom)
189 {
190 case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
191 case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
192 case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
193 case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
194 case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
195 case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
196 case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
197 case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
198 case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
199 case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
200 case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
201 case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
202 case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
203 case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
204 case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
205 case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
206 }
207 break;
208
209 case VT_UI2:
210 switch (vtFrom)
211 {
212 case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
213 case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
214 case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
215 case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
216 case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
217 case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
218 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
219 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
220 case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
221 case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
222 case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
223 case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
224 case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
225 case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
226 case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
227 case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
228 }
229 break;
230
231 case VT_UI4:
232 switch (vtFrom)
233 {
234 case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
235 case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
236 case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
237 case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
238 case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
239 case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
240 case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
241 case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
242 case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
243 case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
244 case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
245 case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
246 case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
247 case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
248 case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
249 case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
250 }
251 break;
252
253 case VT_UI8:
254 switch (vtFrom)
255 {
256 case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
257 case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
258 case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
259 case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
260 case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
261 case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
262 case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
263 case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
264 case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
265 case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
266 case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
267 case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
268 case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
269 case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
270 case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
271 case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
272 }
273 break;
274
275 case VT_I8:
276 switch (vtFrom)
277 {
278 case VT_EMPTY: V_I8(pd) = 0; return S_OK;
279 case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
280 case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
281 case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
282 case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
283 case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
284 case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
285 case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
286 case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
287 case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
288 case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
289 case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
290 case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
291 case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
292 case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
293 case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
294 }
295 break;
296
297 case VT_R4:
298 switch (vtFrom)
299 {
300 case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
301 case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
302 case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
303 case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
304 case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
305 case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
306 case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
307 case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
308 case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
309 case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
310 case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
311 case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
312 case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
313 case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
314 case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
315 case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
316 }
317 break;
318
319 case VT_R8:
320 switch (vtFrom)
321 {
322 case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
323 case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
324 case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
325 case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
326 case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
327 case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
328 case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
329 case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
330 case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
331 case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
332 case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
333 case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
334 case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
335 case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
336 case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
337 case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
338 }
339 break;
340
341 case VT_DATE:
342 switch (vtFrom)
343 {
344 case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
345 case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
346 case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
347 case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
348 case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
349 case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
350 case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
351 case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
352 case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
353 case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
354 case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
355 case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
356 case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
357 case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
358 case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
359 case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
360 }
361 break;
362
363 case VT_BOOL:
364 switch (vtFrom)
365 {
366 case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
367 case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
368 case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
369 case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
370 case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
371 case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
372 case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
373 case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
374 case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
375 case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
376 case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
377 case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
378 case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
379 case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
380 case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
381 case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
382 }
383 break;
384
385 case VT_BSTR:
386 switch (vtFrom)
387 {
388 case VT_EMPTY:
389 V_BSTR(pd) = SysAllocStringLen(NULL, 0);
390 return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
391 case VT_BOOL:
393 return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
394 return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
395 case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
396 case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
397 case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
398 case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
399 case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
400 case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
401 case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
402 case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
403 case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
404 case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
405 case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
406 case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
407 case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
408 case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
409 }
410 break;
411
412 case VT_CY:
413 switch (vtFrom)
414 {
415 case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
416 case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
417 case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
418 case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
419 case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
420 case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
421 case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
422 case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
423 case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
424 case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
425 case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
426 case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
427 case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
428 case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
429 case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
430 case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
431 }
432 break;
433
434 case VT_DECIMAL:
435 switch (vtFrom)
436 {
437 case VT_EMPTY:
438 case VT_BOOL:
440 DEC_HI32(&V_DECIMAL(pd)) = 0;
441 DEC_MID32(&V_DECIMAL(pd)) = 0;
442 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
443 * VT_NULL and VT_EMPTY always give a 0 value.
444 */
445 DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
446 return S_OK;
447 case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
448 case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
449 case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
450 case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
451 case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
452 case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
453 case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
454 case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
455 case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
456 case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
457 case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
458 case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
459 case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
460 case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
461 }
462 break;
463
464 case VT_UNKNOWN:
465 switch (vtFrom)
466 {
467 case VT_DISPATCH:
468 if (V_DISPATCH(ps) == NULL)
469 {
470 V_UNKNOWN(pd) = NULL;
471 res = S_OK;
472 }
473 else
474 res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
475 break;
476 }
477 break;
478
479 case VT_DISPATCH:
480 switch (vtFrom)
481 {
482 case VT_UNKNOWN:
483 if (V_UNKNOWN(ps) == NULL)
484 {
485 V_DISPATCH(pd) = NULL;
486 res = S_OK;
487 }
488 else
489 res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
490 break;
491 }
492 break;
493
494 case VT_RECORD:
495 break;
496 }
497 return res;
498}
499
500/* Coerce to/from an array */
502{
503 if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
504 return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
505
506 if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
507 return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
508
509 if (V_VT(ps) == vt)
510 return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
511
512 return DISP_E_TYPEMISMATCH;
513}
514
516{
518 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
519
520 if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
521 if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
522 hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
524 NULL, NULL);
525 } else {
527 }
528 return hres;
529}
530
531/******************************************************************************
532 * Check if a variants type is valid.
533 */
535{
536 VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
537
538 vt &= VT_TYPEMASK;
539
540 if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
541 {
542 if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
543 {
544 if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
545 return DISP_E_BADVARTYPE;
546 if (vt != (VARTYPE)15)
547 return S_OK;
548 }
549 }
550 return DISP_E_BADVARTYPE;
551}
552
553/******************************************************************************
554 * VariantInit [OLEAUT32.8]
555 *
556 * Initialise a variant.
557 *
558 * PARAMS
559 * pVarg [O] Variant to initialise
560 *
561 * RETURNS
562 * Nothing.
563 *
564 * NOTES
565 * This function simply sets the type of the variant to VT_EMPTY. It does not
566 * free any existing value, use VariantClear() for that.
567 */
569{
570 TRACE("(%p)\n", pVarg);
571
572 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
573 V_VT(pVarg) = VT_EMPTY;
574}
575
577{
579
580 TRACE("(%s)\n", debugstr_variant(pVarg));
581
583 if (FAILED(hres))
584 return hres;
585
586 switch (V_VT(pVarg))
587 {
588 case VT_DISPATCH:
589 case VT_UNKNOWN:
590 if (V_UNKNOWN(pVarg))
591 IUnknown_Release(V_UNKNOWN(pVarg));
592 break;
593 case VT_UNKNOWN | VT_BYREF:
594 case VT_DISPATCH | VT_BYREF:
595 if(*V_UNKNOWNREF(pVarg))
596 IUnknown_Release(*V_UNKNOWNREF(pVarg));
597 break;
598 case VT_BSTR:
599 SysFreeString(V_BSTR(pVarg));
600 break;
601 case VT_BSTR | VT_BYREF:
602 SysFreeString(*V_BSTRREF(pVarg));
603 break;
604 case VT_VARIANT | VT_BYREF:
606 break;
607 case VT_RECORD:
608 case VT_RECORD | VT_BYREF:
609 {
610 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
611 if (pBr->pRecInfo)
612 {
613 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
614 IRecordInfo_Release(pBr->pRecInfo);
615 }
616 break;
617 }
618 default:
619 if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
620 {
621 if (V_ISBYREF(pVarg))
622 {
623 if (*V_ARRAYREF(pVarg))
625 }
626 else if (V_ARRAY(pVarg))
627 hres = SafeArrayDestroy(V_ARRAY(pVarg));
628 }
629 break;
630 }
631
632 V_VT(pVarg) = VT_EMPTY;
633 return hres;
634}
635
636/******************************************************************************
637 * VariantClear [OLEAUT32.9]
638 *
639 * Clear a variant.
640 *
641 * PARAMS
642 * pVarg [I/O] Variant to clear
643 *
644 * RETURNS
645 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
646 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
647 */
649{
651
652 TRACE("(%s)\n", debugstr_variant(pVarg));
653
655
656 if (SUCCEEDED(hres))
657 {
658 if (!V_ISBYREF(pVarg))
659 {
660 if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
661 {
662 hres = SafeArrayDestroy(V_ARRAY(pVarg));
663 }
664 else if (V_VT(pVarg) == VT_BSTR)
665 {
666 SysFreeString(V_BSTR(pVarg));
667 }
668 else if (V_VT(pVarg) == VT_RECORD)
669 {
670 struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
671 if (pBr->pRecInfo)
672 {
673 IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
674 IRecordInfo_Release(pBr->pRecInfo);
675 }
676 }
677 else if (V_VT(pVarg) == VT_DISPATCH ||
678 V_VT(pVarg) == VT_UNKNOWN)
679 {
680 if (V_UNKNOWN(pVarg))
681 IUnknown_Release(V_UNKNOWN(pVarg));
682 }
683 }
684 V_VT(pVarg) = VT_EMPTY;
685 }
686 return hres;
687}
688
689/******************************************************************************
690 * Copy an IRecordInfo object contained in a variant.
691 */
693{
694 struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
695 struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
696 HRESULT hr = S_OK;
697 ULONG size;
698
699 if (!src_rec->pRecInfo)
700 {
701 if (src_rec->pvRecord) return E_INVALIDARG;
702 return S_OK;
703 }
704
705 hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
706 if (FAILED(hr)) return hr;
707
708 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
709 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
710 could free it later. */
711 dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
712 if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
713
714 dest_rec->pRecInfo = src_rec->pRecInfo;
715 IRecordInfo_AddRef(src_rec->pRecInfo);
716
717 return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
718}
719
720/******************************************************************************
721 * VariantCopy [OLEAUT32.10]
722 *
723 * Copy a variant.
724 *
725 * PARAMS
726 * pvargDest [O] Destination for copy
727 * pvargSrc [I] Source variant to copy
728 *
729 * RETURNS
730 * Success: S_OK. pvargDest contains a copy of pvargSrc.
731 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
732 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
733 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
734 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
735 *
736 * NOTES
737 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
738 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
739 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
740 * fails, so does this function.
741 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
742 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
743 * is copied rather than just any pointers to it.
744 * - For by-value object types the object pointer is copied and the objects
745 * reference count increased using IUnknown_AddRef().
746 * - For all by-reference types, only the referencing pointer is copied.
747 */
749{
750 HRESULT hres = S_OK;
751
752 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
753
754 if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
755 FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
756 return DISP_E_BADVARTYPE;
757
758 if (pvargSrc != pvargDest &&
759 SUCCEEDED(hres = VariantClear(pvargDest)))
760 {
761 *pvargDest = *pvargSrc; /* Shallow copy the value */
762
763 if (!V_ISBYREF(pvargSrc))
764 {
765 switch (V_VT(pvargSrc))
766 {
767 case VT_BSTR:
768 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
769 if (!V_BSTR(pvargDest))
771 break;
772 case VT_RECORD:
773 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
774 break;
775 case VT_DISPATCH:
776 case VT_UNKNOWN:
777 V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
778 if (V_UNKNOWN(pvargSrc))
779 IUnknown_AddRef(V_UNKNOWN(pvargSrc));
780 break;
781 default:
782 if (V_ISARRAY(pvargSrc))
783 hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
784 }
785 }
786 }
787 return hres;
788}
789
790/* Return the byte size of a variants data */
791static inline size_t VARIANT_DataSize(const VARIANT* pv)
792{
793 switch (V_TYPE(pv))
794 {
795 case VT_I1:
796 case VT_UI1: return sizeof(BYTE);
797 case VT_I2:
798 case VT_UI2: return sizeof(SHORT);
799 case VT_INT:
800 case VT_UINT:
801 case VT_I4:
802 case VT_UI4: return sizeof(LONG);
803 case VT_I8:
804 case VT_UI8: return sizeof(LONGLONG);
805 case VT_R4: return sizeof(float);
806 case VT_R8: return sizeof(double);
807 case VT_DATE: return sizeof(DATE);
808 case VT_BOOL: return sizeof(VARIANT_BOOL);
809 case VT_DISPATCH:
810 case VT_UNKNOWN:
811 case VT_BSTR: return sizeof(void*);
812 case VT_CY: return sizeof(CY);
813 case VT_ERROR: return sizeof(SCODE);
814 }
815 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
816 return 0;
817}
818
819/******************************************************************************
820 * VariantCopyInd [OLEAUT32.11]
821 *
822 * Copy a variant, dereferencing it if it is by-reference.
823 *
824 * PARAMS
825 * pvargDest [O] Destination for copy
826 * pvargSrc [I] Source variant to copy
827 *
828 * RETURNS
829 * Success: S_OK. pvargDest contains a copy of pvargSrc.
830 * Failure: An HRESULT error code indicating the error.
831 *
832 * NOTES
833 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
834 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
835 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
836 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
837 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
838 *
839 * NOTES
840 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
841 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
842 * value.
843 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
844 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
845 * to it. If clearing pvargDest fails, so does this function.
846 */
848{
849 VARIANTARG vTmp, *pSrc = pvargSrc;
850 VARTYPE vt;
851 HRESULT hres = S_OK;
852
853 TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
854
855 if (!V_ISBYREF(pvargSrc))
856 return VariantCopy(pvargDest, pvargSrc);
857
858 /* Argument checking is more lax than VariantCopy()... */
859 vt = V_TYPE(pvargSrc);
860 if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
861 (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
862 !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
863 {
864 /* OK */
865 }
866 else
867 return E_INVALIDARG; /* ...And the return value for invalid types differs too */
868
869 if (pvargSrc == pvargDest)
870 {
871 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
872 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
873 */
874 vTmp = *pvargSrc;
875 pSrc = &vTmp;
876 V_VT(pvargDest) = VT_EMPTY;
877 }
878 else
879 {
880 /* Copy into another variant. Free the variant in pvargDest */
881 if (FAILED(hres = VariantClear(pvargDest)))
882 {
883 TRACE("VariantClear() of destination failed\n");
884 return hres;
885 }
886 }
887
888 if (V_ISARRAY(pSrc))
889 {
890 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
891 hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
892 }
893 else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
894 {
895 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
896 V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
897 }
898 else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
899 {
900 hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
901 }
902 else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
903 V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
904 {
905 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
906 V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
907 if (*V_UNKNOWNREF(pSrc))
908 IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
909 }
910 else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
911 {
912 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
913 if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
914 hres = E_INVALIDARG; /* Don't dereference more than one level */
915 else
916 hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
917
918 /* Use the dereferenced variants type value, not VT_VARIANT */
919 goto VariantCopyInd_Return;
920 }
921 else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
922 {
923 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
924 sizeof(DECIMAL) - sizeof(USHORT));
925 }
926 else
927 {
928 /* Copy the pointed to data into this variant */
929 memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
930 }
931
932 V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
933
934VariantCopyInd_Return:
935
936 if (pSrc != pvargSrc)
937 VariantClear(pSrc);
938
939 TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
940 return hres;
941}
942
943/******************************************************************************
944 * VariantChangeType [OLEAUT32.12]
945 *
946 * Change the type of a variant.
947 *
948 * PARAMS
949 * pvargDest [O] Destination for the converted variant
950 * pvargSrc [O] Source variant to change the type of
951 * wFlags [I] VARIANT_ flags from "oleauto.h"
952 * vt [I] Variant type to change pvargSrc into
953 *
954 * RETURNS
955 * Success: S_OK. pvargDest contains the converted value.
956 * Failure: An HRESULT error code describing the failure.
957 *
958 * NOTES
959 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
960 * See VariantChangeTypeEx.
961 */
964{
965 return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
966}
967
968/******************************************************************************
969 * VariantChangeTypeEx [OLEAUT32.147]
970 *
971 * Change the type of a variant.
972 *
973 * PARAMS
974 * pvargDest [O] Destination for the converted variant
975 * pvargSrc [O] Source variant to change the type of
976 * lcid [I] LCID for the conversion
977 * wFlags [I] VARIANT_ flags from "oleauto.h"
978 * vt [I] Variant type to change pvargSrc into
979 *
980 * RETURNS
981 * Success: S_OK. pvargDest contains the converted value.
982 * Failure: An HRESULT error code describing the failure.
983 *
984 * NOTES
985 * pvargDest and pvargSrc can point to the same variant to perform an in-place
986 * conversion. If the conversion is successful, pvargSrc will be freed.
987 */
989 LCID lcid, USHORT wFlags, VARTYPE vt)
990{
991 HRESULT res = S_OK;
992
993 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
994 debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
995
996 if (vt == VT_CLSID)
998 else
999 {
1000 res = VARIANT_ValidateType(V_VT(pvargSrc));
1001
1002 if (SUCCEEDED(res))
1003 {
1005
1006 if (SUCCEEDED(res))
1007 {
1008 VARIANTARG vTmp, vSrcDeref;
1009
1010 if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1012 else
1013 {
1014 V_VT(&vTmp) = VT_EMPTY;
1015 V_VT(&vSrcDeref) = VT_EMPTY;
1016 VariantClear(&vTmp);
1017 VariantClear(&vSrcDeref);
1018 }
1019
1020 if (SUCCEEDED(res))
1021 {
1022 res = VariantCopyInd(&vSrcDeref, pvargSrc);
1023 if (SUCCEEDED(res))
1024 {
1025 if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1026 res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1027 else
1028 res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1029
1030 if (SUCCEEDED(res)) {
1031 V_VT(&vTmp) = vt;
1032 res = VariantCopy(pvargDest, &vTmp);
1033 }
1034 VariantClear(&vTmp);
1035 VariantClear(&vSrcDeref);
1036 }
1037 }
1038 }
1039 }
1040 }
1041
1042 TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1043 return res;
1044}
1045
1046/* Date Conversions */
1047
1048#define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1049
1050/* Convert a VT_DATE value to a Julian Date */
1051static inline int VARIANT_JulianFromDate(int dateIn)
1052{
1053 int julianDays = dateIn;
1054
1055 julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1056 julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1057 return julianDays;
1058}
1059
1060/* Convert a Julian Date to a VT_DATE value */
1061static inline int VARIANT_DateFromJulian(int dateIn)
1062{
1063 int julianDays = dateIn;
1064
1065 julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1066 julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1067 return julianDays;
1068}
1069
1070/* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1071static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1072{
1073 int j, i, l, n;
1074
1075 l = jd + 68569;
1076 n = l * 4 / 146097;
1077 l -= (n * 146097 + 3) / 4;
1078 i = (4000 * (l + 1)) / 1461001;
1079 l += 31 - (i * 1461) / 4;
1080 j = (l * 80) / 2447;
1081 *day = l - (j * 2447) / 80;
1082 l = j / 11;
1083 *month = (j + 2) - (12 * l);
1084 *year = 100 * (n - 49) + i + l;
1085}
1086
1087/* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1089{
1090 int m12 = (month - 14) / 12;
1091
1092 return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1093 (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1094}
1095
1096/* Macros for accessing DOS format date/time fields */
1097#define DOS_YEAR(x) (1980 + (x >> 9))
1098#define DOS_MONTH(x) ((x >> 5) & 0xf)
1099#define DOS_DAY(x) (x & 0x1f)
1100#define DOS_HOUR(x) (x >> 11)
1101#define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1102#define DOS_SECOND(x) ((x & 0x1f) << 1)
1103/* Create a DOS format date/time */
1104#define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1105#define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1106
1107/* Roll a date forwards or backwards to correct it */
1109{
1110 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1111 short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1112
1113 /* interpret values signed */
1114 iYear = lpUd->st.wYear;
1115 iMonth = lpUd->st.wMonth;
1116 iDay = lpUd->st.wDay;
1117 iHour = lpUd->st.wHour;
1118 iMinute = lpUd->st.wMinute;
1119 iSecond = lpUd->st.wSecond;
1120
1121 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1122 iYear, iHour, iMinute, iSecond);
1123
1124 if (iYear > 9999 || iYear < -9999)
1125 return E_INVALIDARG; /* Invalid value */
1126 /* Year 0 to 29 are treated as 2000 + year */
1127 if (iYear >= 0 && iYear < 30)
1128 iYear += 2000;
1129 /* Remaining years < 100 are treated as 1900 + year */
1130 else if (iYear >= 30 && iYear < 100)
1131 iYear += 1900;
1132
1133 iMinute += iSecond / 60;
1134 iSecond = iSecond % 60;
1135 iHour += iMinute / 60;
1136 iMinute = iMinute % 60;
1137 iDay += iHour / 24;
1138 iHour = iHour % 24;
1139 iYear += iMonth / 12;
1140 iMonth = iMonth % 12;
1141 if (iMonth<=0) {iMonth+=12; iYear--;}
1142 while (iDay > days[iMonth])
1143 {
1144 if (iMonth == 2 && IsLeapYear(iYear))
1145 iDay -= 29;
1146 else
1147 iDay -= days[iMonth];
1148 iMonth++;
1149 iYear += iMonth / 12;
1150 iMonth = iMonth % 12;
1151 }
1152 while (iDay <= 0)
1153 {
1154 iMonth--;
1155 if (iMonth<=0) {iMonth+=12; iYear--;}
1156 if (iMonth == 2 && IsLeapYear(iYear))
1157 iDay += 29;
1158 else
1159 iDay += days[iMonth];
1160 }
1161
1162 if (iSecond<0){iSecond+=60; iMinute--;}
1163 if (iMinute<0){iMinute+=60; iHour--;}
1164 if (iHour<0) {iHour+=24; iDay--;}
1165 if (iYear<=0) iYear+=2000;
1166
1167 lpUd->st.wYear = iYear;
1168 lpUd->st.wMonth = iMonth;
1169 lpUd->st.wDay = iDay;
1170 lpUd->st.wHour = iHour;
1171 lpUd->st.wMinute = iMinute;
1172 lpUd->st.wSecond = iSecond;
1173
1174 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1175 lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1176 return S_OK;
1177}
1178
1179/**********************************************************************
1180 * DosDateTimeToVariantTime [OLEAUT32.14]
1181 *
1182 * Convert a Dos format date and time into variant VT_DATE format.
1183 *
1184 * PARAMS
1185 * wDosDate [I] Dos format date
1186 * wDosTime [I] Dos format time
1187 * pDateOut [O] Destination for VT_DATE format
1188 *
1189 * RETURNS
1190 * Success: TRUE. pDateOut contains the converted time.
1191 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1192 *
1193 * NOTES
1194 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1195 * - Dos format times are accurate to only 2 second precision.
1196 * - The format of a Dos Date is:
1197 *| Bits Values Meaning
1198 *| ---- ------ -------
1199 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1200 *| the days in the month rolls forward the extra days.
1201 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1202 *| year. 13-15 are invalid.
1203 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1204 * - The format of a Dos Time is:
1205 *| Bits Values Meaning
1206 *| ---- ------ -------
1207 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1208 *| 5-10 0-59 Minutes. 60-63 are invalid.
1209 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1210 */
1212 double *pDateOut)
1213{
1214 UDATE ud;
1215
1216 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1217 wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1218 wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1219 pDateOut);
1220
1221 ud.st.wYear = DOS_YEAR(wDosDate);
1222 ud.st.wMonth = DOS_MONTH(wDosDate);
1223 if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1224 return FALSE;
1225 ud.st.wDay = DOS_DAY(wDosDate);
1226 ud.st.wHour = DOS_HOUR(wDosTime);
1227 ud.st.wMinute = DOS_MINUTE(wDosTime);
1228 ud.st.wSecond = DOS_SECOND(wDosTime);
1229 ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1230 if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1231 return FALSE; /* Invalid values in Dos*/
1232
1233 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1234}
1235
1236/**********************************************************************
1237 * VariantTimeToDosDateTime [OLEAUT32.13]
1238 *
1239 * Convert a variant format date into a Dos format date and time.
1240 *
1241 * dateIn [I] VT_DATE time format
1242 * pwDosDate [O] Destination for Dos format date
1243 * pwDosTime [O] Destination for Dos format time
1244 *
1245 * RETURNS
1246 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1247 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1248 *
1249 * NOTES
1250 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1251 */
1252INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1253{
1254 UDATE ud;
1255
1256 TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1257
1258 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1259 return FALSE;
1260
1261 if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1262 return FALSE;
1263
1264 *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1265 *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1266
1267 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1268 *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1269 *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1270 return TRUE;
1271}
1272
1273/***********************************************************************
1274 * SystemTimeToVariantTime [OLEAUT32.184]
1275 *
1276 * Convert a System format date and time into variant VT_DATE format.
1277 *
1278 * PARAMS
1279 * lpSt [I] System format date and time
1280 * pDateOut [O] Destination for VT_DATE format date
1281 *
1282 * RETURNS
1283 * Success: TRUE. *pDateOut contains the converted value.
1284 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1285 */
1287{
1288 UDATE ud;
1289
1290 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1291 lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1292
1293 if (lpSt->wMonth > 12)
1294 return FALSE;
1295 if (lpSt->wDay > 31)
1296 return FALSE;
1297 if ((short)lpSt->wYear < 0)
1298 return FALSE;
1299
1300 ud.st = *lpSt;
1301 return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1302}
1303
1304/***********************************************************************
1305 * VariantTimeToSystemTime [OLEAUT32.185]
1306 *
1307 * Convert a variant VT_DATE into a System format date and time.
1308 *
1309 * PARAMS
1310 * datein [I] Variant VT_DATE format date
1311 * lpSt [O] Destination for System format date and time
1312 *
1313 * RETURNS
1314 * Success: TRUE. *lpSt contains the converted value.
1315 * Failure: FALSE, if dateIn is too large or small.
1316 */
1318{
1319 UDATE ud;
1320
1321 TRACE("(%g,%p)\n", dateIn, lpSt);
1322
1323 if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1324 return FALSE;
1325
1326 *lpSt = ud.st;
1327 return TRUE;
1328}
1329
1330/***********************************************************************
1331 * VarDateFromUdateEx [OLEAUT32.319]
1332 *
1333 * Convert an unpacked format date and time to a variant VT_DATE.
1334 *
1335 * PARAMS
1336 * pUdateIn [I] Unpacked format date and time to convert
1337 * lcid [I] Locale identifier for the conversion
1338 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1339 * pDateOut [O] Destination for variant VT_DATE.
1340 *
1341 * RETURNS
1342 * Success: S_OK. *pDateOut contains the converted value.
1343 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1344 */
1346{
1347 UDATE ud;
1348 double dateVal = 0;
1349
1350 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1351 pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1352 pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1353 pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1354 pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1355
1357 FIXME("lcid possibly not handled, treating as en-us\n");
1359 FIXME("unsupported flags: %x\n", dwFlags);
1360
1361 ud = *pUdateIn;
1362
1363 if (dwFlags & VAR_VALIDDATE)
1364 WARN("Ignoring VAR_VALIDDATE\n");
1365
1366 if (FAILED(VARIANT_RollUdate(&ud)))
1367 return E_INVALIDARG;
1368
1369 /* Date */
1370 if (!(dwFlags & VAR_TIMEVALUEONLY))
1372
1374 {
1375 double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1376
1377 /* Time */
1378 dateVal += ud.st.wHour / 24.0 * dateSign;
1379 dateVal += ud.st.wMinute / 1440.0 * dateSign;
1380 dateVal += ud.st.wSecond / 86400.0 * dateSign;
1381 }
1382
1383 TRACE("Returning %g\n", dateVal);
1384 *pDateOut = dateVal;
1385 return S_OK;
1386}
1387
1388/***********************************************************************
1389 * VarDateFromUdate [OLEAUT32.330]
1390 *
1391 * Convert an unpacked format date and time to a variant VT_DATE.
1392 *
1393 * PARAMS
1394 * pUdateIn [I] Unpacked format date and time to convert
1395 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1396 * pDateOut [O] Destination for variant VT_DATE.
1397 *
1398 * RETURNS
1399 * Success: S_OK. *pDateOut contains the converted value.
1400 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1401 *
1402 * NOTES
1403 * This function uses the United States English locale for the conversion. Use
1404 * VarDateFromUdateEx() for alternate locales.
1405 */
1407{
1409
1410 return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1411}
1412
1413/***********************************************************************
1414 * VarUdateFromDate [OLEAUT32.331]
1415 *
1416 * Convert a variant VT_DATE into an unpacked format date and time.
1417 *
1418 * PARAMS
1419 * datein [I] Variant VT_DATE format date
1420 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1421 * lpUdate [O] Destination for unpacked format date and time
1422 *
1423 * RETURNS
1424 * Success: S_OK. *lpUdate contains the converted value.
1425 * Failure: E_INVALIDARG, if dateIn is too large or small.
1426 */
1428{
1429 /* Cumulative totals of days per month */
1430 static const USHORT cumulativeDays[] =
1431 {
1432 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1433 };
1434 double datePart, timePart;
1435 int julianDays;
1436
1437 TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1438
1439 if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1440 return E_INVALIDARG;
1441
1442 datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1443 /* Compensate for int truncation (always downwards) */
1444 timePart = fabs(dateIn - datePart) + 0.00000000001;
1445 if (timePart >= 1.0)
1446 timePart -= 0.00000000001;
1447
1448 /* Date */
1449 julianDays = VARIANT_JulianFromDate(dateIn);
1450 VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1451 &lpUdate->st.wDay);
1452
1453 datePart = (datePart + 1.5) / 7.0;
1454 lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1455 if (lpUdate->st.wDayOfWeek == 0)
1456 lpUdate->st.wDayOfWeek = 5;
1457 else if (lpUdate->st.wDayOfWeek == 1)
1458 lpUdate->st.wDayOfWeek = 6;
1459 else
1460 lpUdate->st.wDayOfWeek -= 2;
1461
1462 if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1463 lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1464 else
1465 lpUdate->wDayOfYear = 0;
1466
1467 lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1468 lpUdate->wDayOfYear += lpUdate->st.wDay;
1469
1470 /* Time */
1471 timePart *= 24.0;
1472 lpUdate->st.wHour = timePart;
1473 timePart -= lpUdate->st.wHour;
1474 timePart *= 60.0;
1475 lpUdate->st.wMinute = timePart;
1476 timePart -= lpUdate->st.wMinute;
1477 timePart *= 60.0;
1478 lpUdate->st.wSecond = timePart;
1479 timePart -= lpUdate->st.wSecond;
1480 lpUdate->st.wMilliseconds = 0;
1481 if (timePart > 0.5)
1482 {
1483 /* Round the milliseconds, adjusting the time/date forward if needed */
1484 if (lpUdate->st.wSecond < 59)
1485 lpUdate->st.wSecond++;
1486 else
1487 {
1488 lpUdate->st.wSecond = 0;
1489 if (lpUdate->st.wMinute < 59)
1490 lpUdate->st.wMinute++;
1491 else
1492 {
1493 lpUdate->st.wMinute = 0;
1494 if (lpUdate->st.wHour < 23)
1495 lpUdate->st.wHour++;
1496 else
1497 {
1498 lpUdate->st.wHour = 0;
1499 /* Roll over a whole day */
1500 if (++lpUdate->st.wDay > 28)
1501 VARIANT_RollUdate(lpUdate);
1502 }
1503 }
1504 }
1505 }
1506 return S_OK;
1507}
1508
1509#define GET_NUMBER_TEXT(fld,name) \
1510 buff[0] = 0; \
1511 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1512 WARN("buffer too small for " #fld "\n"); \
1513 else \
1514 if (buff[0]) lpChars->name = buff[0]; \
1515 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1516
1517/* Get the valid number characters for an lcid */
1519{
1520 static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1521 static VARIANT_NUMBER_CHARS lastChars;
1522 static LCID lastLcid = -1;
1523 static DWORD lastFlags = 0;
1525 WCHAR buff[4];
1526
1527 /* To make caching thread-safe, a critical section is needed */
1529
1530 /* Asking for default locale entries is very expensive: It is a registry
1531 server call. So cache one locally, as Microsoft does it too */
1532 if(lcid == lastLcid && dwFlags == lastFlags)
1533 {
1534 memcpy(lpChars, &lastChars, sizeof(defaultChars));
1536 return;
1537 }
1538
1539 memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1540 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1541 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1542 GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1543 GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1544 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1545 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1546
1547 /* Local currency symbols are often 2 characters */
1548 lpChars->cCurrencyLocal2 = '\0';
1549 switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, ARRAY_SIZE(buff)))
1550 {
1551 case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1552 case 2: lpChars->cCurrencyLocal = buff[0];
1553 break;
1554 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1555 }
1556 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1557 lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1558
1559 memcpy(&lastChars, lpChars, sizeof(defaultChars));
1560 lastLcid = lcid;
1561 lastFlags = dwFlags;
1563}
1564
1565/* Number Parsing States */
1566#define B_PROCESSING_EXPONENT 0x1
1567#define B_NEGATIVE_EXPONENT 0x2
1568#define B_EXPONENT_START 0x4
1569#define B_INEXACT_ZEROS 0x8
1570#define B_LEADING_ZERO 0x10
1571#define B_PROCESSING_HEX 0x20
1572#define B_PROCESSING_OCT 0x40
1573
1574/**********************************************************************
1575 * VarParseNumFromStr [OLEAUT32.46]
1576 *
1577 * Parse a string containing a number into a NUMPARSE structure.
1578 *
1579 * PARAMS
1580 * lpszStr [I] String to parse number from
1581 * lcid [I] Locale Id for the conversion
1582 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1583 * pNumprs [I/O] Destination for parsed number
1584 * rgbDig [O] Destination for digits read in
1585 *
1586 * RETURNS
1587 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1588 * the number.
1589 * Failure: E_INVALIDARG, if any parameter is invalid.
1590 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1591 * incorrectly.
1592 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1593 *
1594 * NOTES
1595 * pNumprs must have the following fields set:
1596 * cDig: Set to the size of rgbDig.
1597 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1598 * from "oleauto.h".
1599 *
1600 * FIXME
1601 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1602 * numerals, so this has not been implemented.
1603 */
1605 NUMPARSE *pNumprs, BYTE *rgbDig)
1606{
1608 BYTE rgbTmp[1024];
1610 int iMaxDigits = ARRAY_SIZE(rgbTmp);
1611 int cchUsed = 0;
1612
1613 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1614
1615 if (!pNumprs || !rgbDig)
1616 return E_INVALIDARG;
1617
1618 if (pNumprs->cDig < iMaxDigits)
1619 iMaxDigits = pNumprs->cDig;
1620
1621 pNumprs->cDig = 0;
1622 pNumprs->dwOutFlags = 0;
1623 pNumprs->cchUsed = 0;
1624 pNumprs->nBaseShift = 0;
1625 pNumprs->nPwr10 = 0;
1626
1627 if (!lpszStr)
1628 return DISP_E_TYPEMISMATCH;
1629
1631
1632 /* First consume all the leading symbols and space from the string */
1633 while (1)
1634 {
1635 if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && iswspace(*lpszStr))
1636 {
1637 pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1638 do
1639 {
1640 cchUsed++;
1641 lpszStr++;
1642 } while (iswspace(*lpszStr));
1643 }
1644 else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1645 *lpszStr == chars.cPositiveSymbol &&
1646 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1647 {
1648 pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1649 cchUsed++;
1650 lpszStr++;
1651 }
1652 else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1653 *lpszStr == chars.cNegativeSymbol &&
1654 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1655 {
1657 cchUsed++;
1658 lpszStr++;
1659 }
1660 else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1661 !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1662 *lpszStr == chars.cCurrencyLocal &&
1663 (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1664 {
1665 pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1666 cchUsed++;
1667 lpszStr++;
1668 /* Only accept currency characters */
1671 }
1672 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1673 !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1674 {
1675 pNumprs->dwOutFlags |= NUMPRS_PARENS;
1676 cchUsed++;
1677 lpszStr++;
1678 }
1679 else
1680 break;
1681 }
1682
1683 if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1684 {
1685 /* Only accept non-currency characters */
1688 }
1689
1690 if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1691 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1692 {
1693 dwState |= B_PROCESSING_HEX;
1694 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1695 cchUsed=cchUsed+2;
1696 lpszStr=lpszStr+2;
1697 }
1698 else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1699 pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1700 {
1701 dwState |= B_PROCESSING_OCT;
1702 pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1703 cchUsed=cchUsed+2;
1704 lpszStr=lpszStr+2;
1705 }
1706
1707 /* Strip Leading zeros */
1708 while (*lpszStr == '0')
1709 {
1710 dwState |= B_LEADING_ZERO;
1711 cchUsed++;
1712 lpszStr++;
1713 }
1714
1715 while (*lpszStr)
1716 {
1717 if (iswdigit(*lpszStr))
1718 {
1719 if (dwState & B_PROCESSING_EXPONENT)
1720 {
1721 int exponentSize = 0;
1722 if (dwState & B_EXPONENT_START)
1723 {
1724 if (!iswdigit(*lpszStr))
1725 break; /* No exponent digits - invalid */
1726 while (*lpszStr == '0')
1727 {
1728 /* Skip leading zero's in the exponent */
1729 cchUsed++;
1730 lpszStr++;
1731 }
1732 }
1733
1734 while (iswdigit(*lpszStr))
1735 {
1736 exponentSize *= 10;
1737 exponentSize += *lpszStr - '0';
1738 cchUsed++;
1739 lpszStr++;
1740 }
1741 if (dwState & B_NEGATIVE_EXPONENT)
1742 exponentSize = -exponentSize;
1743 /* Add the exponent into the powers of 10 */
1744 pNumprs->nPwr10 += exponentSize;
1746 lpszStr--; /* back up to allow processing of next char */
1747 }
1748 else
1749 {
1750 if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1751 && !(dwState & B_PROCESSING_OCT))
1752 {
1753 pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1754
1755 if (*lpszStr != '0')
1756 dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1757
1758 /* This digit can't be represented, but count it in nPwr10 */
1759 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1760 pNumprs->nPwr10--;
1761 else
1762 pNumprs->nPwr10++;
1763 }
1764 else
1765 {
1766 if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1767 break;
1768
1769 if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1770 pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1771
1772 rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1773 }
1774 pNumprs->cDig++;
1775 cchUsed++;
1776 }
1777 }
1778 else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1779 {
1780 pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1781 cchUsed++;
1782 }
1783 else if (*lpszStr == chars.cDecimalPoint &&
1784 pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1786 {
1787 pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1788 cchUsed++;
1789
1790 /* If we have no digits so far, skip leading zeros */
1791 if (!pNumprs->cDig)
1792 {
1793 while (lpszStr[1] == '0')
1794 {
1795 dwState |= B_LEADING_ZERO;
1796 cchUsed++;
1797 lpszStr++;
1798 pNumprs->nPwr10--;
1799 }
1800 }
1801 }
1802 else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1803 (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1804 dwState & B_PROCESSING_HEX)
1805 {
1806 if (pNumprs->cDig >= iMaxDigits)
1807 {
1808 return DISP_E_OVERFLOW;
1809 }
1810 else
1811 {
1812 if (*lpszStr >= 'a')
1813 rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1814 else
1815 rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1816 }
1817 pNumprs->cDig++;
1818 cchUsed++;
1819 }
1820 else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1821 pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1822 !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1823 {
1824 dwState |= B_PROCESSING_EXPONENT;
1825 pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1826 cchUsed++;
1827 }
1828 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1829 {
1830 cchUsed++; /* Ignore positive exponent */
1831 }
1832 else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1833 {
1834 dwState |= B_NEGATIVE_EXPONENT;
1835 cchUsed++;
1836 }
1837 else
1838 break; /* Stop at an unrecognised character */
1839
1840 lpszStr++;
1841 }
1842
1843 if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1844 {
1845 /* Ensure a 0 on its own gets stored */
1846 pNumprs->cDig = 1;
1847 rgbTmp[0] = 0;
1848 }
1849
1850 if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1851 {
1852 pNumprs->cchUsed = cchUsed;
1853 WARN("didn't completely parse exponent\n");
1854 return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1855 }
1856
1857 if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1858 {
1859 if (dwState & B_INEXACT_ZEROS)
1860 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1861 } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1862 {
1863 /* copy all of the digits into the output digit buffer */
1864 /* this is exactly what windows does although it also returns */
1865 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1866 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1867
1868 if (dwState & B_PROCESSING_HEX) {
1869 /* hex numbers have always the same format */
1870 pNumprs->nPwr10=0;
1871 pNumprs->nBaseShift=4;
1872 } else {
1873 if (dwState & B_PROCESSING_OCT) {
1874 /* oct numbers have always the same format */
1875 pNumprs->nPwr10=0;
1876 pNumprs->nBaseShift=3;
1877 } else {
1878 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1879 {
1880 pNumprs->nPwr10++;
1881 pNumprs->cDig--;
1882 }
1883 }
1884 }
1885 } else
1886 {
1887 /* Remove trailing zeros from the last (whole number or decimal) part */
1888 while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1889 {
1890 pNumprs->nPwr10++;
1891 pNumprs->cDig--;
1892 }
1893 }
1894
1895 if (pNumprs->cDig <= iMaxDigits)
1896 pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1897 else
1898 pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1899
1900 /* Copy the digits we processed into rgbDig */
1901 memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1902
1903 /* Consume any trailing symbols and space */
1904 while (1)
1905 {
1906 if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && iswspace(*lpszStr))
1907 {
1909 do
1910 {
1911 cchUsed++;
1912 lpszStr++;
1913 } while (iswspace(*lpszStr));
1914 }
1915 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1916 !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1917 *lpszStr == chars.cPositiveSymbol)
1918 {
1919 pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1920 cchUsed++;
1921 lpszStr++;
1922 }
1923 else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1924 !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1925 *lpszStr == chars.cNegativeSymbol)
1926 {
1928 cchUsed++;
1929 lpszStr++;
1930 }
1931 else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1932 pNumprs->dwOutFlags & NUMPRS_PARENS)
1933 {
1934 cchUsed++;
1935 lpszStr++;
1936 pNumprs->dwOutFlags |= NUMPRS_NEG;
1937 }
1938 else
1939 break;
1940 }
1941
1942 if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1943 {
1944 pNumprs->cchUsed = cchUsed;
1945 return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1946 }
1947
1948 if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1949 return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1950
1951 if (!pNumprs->cDig)
1952 return DISP_E_TYPEMISMATCH; /* No Number found */
1953
1954 pNumprs->cchUsed = cchUsed;
1955 return S_OK;
1956}
1957
1958/* VTBIT flags indicating an integer value */
1959#define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1960/* VTBIT flags indicating a real number value */
1961#define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1962
1963/* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1964#define FITS_AS_I1(x) ((x) >> 8 == 0)
1965#define FITS_AS_I2(x) ((x) >> 16 == 0)
1966#define FITS_AS_I4(x) ((x) >> 32 == 0)
1967
1968/**********************************************************************
1969 * VarNumFromParseNum [OLEAUT32.47]
1970 *
1971 * Convert a NUMPARSE structure into a numeric Variant type.
1972 *
1973 * PARAMS
1974 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1975 * rgbDig [I] Source for the numbers digits
1976 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1977 * pVarDst [O] Destination for the converted Variant value.
1978 *
1979 * RETURNS
1980 * Success: S_OK. pVarDst contains the converted value.
1981 * Failure: E_INVALIDARG, if any parameter is invalid.
1982 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1983 *
1984 * NOTES
1985 * - The smallest favoured type present in dwVtBits that can represent the
1986 * number in pNumprs without losing precision is used.
1987 * - Signed types are preferred over unsigned types of the same size.
1988 * - Preferred types in order are: integer, float, double, currency then decimal.
1989 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1990 * for details of the rounding method.
1991 * - pVarDst is not cleared before the result is stored in it.
1992 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1993 * design?): If some other VTBIT's for integers are specified together
1994 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1995 * the number to the smallest requested integer truncating this way the
1996 * number. Wine doesn't implement this "feature" (yet?).
1997 */
1999 ULONG dwVtBits, VARIANT *pVarDst)
2000{
2001 /* Scale factors and limits for double arithmetic */
2002 static const double dblMultipliers[11] = {
2003 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2004 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2005 };
2006 static const double dblMinimums[11] = {
2007 R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2008 R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2009 R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2010 };
2011 static const double dblMaximums[11] = {
2012 R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2013 R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2014 R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2015 };
2016
2017 int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2018
2019 TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2020
2021 if (pNumprs->nBaseShift)
2022 {
2023 /* nBaseShift indicates a hex or octal number */
2024 ULONG64 ul64 = 0;
2025 LONG64 l64;
2026 int i;
2027
2028 /* Convert the hex or octal number string into a UI64 */
2029 for (i = 0; i < pNumprs->cDig; i++)
2030 {
2031 if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2032 {
2033 TRACE("Overflow multiplying digits\n");
2034 return DISP_E_OVERFLOW;
2035 }
2036 ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2037 }
2038
2039 /* also make a negative representation */
2040 l64=-ul64;
2041
2042 /* Try signed and unsigned types in size order */
2043 if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2044 {
2045 V_VT(pVarDst) = VT_I1;
2046 V_I1(pVarDst) = ul64;
2047 return S_OK;
2048 }
2049 else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2050 {
2051 V_VT(pVarDst) = VT_UI1;
2052 V_UI1(pVarDst) = ul64;
2053 return S_OK;
2054 }
2055 else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2056 {
2057 V_VT(pVarDst) = VT_I2;
2058 V_I2(pVarDst) = ul64;
2059 return S_OK;
2060 }
2061 else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2062 {
2063 V_VT(pVarDst) = VT_UI2;
2064 V_UI2(pVarDst) = ul64;
2065 return S_OK;
2066 }
2067 else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2068 {
2069 V_VT(pVarDst) = VT_I4;
2070 V_I4(pVarDst) = ul64;
2071 return S_OK;
2072 }
2073 else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2074 {
2075 V_VT(pVarDst) = VT_UI4;
2076 V_UI4(pVarDst) = ul64;
2077 return S_OK;
2078 }
2079 else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2080 {
2081 V_VT(pVarDst) = VT_I8;
2082 V_I8(pVarDst) = ul64;
2083 return S_OK;
2084 }
2085 else if (dwVtBits & VTBIT_UI8)
2086 {
2087 V_VT(pVarDst) = VT_UI8;
2088 V_UI8(pVarDst) = ul64;
2089 return S_OK;
2090 }
2091 else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2092 {
2093 V_VT(pVarDst) = VT_DECIMAL;
2095 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2096 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2097 return S_OK;
2098 }
2099 else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2100 {
2101 V_VT(pVarDst) = VT_R4;
2102 if (ul64 <= I4_MAX)
2103 V_R4(pVarDst) = ul64;
2104 else
2105 V_R4(pVarDst) = l64;
2106 return S_OK;
2107 }
2108 else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2109 {
2110 V_VT(pVarDst) = VT_R8;
2111 if (ul64 <= I4_MAX)
2112 V_R8(pVarDst) = ul64;
2113 else
2114 V_R8(pVarDst) = l64;
2115 return S_OK;
2116 }
2117
2118 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2119 return DISP_E_OVERFLOW;
2120 }
2121
2122 /* Count the number of relevant fractional and whole digits stored,
2123 * And compute the divisor/multiplier to scale the number by.
2124 */
2125 if (pNumprs->nPwr10 < 0)
2126 {
2127 if (-pNumprs->nPwr10 >= pNumprs->cDig)
2128 {
2129 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2130 wholeNumberDigits = 0;
2131 fractionalDigits = pNumprs->cDig;
2132 divisor10 = -pNumprs->nPwr10;
2133 }
2134 else
2135 {
2136 /* An exactly represented real number e.g. 1.024 */
2137 wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2138 fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2139 divisor10 = pNumprs->cDig - wholeNumberDigits;
2140 }
2141 }
2142 else if (pNumprs->nPwr10 == 0)
2143 {
2144 /* An exactly represented whole number e.g. 1024 */
2145 wholeNumberDigits = pNumprs->cDig;
2146 fractionalDigits = 0;
2147 }
2148 else /* pNumprs->nPwr10 > 0 */
2149 {
2150 /* A whole number followed by nPwr10 0's e.g. 102400 */
2151 wholeNumberDigits = pNumprs->cDig;
2152 fractionalDigits = 0;
2153 multiplier10 = pNumprs->nPwr10;
2154 }
2155
2156 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2157 pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2158 multiplier10, divisor10);
2159
2160 if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2161 (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL))))
2162 {
2163 /* We have one or more integer output choices, and either:
2164 * 1) An integer input value, or
2165 * 2) A real number input value but no floating output choices.
2166 * Alternately, we have a DECIMAL output available and an integer input.
2167 *
2168 * So, place the integer value into pVarDst, using the smallest type
2169 * possible and preferring signed over unsigned types.
2170 */
2171 BOOL bOverflow = FALSE, bNegative;
2172 ULONG64 ul64 = 0;
2173 int i;
2174
2175 /* Convert the integer part of the number into a UI8 */
2176 for (i = 0; i < wholeNumberDigits; i++)
2177 {
2178 if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2179 {
2180 TRACE("Overflow multiplying digits\n");
2181 bOverflow = TRUE;
2182 break;
2183 }
2184 ul64 = ul64 * 10 + rgbDig[i];
2185 }
2186
2187 /* Account for the scale of the number */
2188 if (!bOverflow && multiplier10)
2189 {
2190 for (i = 0; i < multiplier10; i++)
2191 {
2192 if (ul64 > (UI8_MAX / 10))
2193 {
2194 TRACE("Overflow scaling number\n");
2195 bOverflow = TRUE;
2196 break;
2197 }
2198 ul64 = ul64 * 10;
2199 }
2200 }
2201
2202 /* If we have any fractional digits, round the value.
2203 * Note we don't have to do this if divisor10 is < 1,
2204 * because this means the fractional part must be < 0.5
2205 */
2206 if (!bOverflow && fractionalDigits && divisor10 > 0)
2207 {
2208 const BYTE* fracDig = rgbDig + wholeNumberDigits;
2209 BOOL bAdjust = FALSE;
2210
2211 TRACE("first decimal value is %d\n", *fracDig);
2212
2213 if (*fracDig > 5)
2214 bAdjust = TRUE; /* > 0.5 */
2215 else if (*fracDig == 5)
2216 {
2217 for (i = 1; i < fractionalDigits; i++)
2218 {
2219 if (fracDig[i])
2220 {
2221 bAdjust = TRUE; /* > 0.5 */
2222 break;
2223 }
2224 }
2225 /* If exactly 0.5, round only odd values */
2226 if (i == fractionalDigits && (ul64 & 1))
2227 bAdjust = TRUE;
2228 }
2229
2230 if (bAdjust)
2231 {
2232 if (ul64 == UI8_MAX)
2233 {
2234 TRACE("Overflow after rounding\n");
2235 bOverflow = TRUE;
2236 }
2237 ul64++;
2238 }
2239 }
2240
2241 /* Zero is not a negative number */
2242 bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2243
2244 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2245
2246 /* For negative integers, try the signed types in size order */
2247 if (!bOverflow && bNegative)
2248 {
2249 if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2250 {
2251 if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2252 {
2253 V_VT(pVarDst) = VT_I1;
2254 V_I1(pVarDst) = -ul64;
2255 return S_OK;
2256 }
2257 else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2258 {
2259 V_VT(pVarDst) = VT_I2;
2260 V_I2(pVarDst) = -ul64;
2261 return S_OK;
2262 }
2263 else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2264 {
2265 V_VT(pVarDst) = VT_I4;
2266 V_I4(pVarDst) = -ul64;
2267 return S_OK;
2268 }
2269 else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2270 {
2271 V_VT(pVarDst) = VT_I8;
2272 V_I8(pVarDst) = -ul64;
2273 return S_OK;
2274 }
2275 else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2276 {
2277 /* Decimal is only output choice left - fast path */
2278 V_VT(pVarDst) = VT_DECIMAL;
2279 DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2280 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2281 DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2282 return S_OK;
2283 }
2284 }
2285 }
2286 else if (!bOverflow)
2287 {
2288 /* For positive integers, try signed then unsigned types in size order */
2289 if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2290 {
2291 V_VT(pVarDst) = VT_I1;
2292 V_I1(pVarDst) = ul64;
2293 return S_OK;
2294 }
2295 else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2296 {
2297 V_VT(pVarDst) = VT_UI1;
2298 V_UI1(pVarDst) = ul64;
2299 return S_OK;
2300 }
2301 else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2302 {
2303 V_VT(pVarDst) = VT_I2;
2304 V_I2(pVarDst) = ul64;
2305 return S_OK;
2306 }
2307 else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2308 {
2309 V_VT(pVarDst) = VT_UI2;
2310 V_UI2(pVarDst) = ul64;
2311 return S_OK;
2312 }
2313 else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2314 {
2315 V_VT(pVarDst) = VT_I4;
2316 V_I4(pVarDst) = ul64;
2317 return S_OK;
2318 }
2319 else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2320 {
2321 V_VT(pVarDst) = VT_UI4;
2322 V_UI4(pVarDst) = ul64;
2323 return S_OK;
2324 }
2325 else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2326 {
2327 V_VT(pVarDst) = VT_I8;
2328 V_I8(pVarDst) = ul64;
2329 return S_OK;
2330 }
2331 else if (dwVtBits & VTBIT_UI8)
2332 {
2333 V_VT(pVarDst) = VT_UI8;
2334 V_UI8(pVarDst) = ul64;
2335 return S_OK;
2336 }
2337 else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2338 {
2339 /* Decimal is only output choice left - fast path */
2340 V_VT(pVarDst) = VT_DECIMAL;
2342 DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2343 DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2344 return S_OK;
2345 }
2346 }
2347 }
2348
2349 if (dwVtBits & REAL_VTBITS)
2350 {
2351 /* Try to put the number into a float or real */
2352 BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2353 double whole = 0.0;
2354 int i;
2355
2356 /* Convert the number into a double */
2357 for (i = 0; i < pNumprs->cDig; i++)
2358 whole = whole * 10.0 + rgbDig[i];
2359
2360 TRACE("Whole double value is %16.16g\n", whole);
2361
2362 /* Account for the scale */
2363 while (multiplier10 > 10)
2364 {
2365 if (whole > dblMaximums[10])
2366 {
2367 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2368 bOverflow = TRUE;
2369 break;
2370 }
2371 whole = whole * dblMultipliers[10];
2372 multiplier10 -= 10;
2373 }
2374 if (multiplier10 && !bOverflow)
2375 {
2376 if (whole > dblMaximums[multiplier10])
2377 {
2378 dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2379 bOverflow = TRUE;
2380 }
2381 else
2382 whole = whole * dblMultipliers[multiplier10];
2383 }
2384
2385 if (!bOverflow)
2386 TRACE("Scaled double value is %16.16g\n", whole);
2387
2388 while (divisor10 > 10 && !bOverflow)
2389 {
2390 if (whole < dblMinimums[10] && whole != 0)
2391 {
2392 whole = 0; /* ignore underflow */
2393 divisor10 = 0;
2394 break;
2395 }
2396 whole = whole / dblMultipliers[10];
2397 divisor10 -= 10;
2398 }
2399 if (divisor10 && !bOverflow)
2400 {
2401 if (whole < dblMinimums[divisor10] && whole != 0)
2402 {
2403 whole = 0; /* ignore underflow */
2404 divisor10 = 0;
2405 }
2406 else
2407 whole = whole / dblMultipliers[divisor10];
2408 }
2409 if (!bOverflow)
2410 TRACE("Final double value is %16.16g\n", whole);
2411
2412 if (dwVtBits & VTBIT_R4 &&
2413 ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2414 {
2415 TRACE("Set R4 to final value\n");
2416 V_VT(pVarDst) = VT_R4; /* Fits into a float */
2417 V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2418 return S_OK;
2419 }
2420
2421 if (dwVtBits & VTBIT_R8)
2422 {
2423 TRACE("Set R8 to final value\n");
2424 V_VT(pVarDst) = VT_R8; /* Fits into a double */
2425 V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2426 return S_OK;
2427 }
2428
2429 if (dwVtBits & VTBIT_CY)
2430 {
2431 if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2432 {
2433 V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2434 TRACE("Set CY to final value\n");
2435 return S_OK;
2436 }
2437 TRACE("Value Overflows CY\n");
2438 }
2439 }
2440
2441 if (dwVtBits & VTBIT_DECIMAL)
2442 {
2443 int i;
2444 ULONG carry;
2445 ULONG64 tmp;
2446 DECIMAL* pDec = &V_DECIMAL(pVarDst);
2447
2448 DECIMAL_SETZERO(*pDec);
2449 DEC_LO32(pDec) = 0;
2450
2451 if (pNumprs->dwOutFlags & NUMPRS_NEG)
2452 DEC_SIGN(pDec) = DECIMAL_NEG;
2453 else
2454 DEC_SIGN(pDec) = DECIMAL_POS;
2455
2456 /* Factor the significant digits */
2457 for (i = 0; i < pNumprs->cDig; i++)
2458 {
2459 tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2460 carry = (ULONG)(tmp >> 32);
2461 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2462 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2463 carry = (ULONG)(tmp >> 32);
2464 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2465 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2466 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2467
2468 if (tmp >> 32 & UI4_MAX)
2469 {
2470VarNumFromParseNum_DecOverflow:
2471 TRACE("Overflow\n");
2472 DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2473 return DISP_E_OVERFLOW;
2474 }
2475 }
2476
2477 /* Account for the scale of the number */
2478 while (multiplier10 > 0)
2479 {
2480 tmp = (ULONG64)DEC_LO32(pDec) * 10;
2481 carry = (ULONG)(tmp >> 32);
2482 DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2483 tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2484 carry = (ULONG)(tmp >> 32);
2485 DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2486 tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2487 DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2488
2489 if (tmp >> 32 & UI4_MAX)
2490 goto VarNumFromParseNum_DecOverflow;
2491 multiplier10--;
2492 }
2493 DEC_SCALE(pDec) = divisor10;
2494
2495 V_VT(pVarDst) = VT_DECIMAL;
2496 return S_OK;
2497 }
2498 return DISP_E_OVERFLOW; /* No more output choices */
2499}
2500
2501/**********************************************************************
2502 * VarCat [OLEAUT32.318]
2503 *
2504 * Concatenates one variant onto another.
2505 *
2506 * PARAMS
2507 * left [I] First variant
2508 * right [I] Second variant
2509 * result [O] Result variant
2510 *
2511 * RETURNS
2512 * Success: S_OK.
2513 * Failure: An HRESULT error code indicating the error.
2514 */
2516{
2517 BSTR left_str = NULL, right_str = NULL;
2518 VARTYPE leftvt, rightvt;
2519 HRESULT hres;
2520
2522
2523 leftvt = V_VT(left);
2524 rightvt = V_VT(right);
2525
2526 /* when both left and right are NULL the result is NULL */
2527 if (leftvt == VT_NULL && rightvt == VT_NULL)
2528 {
2529 V_VT(out) = VT_NULL;
2530 return S_OK;
2531 }
2532
2533 /* There are many special case for errors and return types */
2534 if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2535 rightvt == VT_DATE || rightvt == VT_DECIMAL))
2537 else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2538 leftvt == VT_R4 || leftvt == VT_R8 ||
2539 leftvt == VT_CY || leftvt == VT_BOOL ||
2540 leftvt == VT_BSTR || leftvt == VT_I1 ||
2541 leftvt == VT_UI1 || leftvt == VT_UI2 ||
2542 leftvt == VT_UI4 || leftvt == VT_I8 ||
2543 leftvt == VT_UI8 || leftvt == VT_INT ||
2544 leftvt == VT_UINT || leftvt == VT_EMPTY ||
2545 leftvt == VT_NULL || leftvt == VT_DATE ||
2546 leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2547 &&
2548 (rightvt == VT_I2 || rightvt == VT_I4 ||
2549 rightvt == VT_R4 || rightvt == VT_R8 ||
2550 rightvt == VT_CY || rightvt == VT_BOOL ||
2551 rightvt == VT_BSTR || rightvt == VT_I1 ||
2552 rightvt == VT_UI1 || rightvt == VT_UI2 ||
2553 rightvt == VT_UI4 || rightvt == VT_I8 ||
2554 rightvt == VT_UI8 || rightvt == VT_INT ||
2555 rightvt == VT_UINT || rightvt == VT_EMPTY ||
2556 rightvt == VT_NULL || rightvt == VT_DATE ||
2557 rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2558 hres = S_OK;
2559 else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2561 else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2562 rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2564 else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2565 rightvt == VT_DECIMAL)
2567 else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2569 else if (leftvt == VT_VARIANT)
2571 else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2572 leftvt == VT_NULL || leftvt == VT_I2 ||
2573 leftvt == VT_I4 || leftvt == VT_R4 ||
2574 leftvt == VT_R8 || leftvt == VT_CY ||
2575 leftvt == VT_DATE || leftvt == VT_BSTR ||
2576 leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2577 leftvt == VT_I1 || leftvt == VT_UI1 ||
2578 leftvt == VT_UI2 || leftvt == VT_UI4 ||
2579 leftvt == VT_I8 || leftvt == VT_UI8 ||
2580 leftvt == VT_INT || leftvt == VT_UINT))
2582 else
2584
2585 /* if result type is not S_OK, then no need to go further */
2586 if (hres != S_OK)
2587 {
2588 V_VT(out) = VT_EMPTY;
2589 return hres;
2590 }
2591
2592 if (leftvt == VT_BSTR)
2593 left_str = V_BSTR(left);
2594 else
2595 {
2596 VARIANT converted, *tmp = left;
2597
2598 VariantInit(&converted);
2599 if(leftvt == VT_DISPATCH)
2600 {
2601 hres = VARIANT_FetchDispatchValue(left, &converted);
2602 if(FAILED(hres))
2603 goto failed;
2604
2605 tmp = &converted;
2606 }
2607
2609 if (SUCCEEDED(hres))
2610 left_str = V_BSTR(&converted);
2611 else if (hres != DISP_E_TYPEMISMATCH)
2612 {
2613 VariantClear(&converted);
2614 goto failed;
2615 }
2616 }
2617
2618 if (rightvt == VT_BSTR)
2619 right_str = V_BSTR(right);
2620 else
2621 {
2622 VARIANT converted, *tmp = right;
2623
2624 VariantInit(&converted);
2625 if(rightvt == VT_DISPATCH)
2626 {
2627 hres = VARIANT_FetchDispatchValue(right, &converted);
2628 if(FAILED(hres))
2629 goto failed;
2630
2631 tmp = &converted;
2632 }
2633
2635 if (SUCCEEDED(hres))
2636 right_str = V_BSTR(&converted);
2637 else if (hres != DISP_E_TYPEMISMATCH)
2638 {
2639 VariantClear(&converted);
2640 goto failed;
2641 }
2642 }
2643
2644
2645 V_VT(out) = VT_BSTR;
2646 hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
2647
2648failed:
2649 if(V_VT(left) != VT_BSTR)
2650 SysFreeString(left_str);
2651 if(V_VT(right) != VT_BSTR)
2652 SysFreeString(right_str);
2653 return hres;
2654}
2655
2656
2657/* Wrapper around VariantChangeTypeEx() which permits changing a
2658 variant with VT_RESERVED flag set. Needed by VarCmp. */
2660 VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2661{
2662 VARIANTARG vtmpsrc = *pvargSrc;
2663
2664 V_VT(&vtmpsrc) &= ~VT_RESERVED;
2665 return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2666}
2667
2668/**********************************************************************
2669 * VarCmp [OLEAUT32.176]
2670 *
2671 * Compare two variants.
2672 *
2673 * PARAMS
2674 * left [I] First variant
2675 * right [I] Second variant
2676 * lcid [I] LCID (locale identifier) for the comparison
2677 * flags [I] Flags to be used in the comparison:
2678 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2679 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2680 *
2681 * RETURNS
2682 * VARCMP_LT: left variant is less than right variant.
2683 * VARCMP_EQ: input variants are equal.
2684 * VARCMP_GT: left variant is greater than right variant.
2685 * VARCMP_NULL: either one of the input variants is NULL.
2686 * Failure: An HRESULT error code indicating the error.
2687 *
2688 * NOTES
2689 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2690 * UI8 and UINT as input variants. INT is accepted only as left variant.
2691 *
2692 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2693 * an ERROR variant will trigger an error.
2694 *
2695 * Both input variants can have VT_RESERVED flag set which is ignored
2696 * unless one and only one of the variants is a BSTR and the other one
2697 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2698 * different meaning:
2699 * - BSTR and other: BSTR is always greater than the other variant.
2700 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2701 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2702 * comparison will take place else the BSTR is always greater.
2703 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2704 * variant is ignored and the return value depends only on the sign
2705 * of the BSTR if it is a number else the BSTR is always greater. A
2706 * positive BSTR is greater, a negative one is smaller than the other
2707 * variant.
2708 *
2709 * SEE
2710 * VarBstrCmp for the lcid and flags usage.
2711 */
2713{
2714 VARTYPE lvt, rvt, vt;
2715 VARIANT rv,lv;
2716 DWORD xmask;
2717 HRESULT rc;
2718
2719 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2720
2721 lvt = V_VT(left) & VT_TYPEMASK;
2722 rvt = V_VT(right) & VT_TYPEMASK;
2723 xmask = (1 << lvt) | (1 << rvt);
2724
2725 /* If we have any flag set except VT_RESERVED bail out.
2726 Same for the left input variant type > VT_INT and for the
2727 right input variant type > VT_I8. Yes, VT_INT is only supported
2728 as left variant. Go figure */
2729 if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2730 lvt > VT_INT || rvt > VT_I8) {
2731 return DISP_E_BADVARTYPE;
2732 }
2733
2734 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2735 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2736 if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2738 return DISP_E_TYPEMISMATCH;
2739
2740 /* If both variants are VT_ERROR return VARCMP_EQ */
2741 if (xmask == VTBIT_ERROR)
2742 return VARCMP_EQ;
2743 else if (xmask & VTBIT_ERROR)
2744 return DISP_E_TYPEMISMATCH;
2745
2746 if (xmask & VTBIT_NULL)
2747 return VARCMP_NULL;
2748
2749 VariantInit(&lv);
2750 VariantInit(&rv);
2751
2752 /* Two BSTRs, ignore VT_RESERVED */
2753 if (xmask == VTBIT_BSTR)
2754 return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2755
2756 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2757 if (xmask & VTBIT_BSTR) {
2758 VARIANT *bstrv, *nonbv;
2759 VARTYPE nonbvt;
2760 int swap = 0;
2761
2762 /* Swap the variants so the BSTR is always on the left */
2763 if (lvt == VT_BSTR) {
2764 bstrv = left;
2765 nonbv = right;
2766 nonbvt = rvt;
2767 } else {
2768 swap = 1;
2769 bstrv = right;
2770 nonbv = left;
2771 nonbvt = lvt;
2772 }
2773
2774 /* BSTR and EMPTY: ignore VT_RESERVED */
2775 if (nonbvt == VT_EMPTY)
2776 rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2777 else {
2778 VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2779 VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2780
2781 if (!breserv && !nreserv)
2782 /* No VT_RESERVED set ==> BSTR always greater */
2783 rc = VARCMP_GT;
2784 else if (breserv && !nreserv) {
2785 /* BSTR has VT_RESERVED set. Do a string comparison */
2786 rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2787 if (FAILED(rc))
2788 return rc;
2789 rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2790 VariantClear(&rv);
2791 } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2792 /* Non NULL nor empty BSTR */
2793 /* If the BSTR is not a number the BSTR is greater */
2794 rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2795 if (FAILED(rc))
2796 rc = VARCMP_GT;
2797 else if (breserv && nreserv)
2798 /* FIXME: This is strange: with both VT_RESERVED set it
2799 looks like the result depends only on the sign of
2800 the BSTR number */
2801 rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2802 else
2803 /* Numeric comparison, will be handled below.
2804 VARCMP_NULL used only to break out. */
2805 rc = VARCMP_NULL;
2806 VariantClear(&lv);
2807 VariantClear(&rv);
2808 } else
2809 /* Empty or NULL BSTR */
2810 rc = VARCMP_GT;
2811 }
2812 /* Fixup the return code if we swapped left and right */
2813 if (swap) {
2814 if (rc == VARCMP_GT)
2815 rc = VARCMP_LT;
2816 else if (rc == VARCMP_LT)
2817 rc = VARCMP_GT;
2818 }
2819 if (rc != VARCMP_NULL)
2820 return rc;
2821 }
2822
2823 if (xmask & VTBIT_DECIMAL)
2824 vt = VT_DECIMAL;
2825 else if (xmask & VTBIT_BSTR)
2826 vt = VT_R8;
2827 else if (xmask & VTBIT_R4)
2828 vt = VT_R4;
2829 else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2830 vt = VT_R8;
2831 else if (xmask & VTBIT_CY)
2832 vt = VT_CY;
2833 else
2834 /* default to I8 */
2835 vt = VT_I8;
2836
2837 /* Coerce the variants */
2838 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2839 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2840 /* Overflow, change to R8 */
2841 vt = VT_R8;
2842 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2843 }
2844 if (FAILED(rc))
2845 return rc;
2846 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2847 if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2848 /* Overflow, change to R8 */
2849 vt = VT_R8;
2850 rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2851 if (FAILED(rc))
2852 return rc;
2853 rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2854 }
2855 if (FAILED(rc))
2856 return rc;
2857
2858#define _VARCMP(a,b) \
2859 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2860
2861 switch (vt) {
2862 case VT_CY:
2863 return VarCyCmp(V_CY(&lv), V_CY(&rv));
2864 case VT_DECIMAL:
2865 return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2866 case VT_I8:
2867 return _VARCMP(V_I8(&lv), V_I8(&rv));
2868 case VT_R4:
2869 return _VARCMP(V_R4(&lv), V_R4(&rv));
2870 case VT_R8:
2871 return _VARCMP(V_R8(&lv), V_R8(&rv));
2872 default:
2873 /* We should never get here */
2874 return E_FAIL;
2875 }
2876#undef _VARCMP
2877}
2878
2879/**********************************************************************
2880 * VarAnd [OLEAUT32.142]
2881 *
2882 * Computes the logical AND of two variants.
2883 *
2884 * PARAMS
2885 * left [I] First variant
2886 * right [I] Second variant
2887 * result [O] Result variant
2888 *
2889 * RETURNS
2890 * Success: S_OK.
2891 * Failure: An HRESULT error code indicating the error.
2892 */
2894{
2895 HRESULT hres = S_OK;
2896 VARTYPE resvt = VT_EMPTY;
2897 VARTYPE leftvt,rightvt;
2898 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2899 VARIANT varLeft, varRight;
2900 VARIANT tempLeft, tempRight;
2901
2902 VariantInit(&varLeft);
2903 VariantInit(&varRight);
2904 VariantInit(&tempLeft);
2905 VariantInit(&tempRight);
2906
2908
2909 /* Handle VT_DISPATCH by storing and taking address of returned value */
2910 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2911 {
2912 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2913 if (FAILED(hres)) goto VarAnd_Exit;
2914 left = &tempLeft;
2915 }
2916 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2917 {
2918 hres = VARIANT_FetchDispatchValue(right, &tempRight);
2919 if (FAILED(hres)) goto VarAnd_Exit;
2920 right = &tempRight;
2921 }
2922
2923 leftvt = V_VT(left)&VT_TYPEMASK;
2924 rightvt = V_VT(right)&VT_TYPEMASK;
2925 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2926 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2927
2928 if (leftExtraFlags != rightExtraFlags)
2929 {
2931 goto VarAnd_Exit;
2932 }
2933 ExtraFlags = leftExtraFlags;
2934
2935 /* Native VarAnd always returns an error when using extra
2936 * flags or if the variant combination is I8 and INT.
2937 */
2938 if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2939 (leftvt == VT_INT && rightvt == VT_I8) ||
2940 ExtraFlags != 0)
2941 {
2943 goto VarAnd_Exit;
2944 }
2945
2946 /* Determine return type */
2947 else if (leftvt == VT_I8 || rightvt == VT_I8)
2948 resvt = VT_I8;
2949 else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2950 leftvt == VT_UINT || rightvt == VT_UINT ||
2951 leftvt == VT_INT || rightvt == VT_INT ||
2952 leftvt == VT_R4 || rightvt == VT_R4 ||
2953 leftvt == VT_R8 || rightvt == VT_R8 ||
2954 leftvt == VT_CY || rightvt == VT_CY ||
2955 leftvt == VT_DATE || rightvt == VT_DATE ||
2956 leftvt == VT_I1 || rightvt == VT_I1 ||
2957 leftvt == VT_UI2 || rightvt == VT_UI2 ||
2958 leftvt == VT_UI4 || rightvt == VT_UI4 ||
2959 leftvt == VT_UI8 || rightvt == VT_UI8 ||
2960 leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2961 resvt = VT_I4;
2962 else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2963 leftvt == VT_I2 || rightvt == VT_I2 ||
2964 leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2965 if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2966 (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2967 (leftvt == VT_UI1 && rightvt == VT_UI1))
2968 resvt = VT_UI1;
2969 else
2970 resvt = VT_I2;
2971 else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2972 (leftvt == VT_BSTR && rightvt == VT_BSTR))
2973 resvt = VT_BOOL;
2974 else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2975 leftvt == VT_BSTR || rightvt == VT_BSTR)
2976 resvt = VT_NULL;
2977 else
2978 {
2980 goto VarAnd_Exit;
2981 }
2982
2983 if (leftvt == VT_NULL || rightvt == VT_NULL)
2984 {
2985 /*
2986 * Special cases for when left variant is VT_NULL
2987 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2988 */
2989 if (leftvt == VT_NULL)
2990 {
2992 switch(rightvt)
2993 {
2994 case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
2995 case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
2996 case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
2997 case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
2998 case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
2999 case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3000 case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3001 case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3002 case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3003 case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3004 case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3005 case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3006 case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3007 case VT_CY:
3008 if(V_CY(right).int64)
3009 resvt = VT_NULL;
3010 break;
3011 case VT_DECIMAL:
3012 if (DEC_HI32(&V_DECIMAL(right)) ||
3014 resvt = VT_NULL;
3015 break;
3016 case VT_BSTR:
3019 if (FAILED(hres))
3020 return hres;
3021 else if (b)
3022 V_VT(result) = VT_NULL;
3023 else
3024 {
3025 V_VT(result) = VT_BOOL;
3026 V_BOOL(result) = b;
3027 }
3028 goto VarAnd_Exit;
3029 }
3030 }
3031 V_VT(result) = resvt;
3032 goto VarAnd_Exit;
3033 }
3034
3035 hres = VariantCopy(&varLeft, left);
3036 if (FAILED(hres)) goto VarAnd_Exit;
3037
3038 hres = VariantCopy(&varRight, right);
3039 if (FAILED(hres)) goto VarAnd_Exit;
3040
3041 if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3042 V_VT(&varLeft) = VT_I4; /* Don't overflow */
3043 else
3044 {
3045 double d;
3046
3047 if (V_VT(&varLeft) == VT_BSTR &&
3048 FAILED(VarR8FromStr(V_BSTR(&varLeft),
3049 LOCALE_USER_DEFAULT, 0, &d)))
3050 hres = VariantChangeType(&varLeft,&varLeft,
3052 if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3053 hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3054 if (FAILED(hres)) goto VarAnd_Exit;
3055 }
3056
3057 if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3058 V_VT(&varRight) = VT_I4; /* Don't overflow */
3059 else
3060 {
3061 double d;
3062
3063 if (V_VT(&varRight) == VT_BSTR &&
3064 FAILED(VarR8FromStr(V_BSTR(&varRight),
3065 LOCALE_USER_DEFAULT, 0, &d)))
3066 hres = VariantChangeType(&varRight, &varRight,
3068 if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3069 hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3070 if (FAILED(hres)) goto VarAnd_Exit;
3071 }
3072
3073 V_VT(result) = resvt;
3074 switch(resvt)
3075 {
3076 case VT_I8:
3077 V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3078 break;
3079 case VT_I4:
3080 V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3081 break;
3082 case VT_I2:
3083 V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3084 break;
3085 case VT_UI1:
3086 V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3087 break;
3088 case VT_BOOL:
3089 V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3090 break;
3091 default:
3092 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3093 leftvt,rightvt);
3094 }
3095
3096VarAnd_Exit:
3097 VariantClear(&varLeft);
3098 VariantClear(&varRight);
3099 VariantClear(&tempLeft);
3100 VariantClear(&tempRight);
3101
3102 return hres;
3103}
3104
3105/**********************************************************************
3106 * VarAdd [OLEAUT32.141]
3107 *
3108 * Add two variants.
3109 *
3110 * PARAMS
3111 * left [I] First variant
3112 * right [I] Second variant
3113 * result [O] Result variant
3114 *
3115 * RETURNS
3116 * Success: S_OK.
3117 * Failure: An HRESULT error code indicating the error.
3118 *
3119 * NOTES
3120 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3121 * UI8, INT and UINT as input variants.
3122 *
3123 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3124 * same here.
3125 *
3126 * FIXME
3127 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3128 * case.
3129 */
3131{
3132 HRESULT hres;
3133 VARTYPE lvt, rvt, resvt, tvt;
3134 VARIANT lv, rv, tv;
3135 VARIANT tempLeft, tempRight;
3136 double r8res;
3137
3138 /* Variant priority for coercion. Sorted from lowest to highest.
3139 VT_ERROR shows an invalid input variant type. */
3140 enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3141 vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3142 vt_ERROR };
3143 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3144 static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3146 VT_NULL, VT_ERROR };
3147
3148 /* Mapping for coercion from input variant to priority of result variant. */
3149 static const VARTYPE coerce[] = {
3150 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3151 vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3152 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3153 vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3154 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3155 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3156 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3157 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3158 };
3159
3161
3162 VariantInit(&lv);
3163 VariantInit(&rv);
3164 VariantInit(&tv);
3165 VariantInit(&tempLeft);
3166 VariantInit(&tempRight);
3167
3168 /* Handle VT_DISPATCH by storing and taking address of returned value */
3169 if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3170 {
3171 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3172 {
3173 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3174 if (FAILED(hres)) goto end;
3175 left = &tempLeft;
3176 }
3177 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3178 {
3179 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3180 if (FAILED(hres)) goto end;
3181 right = &tempRight;
3182 }
3183 }
3184
3185 lvt = V_VT(left)&VT_TYPEMASK;
3186 rvt = V_VT(right)&VT_TYPEMASK;
3187
3188 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3189 Same for any input variant type > VT_I8 */
3190 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3191 lvt > VT_I8 || rvt > VT_I8) {
3193 goto end;
3194 }
3195
3196 /* Determine the variant type to coerce to. */
3197 if (coerce[lvt] > coerce[rvt]) {
3198 resvt = prio2vt[coerce[lvt]];
3199 tvt = prio2vt[coerce[rvt]];
3200 } else {
3201 resvt = prio2vt[coerce[rvt]];
3202 tvt = prio2vt[coerce[lvt]];
3203 }
3204
3205 /* Special cases where the result variant type is defined by both
3206 input variants and not only that with the highest priority */
3207 if (resvt == VT_BSTR) {
3208 if (tvt == VT_EMPTY || tvt == VT_BSTR)
3209 resvt = VT_BSTR;
3210 else
3211 resvt = VT_R8;
3212 }
3213 if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3214 resvt = VT_R8;
3215
3216 /* For overflow detection use the biggest compatible type for the
3217 addition */
3218 switch (resvt) {
3219 case VT_ERROR:
3221 goto end;
3222 case VT_NULL:
3223 hres = S_OK;
3224 V_VT(result) = VT_NULL;
3225 goto end;
3226 case VT_DISPATCH:
3227 FIXME("cannot handle variant type VT_DISPATCH\n");
3229 goto end;
3230 case VT_EMPTY:
3231 resvt = VT_I2;
3232 /* Fall through */
3233 case VT_UI1:
3234 case VT_I2:
3235 case VT_I4:
3236 case VT_I8:
3237 tvt = VT_I8;
3238 break;
3239 case VT_DATE:
3240 case VT_R4:
3241 tvt = VT_R8;
3242 break;
3243 default:
3244 tvt = resvt;
3245 }
3246
3247 /* Now coerce the variants */
3248 hres = VariantChangeType(&lv, left, 0, tvt);
3249 if (FAILED(hres))
3250 goto end;
3251 hres = VariantChangeType(&rv, right, 0, tvt);
3252 if (FAILED(hres))
3253 goto end;
3254
3255 /* Do the math */
3256 hres = S_OK;
3257 V_VT(result) = resvt;
3258 switch (tvt) {
3259 case VT_DECIMAL:
3260 hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3261 &V_DECIMAL(result));
3262 goto end;
3263 case VT_CY:
3264 hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3265 goto end;
3266 case VT_BSTR:
3267 /* We do not add those, we concatenate them. */
3268 hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3269 goto end;
3270 case VT_I8:
3271 /* Overflow detection */
3272 r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3273 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3274 V_VT(result) = VT_R8;
3275 V_R8(result) = r8res;
3276 goto end;
3277 } else {
3278 V_VT(&tv) = tvt;
3279 V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3280 }
3281 break;
3282 case VT_R8:
3283 V_VT(&tv) = tvt;
3284 /* FIXME: overflow detection */
3285 V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3286 break;
3287 default:
3288 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3289 break;
3290 }
3291 if (resvt != tvt) {
3292 if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3293 /* Overflow! Change to the vartype with the next higher priority.
3294 With one exception: I4 ==> R8 even if it would fit in I8 */
3295 if (resvt == VT_I4)
3296 resvt = VT_R8;
3297 else
3298 resvt = prio2vt[coerce[resvt] + 1];
3299 hres = VariantChangeType(result, &tv, 0, resvt);
3300 }
3301 } else
3302 hres = VariantCopy(result, &tv);
3303
3304end:
3305 if (hres != S_OK) {
3306 V_VT(result) = VT_EMPTY;
3307 V_I4(result) = 0; /* No V_EMPTY */
3308 }
3309 VariantClear(&lv);
3310 VariantClear(&rv);
3311 VariantClear(&tv);
3312 VariantClear(&tempLeft);
3313 VariantClear(&tempRight);
3314 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3315 return hres;
3316}
3317
3318/**********************************************************************
3319 * VarMul [OLEAUT32.156]
3320 *
3321 * Multiply two variants.
3322 *
3323 * PARAMS
3324 * left [I] First variant
3325 * right [I] Second variant
3326 * result [O] Result variant
3327 *
3328 * RETURNS
3329 * Success: S_OK.
3330 * Failure: An HRESULT error code indicating the error.
3331 *
3332 * NOTES
3333 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3334 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3335 *
3336 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3337 * same here.
3338 *
3339 * FIXME
3340 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3341 * case.
3342 */
3344{
3345 HRESULT hres;
3346 VARTYPE lvt, rvt, resvt, tvt;
3347 VARIANT lv, rv, tv;
3348 VARIANT tempLeft, tempRight;
3349 double r8res;
3350
3351 /* Variant priority for coercion. Sorted from lowest to highest.
3352 VT_ERROR shows an invalid input variant type. */
3353 enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3354 vt_DECIMAL, vt_NULL, vt_ERROR };
3355 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3356 static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3358
3359 /* Mapping for coercion from input variant to priority of result variant. */
3360 static const VARTYPE coerce[] = {
3361 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3362 vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3363 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3364 vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3365 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3366 vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3367 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3368 vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3369 };
3370
3372
3373 VariantInit(&lv);
3374 VariantInit(&rv);
3375 VariantInit(&tv);
3376 VariantInit(&tempLeft);
3377 VariantInit(&tempRight);
3378
3379 /* Handle VT_DISPATCH by storing and taking address of returned value */
3380 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3381 {
3382 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3383 if (FAILED(hres)) goto end;
3384 left = &tempLeft;
3385 }
3386 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3387 {
3388 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3389 if (FAILED(hres)) goto end;
3390 right = &tempRight;
3391 }
3392
3393 lvt = V_VT(left)&VT_TYPEMASK;
3394 rvt = V_VT(right)&VT_TYPEMASK;
3395
3396 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3397 Same for any input variant type > VT_I8 */
3398 if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3399 lvt > VT_I8 || rvt > VT_I8) {
3401 goto end;
3402 }
3403
3404 /* Determine the variant type to coerce to. */
3405 if (coerce[lvt] > coerce[rvt]) {
3406 resvt = prio2vt[coerce[lvt]];
3407 tvt = prio2vt[coerce[rvt]];
3408 } else {
3409 resvt = prio2vt[coerce[rvt]];
3410 tvt = prio2vt[coerce[lvt]];
3411 }
3412
3413 /* Special cases where the result variant type is defined by both
3414 input variants and not only that with the highest priority */
3415 if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3416 resvt = VT_R8;
3417 if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3418 resvt = VT_I2;
3419
3420 /* For overflow detection use the biggest compatible type for the
3421 multiplication */
3422 switch (resvt) {
3423 case VT_ERROR:
3425 goto end;
3426 case VT_NULL:
3427 hres = S_OK;
3428 V_VT(result) = VT_NULL;
3429 goto end;
3430 case VT_UI1:
3431 case VT_I2:
3432 case VT_I4:
3433 case VT_I8:
3434 tvt = VT_I8;
3435 break;
3436 case VT_R4:
3437 tvt = VT_R8;
3438 break;
3439 default:
3440 tvt = resvt;
3441 }
3442
3443 /* Now coerce the variants */
3444 hres = VariantChangeType(&lv, left, 0, tvt);
3445 if (FAILED(hres))
3446 goto end;
3447 hres = VariantChangeType(&rv, right, 0, tvt);
3448 if (FAILED(hres))
3449 goto end;
3450
3451 /* Do the math */
3452 hres = S_OK;
3453 V_VT(&tv) = tvt;
3454 V_VT(result) = resvt;
3455 switch (tvt) {
3456 case VT_DECIMAL:
3457 hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3458 &V_DECIMAL(result));
3459 goto end;
3460 case VT_CY:
3461 hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3462 goto end;
3463 case VT_I8:
3464 /* Overflow detection */
3465 r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3466 if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3467 V_VT(result) = VT_R8;
3468 V_R8(result) = r8res;
3469 goto end;
3470 } else
3471 V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3472 break;
3473 case VT_R8:
3474 /* FIXME: overflow detection */
3475 V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3476 break;
3477 default:
3478 ERR("We shouldn't get here! tvt = %d!\n", tvt);
3479 break;
3480 }
3481 if (resvt != tvt) {
3482 while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3483 /* Overflow! Change to the vartype with the next higher priority.
3484 With one exception: I4 ==> R8 even if it would fit in I8 */
3485 if (resvt == VT_I4)
3486 resvt = VT_R8;
3487 else
3488 resvt = prio2vt[coerce[resvt] + 1];
3489 }
3490 } else
3491 hres = VariantCopy(result, &tv);
3492
3493end:
3494 if (hres != S_OK) {
3495 V_VT(result) = VT_EMPTY;
3496 V_I4(result) = 0; /* No V_EMPTY */
3497 }
3498 VariantClear(&lv);
3499 VariantClear(&rv);
3500 VariantClear(&tv);
3501 VariantClear(&tempLeft);
3502 VariantClear(&tempRight);
3503 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3504 return hres;
3505}
3506
3507/**********************************************************************
3508 * VarDiv [OLEAUT32.143]
3509 *
3510 * Divides one variant with another.
3511 *
3512 * PARAMS
3513 * left [I] First variant
3514 * right [I] Second variant
3515 * result [O] Result variant
3516 *
3517 * RETURNS
3518 * Success: S_OK.
3519 * Failure: An HRESULT error code indicating the error.
3520 */
3522{
3523 HRESULT hres = S_OK;
3524 VARTYPE resvt = VT_EMPTY;
3525 VARTYPE leftvt,rightvt;
3526 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3527 VARIANT lv,rv;
3528 VARIANT tempLeft, tempRight;
3529
3530 VariantInit(&tempLeft);
3531 VariantInit(&tempRight);
3532 VariantInit(&lv);
3533 VariantInit(&rv);
3534
3536
3537 /* Handle VT_DISPATCH by storing and taking address of returned value */
3538 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3539 {
3540 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3541 if (FAILED(hres)) goto end;
3542 left = &tempLeft;
3543 }
3544 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3545 {
3546 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3547 if (FAILED(hres)) goto end;
3548 right = &tempRight;
3549 }
3550
3551 leftvt = V_VT(left)&VT_TYPEMASK;
3552 rightvt = V_VT(right)&VT_TYPEMASK;
3553 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3554 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3555
3556 if (leftExtraFlags != rightExtraFlags)
3557 {
3559 goto end;
3560 }
3561 ExtraFlags = leftExtraFlags;
3562
3563 /* Native VarDiv always returns an error when using extra flags */
3564 if (ExtraFlags != 0)
3565 {
3567 goto end;
3568 }
3569
3570 /* Determine return type */
3571 if (rightvt != VT_EMPTY)
3572 {
3573 if (leftvt == VT_NULL || rightvt == VT_NULL)
3574 {
3575 V_VT(result) = VT_NULL;
3576 hres = S_OK;
3577 goto end;
3578 }
3579 else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3580 resvt = VT_DECIMAL;
3581 else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3582 leftvt == VT_CY || rightvt == VT_CY ||
3583 leftvt == VT_DATE || rightvt == VT_DATE ||
3584 leftvt == VT_I4 || rightvt == VT_I4 ||
3585 leftvt == VT_BSTR || rightvt == VT_BSTR ||
3586 leftvt == VT_I2 || rightvt == VT_I2 ||
3587 leftvt == VT_BOOL || rightvt == VT_BOOL ||
3588 leftvt == VT_R8 || rightvt == VT_R8 ||
3589 leftvt == VT_UI1 || rightvt == VT_UI1)
3590 {
3591 if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3592 (leftvt == VT_R4 && rightvt == VT_UI1))
3593 resvt = VT_R4;
3594 else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3595 rightvt == VT_I2)) || (rightvt == VT_R4 &&
3596 (leftvt == VT_BOOL || leftvt == VT_I2)))
3597 resvt = VT_R4;
3598 else
3599 resvt = VT_R8;
3600 }
3601 else if (leftvt == VT_R4 || rightvt == VT_R4)
3602 resvt = VT_R4;
3603 }
3604 else if (leftvt == VT_NULL)
3605 {
3606 V_VT(result) = VT_NULL;
3607 hres = S_OK;
3608 goto end;
3609 }
3610 else
3611 {
3613 goto end;
3614 }
3615
3616 /* coerce to the result type */
3617 hres = VariantChangeType(&lv, left, 0, resvt);
3618 if (hres != S_OK) goto end;
3619
3620 hres = VariantChangeType(&rv, right, 0, resvt);
3621 if (hres != S_OK) goto end;
3622
3623 /* do the math */
3624 V_VT(result) = resvt;
3625 switch (resvt)
3626 {
3627 case VT_R4:
3628 if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3629 {
3631 V_VT(result) = VT_EMPTY;
3632 }
3633 else if (V_R4(&rv) == 0.0)
3634 {
3636 V_VT(result) = VT_EMPTY;
3637 }
3638 else
3639 V_R4(result) = V_R4(&lv) / V_R4(&rv);
3640 break;
3641 case VT_R8:
3642 if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3643 {
3645 V_VT(result) = VT_EMPTY;
3646 }
3647 else if (V_R8(&rv) == 0.0)
3648 {
3650 V_VT(result) = VT_EMPTY;
3651 }
3652 else
3653 V_R8(result) = V_R8(&lv) / V_R8(&rv);
3654 break;
3655 case VT_DECIMAL:
3656 hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3657 break;
3658 }
3659
3660end:
3661 VariantClear(&lv);
3662 VariantClear(&rv);
3663 VariantClear(&tempLeft);
3664 VariantClear(&tempRight);
3665 TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3666 return hres;
3667}
3668
3669/**********************************************************************
3670 * VarSub [OLEAUT32.159]
3671 *
3672 * Subtract two variants.
3673 *
3674 * PARAMS
3675 * left [I] First variant
3676 * right [I] Second variant
3677 * result [O] Result variant
3678 *
3679 * RETURNS
3680 * Success: S_OK.
3681 * Failure: An HRESULT error code indicating the error.
3682 */
3684{
3685 HRESULT hres = S_OK;
3686 VARTYPE resvt = VT_EMPTY;
3687 VARTYPE leftvt,rightvt;
3688 VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3689 VARIANT lv,rv;
3690 VARIANT tempLeft, tempRight;
3691
3692 VariantInit(&lv);
3693 VariantInit(&rv);
3694 VariantInit(&tempLeft);
3695 VariantInit(&tempRight);
3696
3698
3699 if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3700 (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3701 (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3702 {
3703 if (NULL == V_DISPATCH(left)) {
3704 if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3706 else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3709 else switch (V_VT(right) & VT_TYPEMASK)
3710 {
3711 case VT_VARIANT:
3712 case VT_UNKNOWN:
3713 case 15:
3714 case VT_I1:
3715 case VT_UI2:
3716 case VT_UI4:
3718 }
3719 if (FAILED(hres)) goto end;
3720 }
3721 hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3722 if (FAILED(hres)) goto end;
3723 left = &tempLeft;
3724 }
3725 if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3726 (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3727 (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3728 {
3729 if (NULL == V_DISPATCH(right))
3730 {
3731 if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3733 else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3736 else switch (V_VT(left) & VT_TYPEMASK)
3737 {
3738 case VT_VARIANT:
3739 case VT_UNKNOWN:
3740 case 15:
3741 case VT_I1:
3742 case VT_UI2:
3743 case VT_UI4:
3745 }
3746 if (FAILED(hres)) goto end;
3747 }
3748 hres = VARIANT_FetchDispatchValue(right, &tempRight);
3749 if (FAILED(hres)) goto end;
3750 right = &tempRight;
3751 }
3752
3753 leftvt = V_VT(left)&VT_TYPEMASK;
3754 rightvt = V_VT(right)&VT_TYPEMASK;
3755 leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3756 rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3757
3758 if (leftExtraFlags != rightExtraFlags)
3759 {
3761 goto end;
3762 }
3763 ExtraFlags = leftExtraFlags;
3764
3765 /* determine return type and return code */
3766 /* All extra flags produce errors */
3771 ExtraFlags == VT_VECTOR ||
3772 ExtraFlags == VT_BYREF ||
3774 {
3776 goto end;
3777 }
3778 else if (ExtraFlags >= VT_ARRAY)
3779 {
3781 goto end;
3782 }
3783 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3784 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3785 else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3786 leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3787 leftvt == VT_I1 || rightvt == VT_I1 ||
3788 leftvt == VT_UI2 || rightvt == VT_UI2 ||
3789 leftvt == VT_UI4 || rightvt == VT_UI4 ||
3790 leftvt == VT_UI8 || rightvt == VT_UI8 ||
3791 leftvt == VT_INT || rightvt == VT_INT ||
3792 leftvt == VT_UINT || rightvt == VT_UINT ||
3793 leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3794 leftvt == VT_RECORD || rightvt == VT_RECORD)
3795 {
3796 if (leftvt == VT_RECORD && rightvt == VT_I8)
3798 else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3800 else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3802 else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3804 else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3806 else
3808 goto end;
3809 }
3810 /* The following flags/types are invalid for left variant */
3811 else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3812 leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3813 (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3814 {
3815 hres =