ReactOS  0.4.14-dev-583-g2a1ba2c
variant.c
Go to the documentation of this file.
1 /*
2  * VARIANT
3  *
4  * Copyright 1998 Jean-Claude Cote
5  * Copyright 2003 Jon Griffiths
6  * Copyright 2005 Daniel Remenak
7  * Copyright 2006 Google (Benjamin Arai)
8  *
9  * The algorithm for conversion from Julian days to day/month/year is based on
10  * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11  * Copyright 1994-7 Regents of the University of California
12  *
13  * This library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * This library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with this library; if not, write to the Free Software
25  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
26  */
27 
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdarg.h>
31 
32 #define COBJMACROS
33 #define NONAMELESSUNION
34 #define NONAMELESSSTRUCT
35 
36 #include "windef.h"
37 #include "winbase.h"
38 #include "winerror.h"
39 #include "variant.h"
40 #include "resource.h"
41 #include "wine/debug.h"
42 
44 
47 {
48  0, 0, &cache_cs,
50  0, 0, { (DWORD_PTR)(__FILE__ ": cache_cs") }
51 };
52 static CRITICAL_SECTION cache_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
53 
54 /* Convert a variant from one type to another */
56  VARIANTARG* ps, VARTYPE vt)
57 {
59  VARTYPE vtFrom = V_TYPE(ps);
60  DWORD dwFlags = 0;
61 
62  TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd), lcid, wFlags,
63  debugstr_variant(ps), debugstr_vt(vt));
64 
65  if (vt == VT_BSTR || vtFrom == VT_BSTR)
66  {
67  /* All flags passed to low level function are only used for
68  * changing to or from strings. Map these here.
69  */
80  if (wFlags & VARIANT_USE_NLS)
82  }
83 
84  /* Map int/uint to i4/ui4 */
85  if (vt == VT_INT)
86  vt = VT_I4;
87  else if (vt == VT_UINT)
88  vt = VT_UI4;
89 
90  if (vtFrom == VT_INT)
91  vtFrom = VT_I4;
92  else if (vtFrom == VT_UINT)
93  vtFrom = VT_UI4;
94 
95  if (vt == vtFrom)
96  return VariantCopy(pd, ps);
97 
98  if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN)
99  {
100  /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
101  * accessing the default object property.
102  */
103  return DISP_E_TYPEMISMATCH;
104  }
105 
106  switch (vt)
107  {
108  case VT_EMPTY:
109  if (vtFrom == VT_NULL)
110  return DISP_E_TYPEMISMATCH;
111  /* ... Fall through */
112  case VT_NULL:
113  if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR)
114  {
115  res = VariantClear( pd );
116  if (vt == VT_NULL && SUCCEEDED(res))
117  V_VT(pd) = VT_NULL;
118  }
119  return res;
120 
121  case VT_I1:
122  switch (vtFrom)
123  {
124  case VT_EMPTY: V_I1(pd) = 0; return S_OK;
125  case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd));
126  case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd));
127  case VT_UI1: V_I1(pd) = V_UI1(ps); return S_OK;
128  case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd));
129  case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd));
130  case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd));
131  case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd));
132  case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd));
133  case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd));
134  case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd));
135  case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd));
136  case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd));
137  case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) );
138  case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) );
139  case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) );
140  }
141  break;
142 
143  case VT_I2:
144  switch (vtFrom)
145  {
146  case VT_EMPTY: V_I2(pd) = 0; return S_OK;
147  case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd));
148  case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd));
149  case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd));
150  case VT_UI2: V_I2(pd) = V_UI2(ps); return S_OK;
151  case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd));
152  case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd));
153  case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd));
154  case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd));
155  case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd));
156  case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd));
157  case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd));
158  case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd));
159  case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd));
160  case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd));
161  case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd));
162  }
163  break;
164 
165  case VT_I4:
166  switch (vtFrom)
167  {
168  case VT_EMPTY: V_I4(pd) = 0; return S_OK;
169  case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd));
170  case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd));
171  case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd));
172  case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd));
173  case VT_UI4: V_I4(pd) = V_UI4(ps); return S_OK;
174  case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd));
175  case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd));
176  case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd));
177  case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd));
178  case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd));
179  case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd));
180  case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd));
181  case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd));
182  case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd));
183  case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd));
184  }
185  break;
186 
187  case VT_UI1:
188  switch (vtFrom)
189  {
190  case VT_EMPTY: V_UI1(pd) = 0; return S_OK;
191  case VT_I1: V_UI1(pd) = V_I1(ps); return S_OK;
192  case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd));
193  case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd));
194  case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd));
195  case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd));
196  case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd));
197  case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd));
198  case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd));
199  case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd));
200  case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd));
201  case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd));
202  case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd));
203  case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd));
204  case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd));
205  case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd));
206  }
207  break;
208 
209  case VT_UI2:
210  switch (vtFrom)
211  {
212  case VT_EMPTY: V_UI2(pd) = 0; return S_OK;
213  case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd));
214  case VT_I2: V_UI2(pd) = V_I2(ps); return S_OK;
215  case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd));
216  case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd));
217  case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd));
218  case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
219  case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
220  case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd));
221  case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd));
222  case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd));
223  case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd));
224  case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd));
225  case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd));
226  case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd));
227  case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd));
228  }
229  break;
230 
231  case VT_UI4:
232  switch (vtFrom)
233  {
234  case VT_EMPTY: V_UI4(pd) = 0; return S_OK;
235  case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd));
236  case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd));
237  case VT_I4: V_UI4(pd) = V_I4(ps); return S_OK;
238  case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd));
239  case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd));
240  case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd));
241  case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd));
242  case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd));
243  case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd));
244  case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd));
245  case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd));
246  case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd));
247  case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd));
248  case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd));
249  case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd));
250  }
251  break;
252 
253  case VT_UI8:
254  switch (vtFrom)
255  {
256  case VT_EMPTY: V_UI8(pd) = 0; return S_OK;
257  case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK;
258  case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd));
259  case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd));
260  case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd));
261  case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd));
262  case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd));
263  case VT_I8: V_UI8(pd) = V_I8(ps); return S_OK;
264  case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd));
265  case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd));
266  case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd));
267  case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd));
268  case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd));
269  case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd));
270  case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd));
271  case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd));
272  }
273  break;
274 
275  case VT_I8:
276  switch (vtFrom)
277  {
278  case VT_EMPTY: V_I8(pd) = 0; return S_OK;
279  case VT_I4: V_I8(pd) = V_I4(ps); return S_OK;
280  case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd));
281  case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd));
282  case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd));
283  case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd));
284  case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd));
285  case VT_UI8: V_I8(pd) = V_UI8(ps); return S_OK;
286  case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd));
287  case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd));
288  case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd));
289  case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd));
290  case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd));
291  case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd));
292  case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd));
293  case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd));
294  }
295  break;
296 
297  case VT_R4:
298  switch (vtFrom)
299  {
300  case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK;
301  case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd));
302  case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd));
303  case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd));
304  case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd));
305  case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd));
306  case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd));
307  case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd));
308  case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd));
309  case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd));
310  case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd));
311  case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd));
312  case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd));
313  case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd));
314  case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd));
315  case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd));
316  }
317  break;
318 
319  case VT_R8:
320  switch (vtFrom)
321  {
322  case VT_EMPTY: V_R8(pd) = 0.0; return S_OK;
323  case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd));
324  case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd));
325  case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd));
326  case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd));
327  case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd));
328  case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd));
329  case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd));
330  case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd));
331  case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd));
332  case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd));
333  case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd));
334  case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd));
335  case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd));
336  case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd));
337  case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd));
338  }
339  break;
340 
341  case VT_DATE:
342  switch (vtFrom)
343  {
344  case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK;
345  case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd));
346  case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd));
347  case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd));
348  case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd));
349  case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd));
350  case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd));
351  case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd));
352  case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd));
353  case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd));
354  case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd));
355  case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd));
356  case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd));
357  case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd));
358  case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd));
359  case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd));
360  }
361  break;
362 
363  case VT_BOOL:
364  switch (vtFrom)
365  {
366  case VT_EMPTY: V_BOOL(pd) = 0; return S_OK;
367  case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd));
368  case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd));
369  case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd));
370  case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd));
371  case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd));
372  case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd));
373  case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd));
374  case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd));
375  case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd));
376  case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd));
377  case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd));
378  case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd));
379  case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd));
380  case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd));
381  case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd));
382  }
383  break;
384 
385  case VT_BSTR:
386  switch (vtFrom)
387  {
388  case VT_EMPTY:
389  V_BSTR(pd) = SysAllocStringLen(NULL, 0);
390  return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY;
391  case VT_BOOL:
393  return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
394  return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd));
395  case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd));
396  case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd));
397  case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd));
398  case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd));
399  case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd));
400  case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd));
401  case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd));
402  case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd));
403  case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd));
404  case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd));
405  case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd));
406  case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd));
407  case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd));
408  case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd));
409  }
410  break;
411 
412  case VT_CY:
413  switch (vtFrom)
414  {
415  case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK;
416  case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd));
417  case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd));
418  case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd));
419  case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd));
420  case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd));
421  case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd));
422  case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd));
423  case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd));
424  case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd));
425  case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd));
426  case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd));
427  case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd));
428  case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd));
429  case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd));
430  case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd));
431  }
432  break;
433 
434  case VT_DECIMAL:
435  switch (vtFrom)
436  {
437  case VT_EMPTY:
438  case VT_BOOL:
440  DEC_HI32(&V_DECIMAL(pd)) = 0;
441  DEC_MID32(&V_DECIMAL(pd)) = 0;
442  /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
443  * VT_NULL and VT_EMPTY always give a 0 value.
444  */
445  DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0;
446  return S_OK;
447  case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd));
448  case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd));
449  case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd));
450  case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd));
451  case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd));
452  case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd));
453  case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd));
454  case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd));
455  case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd));
456  case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd));
457  case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd));
458  case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd));
459  case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd));
460  case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd));
461  }
462  break;
463 
464  case VT_UNKNOWN:
465  switch (vtFrom)
466  {
467  case VT_DISPATCH:
468  if (V_DISPATCH(ps) == NULL)
469  {
470  V_UNKNOWN(pd) = NULL;
471  res = S_OK;
472  }
473  else
474  res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd));
475  break;
476  }
477  break;
478 
479  case VT_DISPATCH:
480  switch (vtFrom)
481  {
482  case VT_UNKNOWN:
483  if (V_UNKNOWN(ps) == NULL)
484  {
485  V_DISPATCH(pd) = NULL;
486  res = S_OK;
487  }
488  else
489  res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd));
490  break;
491  }
492  break;
493 
494  case VT_RECORD:
495  break;
496  }
497  return res;
498 }
499 
500 /* Coerce to/from an array */
502 {
503  if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1))
504  return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd));
505 
506  if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1))
507  return VectorFromBstr(V_BSTR(ps), &V_ARRAY(pd));
508 
509  if (V_VT(ps) == vt)
510  return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd));
511 
512  return DISP_E_TYPEMISMATCH;
513 }
514 
516 {
517  HRESULT hres;
518  static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
519 
520  if ((V_VT(pvDispatch) & VT_TYPEMASK) == VT_DISPATCH) {
521  if (NULL == V_DISPATCH(pvDispatch)) return DISP_E_TYPEMISMATCH;
522  hres = IDispatch_Invoke(V_DISPATCH(pvDispatch), DISPID_VALUE, &IID_NULL,
523  LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET, &emptyParams, pValue,
524  NULL, NULL);
525  } else {
527  }
528  return hres;
529 }
530 
531 /******************************************************************************
532  * Check if a variants type is valid.
533  */
535 {
536  VARTYPE vtExtra = vt & VT_EXTRA_TYPE;
537 
538  vt &= VT_TYPEMASK;
539 
540  if (!(vtExtra & (VT_VECTOR|VT_RESERVED)))
541  {
542  if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID)
543  {
544  if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL)
545  return DISP_E_BADVARTYPE;
546  if (vt != (VARTYPE)15)
547  return S_OK;
548  }
549  }
550  return DISP_E_BADVARTYPE;
551 }
552 
553 /******************************************************************************
554  * VariantInit [OLEAUT32.8]
555  *
556  * Initialise a variant.
557  *
558  * PARAMS
559  * pVarg [O] Variant to initialise
560  *
561  * RETURNS
562  * Nothing.
563  *
564  * NOTES
565  * This function simply sets the type of the variant to VT_EMPTY. It does not
566  * free any existing value, use VariantClear() for that.
567  */
569 {
570  TRACE("(%p)\n", pVarg);
571 
572  /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
573  V_VT(pVarg) = VT_EMPTY;
574 }
575 
577 {
578  HRESULT hres;
579 
580  TRACE("(%s)\n", debugstr_variant(pVarg));
581 
582  hres = VARIANT_ValidateType(V_VT(pVarg));
583  if (FAILED(hres))
584  return hres;
585 
586  switch (V_VT(pVarg))
587  {
588  case VT_DISPATCH:
589  case VT_UNKNOWN:
590  if (V_UNKNOWN(pVarg))
591  IUnknown_Release(V_UNKNOWN(pVarg));
592  break;
593  case VT_UNKNOWN | VT_BYREF:
594  case VT_DISPATCH | VT_BYREF:
595  if(*V_UNKNOWNREF(pVarg))
596  IUnknown_Release(*V_UNKNOWNREF(pVarg));
597  break;
598  case VT_BSTR:
599  SysFreeString(V_BSTR(pVarg));
600  break;
601  case VT_BSTR | VT_BYREF:
602  SysFreeString(*V_BSTRREF(pVarg));
603  break;
604  case VT_VARIANT | VT_BYREF:
605  VariantClear(V_VARIANTREF(pVarg));
606  break;
607  case VT_RECORD:
608  case VT_RECORD | VT_BYREF:
609  {
610  struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
611  if (pBr->pRecInfo)
612  {
613  IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
614  IRecordInfo_Release(pBr->pRecInfo);
615  }
616  break;
617  }
618  default:
619  if (V_ISARRAY(pVarg) || (V_VT(pVarg) & ~VT_BYREF) == VT_SAFEARRAY)
620  {
621  if (V_ISBYREF(pVarg))
622  {
623  if (*V_ARRAYREF(pVarg))
624  hres = SafeArrayDestroy(*V_ARRAYREF(pVarg));
625  }
626  else if (V_ARRAY(pVarg))
627  hres = SafeArrayDestroy(V_ARRAY(pVarg));
628  }
629  break;
630  }
631 
632  V_VT(pVarg) = VT_EMPTY;
633  return hres;
634 }
635 
636 /******************************************************************************
637  * VariantClear [OLEAUT32.9]
638  *
639  * Clear a variant.
640  *
641  * PARAMS
642  * pVarg [I/O] Variant to clear
643  *
644  * RETURNS
645  * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
646  * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
647  */
649 {
650  HRESULT hres;
651 
652  TRACE("(%s)\n", debugstr_variant(pVarg));
653 
654  hres = VARIANT_ValidateType(V_VT(pVarg));
655 
656  if (SUCCEEDED(hres))
657  {
658  if (!V_ISBYREF(pVarg))
659  {
660  if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY)
661  {
662  hres = SafeArrayDestroy(V_ARRAY(pVarg));
663  }
664  else if (V_VT(pVarg) == VT_BSTR)
665  {
666  SysFreeString(V_BSTR(pVarg));
667  }
668  else if (V_VT(pVarg) == VT_RECORD)
669  {
670  struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal);
671  if (pBr->pRecInfo)
672  {
673  IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord);
674  IRecordInfo_Release(pBr->pRecInfo);
675  }
676  }
677  else if (V_VT(pVarg) == VT_DISPATCH ||
678  V_VT(pVarg) == VT_UNKNOWN)
679  {
680  if (V_UNKNOWN(pVarg))
681  IUnknown_Release(V_UNKNOWN(pVarg));
682  }
683  }
684  V_VT(pVarg) = VT_EMPTY;
685  }
686  return hres;
687 }
688 
689 /******************************************************************************
690  * Copy an IRecordInfo object contained in a variant.
691  */
693 {
694  struct __tagBRECORD *dest_rec = &V_UNION(dest, brecVal);
695  struct __tagBRECORD *src_rec = &V_UNION(src, brecVal);
696  HRESULT hr = S_OK;
697  ULONG size;
698 
699  if (!src_rec->pRecInfo)
700  {
701  if (src_rec->pvRecord) return E_INVALIDARG;
702  return S_OK;
703  }
704 
705  hr = IRecordInfo_GetSize(src_rec->pRecInfo, &size);
706  if (FAILED(hr)) return hr;
707 
708  /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
709  Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
710  could free it later. */
711  dest_rec->pvRecord = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, size);
712  if (!dest_rec->pvRecord) return E_OUTOFMEMORY;
713 
714  dest_rec->pRecInfo = src_rec->pRecInfo;
715  IRecordInfo_AddRef(src_rec->pRecInfo);
716 
717  return IRecordInfo_RecordCopy(src_rec->pRecInfo, src_rec->pvRecord, dest_rec->pvRecord);
718 }
719 
720 /******************************************************************************
721  * VariantCopy [OLEAUT32.10]
722  *
723  * Copy a variant.
724  *
725  * PARAMS
726  * pvargDest [O] Destination for copy
727  * pvargSrc [I] Source variant to copy
728  *
729  * RETURNS
730  * Success: S_OK. pvargDest contains a copy of pvargSrc.
731  * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
732  * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
733  * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
734  * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
735  *
736  * NOTES
737  * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
738  * pvargSrc is valid. Otherwise, pvargDest is always cleared using
739  * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
740  * fails, so does this function.
741  * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
742  * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
743  * is copied rather than just any pointers to it.
744  * - For by-value object types the object pointer is copied and the objects
745  * reference count increased using IUnknown_AddRef().
746  * - For all by-reference types, only the referencing pointer is copied.
747  */
749 {
750  HRESULT hres = S_OK;
751 
752  TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
753 
754  if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */
755  FAILED(VARIANT_ValidateType(V_VT(pvargSrc))))
756  return DISP_E_BADVARTYPE;
757 
758  if (pvargSrc != pvargDest &&
759  SUCCEEDED(hres = VariantClear(pvargDest)))
760  {
761  *pvargDest = *pvargSrc; /* Shallow copy the value */
762 
763  if (!V_ISBYREF(pvargSrc))
764  {
765  switch (V_VT(pvargSrc))
766  {
767  case VT_BSTR:
768  V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc)));
769  if (!V_BSTR(pvargDest))
771  break;
772  case VT_RECORD:
773  hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
774  break;
775  case VT_DISPATCH:
776  case VT_UNKNOWN:
777  V_UNKNOWN(pvargDest) = V_UNKNOWN(pvargSrc);
778  if (V_UNKNOWN(pvargSrc))
779  IUnknown_AddRef(V_UNKNOWN(pvargSrc));
780  break;
781  default:
782  if (V_ISARRAY(pvargSrc))
783  hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest));
784  }
785  }
786  }
787  return hres;
788 }
789 
790 /* Return the byte size of a variants data */
791 static inline size_t VARIANT_DataSize(const VARIANT* pv)
792 {
793  switch (V_TYPE(pv))
794  {
795  case VT_I1:
796  case VT_UI1: return sizeof(BYTE);
797  case VT_I2:
798  case VT_UI2: return sizeof(SHORT);
799  case VT_INT:
800  case VT_UINT:
801  case VT_I4:
802  case VT_UI4: return sizeof(LONG);
803  case VT_I8:
804  case VT_UI8: return sizeof(LONGLONG);
805  case VT_R4: return sizeof(float);
806  case VT_R8: return sizeof(double);
807  case VT_DATE: return sizeof(DATE);
808  case VT_BOOL: return sizeof(VARIANT_BOOL);
809  case VT_DISPATCH:
810  case VT_UNKNOWN:
811  case VT_BSTR: return sizeof(void*);
812  case VT_CY: return sizeof(CY);
813  case VT_ERROR: return sizeof(SCODE);
814  }
815  TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv));
816  return 0;
817 }
818 
819 /******************************************************************************
820  * VariantCopyInd [OLEAUT32.11]
821  *
822  * Copy a variant, dereferencing it if it is by-reference.
823  *
824  * PARAMS
825  * pvargDest [O] Destination for copy
826  * pvargSrc [I] Source variant to copy
827  *
828  * RETURNS
829  * Success: S_OK. pvargDest contains a copy of pvargSrc.
830  * Failure: An HRESULT error code indicating the error.
831  *
832  * NOTES
833  * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
834  * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
835  * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
836  * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
837  * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
838  *
839  * NOTES
840  * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
841  * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
842  * value.
843  * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
844  * pvargDest is always cleared using VariantClear() before pvargSrc is copied
845  * to it. If clearing pvargDest fails, so does this function.
846  */
848 {
849  VARIANTARG vTmp, *pSrc = pvargSrc;
850  VARTYPE vt;
851  HRESULT hres = S_OK;
852 
853  TRACE("(%s,%s)\n", debugstr_variant(pvargDest), debugstr_variant(pvargSrc));
854 
855  if (!V_ISBYREF(pvargSrc))
856  return VariantCopy(pvargDest, pvargSrc);
857 
858  /* Argument checking is more lax than VariantCopy()... */
859  vt = V_TYPE(pvargSrc);
860  if (V_ISARRAY(pvargSrc) || (V_VT(pvargSrc) == (VT_RECORD|VT_BYREF)) ||
861  (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID &&
862  !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED))))
863  {
864  /* OK */
865  }
866  else
867  return E_INVALIDARG; /* ...And the return value for invalid types differs too */
868 
869  if (pvargSrc == pvargDest)
870  {
871  /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
872  * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
873  */
874  vTmp = *pvargSrc;
875  pSrc = &vTmp;
876  V_VT(pvargDest) = VT_EMPTY;
877  }
878  else
879  {
880  /* Copy into another variant. Free the variant in pvargDest */
881  if (FAILED(hres = VariantClear(pvargDest)))
882  {
883  TRACE("VariantClear() of destination failed\n");
884  return hres;
885  }
886  }
887 
888  if (V_ISARRAY(pSrc))
889  {
890  /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
891  hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest));
892  }
893  else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF))
894  {
895  /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
896  V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc)));
897  }
898  else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF))
899  {
900  hres = VARIANT_CopyIRecordInfo(pvargDest, pvargSrc);
901  }
902  else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) ||
903  V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF))
904  {
905  /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
906  V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc);
907  if (*V_UNKNOWNREF(pSrc))
908  IUnknown_AddRef(*V_UNKNOWNREF(pSrc));
909  }
910  else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF))
911  {
912  /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
913  if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF))
914  hres = E_INVALIDARG; /* Don't dereference more than one level */
915  else
916  hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc));
917 
918  /* Use the dereferenced variants type value, not VT_VARIANT */
919  goto VariantCopyInd_Return;
920  }
921  else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF))
922  {
923  memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)),
924  sizeof(DECIMAL) - sizeof(USHORT));
925  }
926  else
927  {
928  /* Copy the pointed to data into this variant */
929  memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc));
930  }
931 
932  V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF;
933 
934 VariantCopyInd_Return:
935 
936  if (pSrc != pvargSrc)
937  VariantClear(pSrc);
938 
939  TRACE("returning 0x%08x, %s\n", hres, debugstr_variant(pvargDest));
940  return hres;
941 }
942 
943 /******************************************************************************
944  * VariantChangeType [OLEAUT32.12]
945  *
946  * Change the type of a variant.
947  *
948  * PARAMS
949  * pvargDest [O] Destination for the converted variant
950  * pvargSrc [O] Source variant to change the type of
951  * wFlags [I] VARIANT_ flags from "oleauto.h"
952  * vt [I] Variant type to change pvargSrc into
953  *
954  * RETURNS
955  * Success: S_OK. pvargDest contains the converted value.
956  * Failure: An HRESULT error code describing the failure.
957  *
958  * NOTES
959  * The LCID used for the conversion is LOCALE_USER_DEFAULT.
960  * See VariantChangeTypeEx.
961  */
964 {
965  return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt );
966 }
967 
968 /******************************************************************************
969  * VariantChangeTypeEx [OLEAUT32.147]
970  *
971  * Change the type of a variant.
972  *
973  * PARAMS
974  * pvargDest [O] Destination for the converted variant
975  * pvargSrc [O] Source variant to change the type of
976  * lcid [I] LCID for the conversion
977  * wFlags [I] VARIANT_ flags from "oleauto.h"
978  * vt [I] Variant type to change pvargSrc into
979  *
980  * RETURNS
981  * Success: S_OK. pvargDest contains the converted value.
982  * Failure: An HRESULT error code describing the failure.
983  *
984  * NOTES
985  * pvargDest and pvargSrc can point to the same variant to perform an in-place
986  * conversion. If the conversion is successful, pvargSrc will be freed.
987  */
989  LCID lcid, USHORT wFlags, VARTYPE vt)
990 {
991  HRESULT res = S_OK;
992 
993  TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest),
994  debugstr_variant(pvargSrc), lcid, wFlags, debugstr_vt(vt));
995 
996  if (vt == VT_CLSID)
998  else
999  {
1000  res = VARIANT_ValidateType(V_VT(pvargSrc));
1001 
1002  if (SUCCEEDED(res))
1003  {
1005 
1006  if (SUCCEEDED(res))
1007  {
1008  VARIANTARG vTmp, vSrcDeref;
1009 
1010  if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc))
1012  else
1013  {
1014  V_VT(&vTmp) = VT_EMPTY;
1015  V_VT(&vSrcDeref) = VT_EMPTY;
1016  VariantClear(&vTmp);
1017  VariantClear(&vSrcDeref);
1018  }
1019 
1020  if (SUCCEEDED(res))
1021  {
1022  res = VariantCopyInd(&vSrcDeref, pvargSrc);
1023  if (SUCCEEDED(res))
1024  {
1025  if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY))
1026  res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt);
1027  else
1028  res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt);
1029 
1030  if (SUCCEEDED(res)) {
1031  V_VT(&vTmp) = vt;
1032  res = VariantCopy(pvargDest, &vTmp);
1033  }
1034  VariantClear(&vTmp);
1035  VariantClear(&vSrcDeref);
1036  }
1037  }
1038  }
1039  }
1040  }
1041 
1042  TRACE("returning 0x%08x, %s\n", res, debugstr_variant(pvargDest));
1043  return res;
1044 }
1045 
1046 /* Date Conversions */
1047 
1048 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1049 
1050 /* Convert a VT_DATE value to a Julian Date */
1051 static inline int VARIANT_JulianFromDate(int dateIn)
1052 {
1053  int julianDays = dateIn;
1054 
1055  julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */
1056  julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1057  return julianDays;
1058 }
1059 
1060 /* Convert a Julian Date to a VT_DATE value */
1061 static inline int VARIANT_DateFromJulian(int dateIn)
1062 {
1063  int julianDays = dateIn;
1064 
1065  julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */
1066  julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */
1067  return julianDays;
1068 }
1069 
1070 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1071 static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day)
1072 {
1073  int j, i, l, n;
1074 
1075  l = jd + 68569;
1076  n = l * 4 / 146097;
1077  l -= (n * 146097 + 3) / 4;
1078  i = (4000 * (l + 1)) / 1461001;
1079  l += 31 - (i * 1461) / 4;
1080  j = (l * 80) / 2447;
1081  *day = l - (j * 2447) / 80;
1082  l = j / 11;
1083  *month = (j + 2) - (12 * l);
1084  *year = 100 * (n - 49) + i + l;
1085 }
1086 
1087 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1088 static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day)
1089 {
1090  int m12 = (month - 14) / 12;
1091 
1092  return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 -
1093  (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075);
1094 }
1095 
1096 /* Macros for accessing DOS format date/time fields */
1097 #define DOS_YEAR(x) (1980 + (x >> 9))
1098 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1099 #define DOS_DAY(x) (x & 0x1f)
1100 #define DOS_HOUR(x) (x >> 11)
1101 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1102 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1103 /* Create a DOS format date/time */
1104 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1105 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1106 
1107 /* Roll a date forwards or backwards to correct it */
1109 {
1110  static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1111  short iYear, iMonth, iDay, iHour, iMinute, iSecond;
1112 
1113  /* interpret values signed */
1114  iYear = lpUd->st.wYear;
1115  iMonth = lpUd->st.wMonth;
1116  iDay = lpUd->st.wDay;
1117  iHour = lpUd->st.wHour;
1118  iMinute = lpUd->st.wMinute;
1119  iSecond = lpUd->st.wSecond;
1120 
1121  TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay, iMonth,
1122  iYear, iHour, iMinute, iSecond);
1123 
1124  if (iYear > 9999 || iYear < -9999)
1125  return E_INVALIDARG; /* Invalid value */
1126  /* Year 0 to 29 are treated as 2000 + year */
1127  if (iYear >= 0 && iYear < 30)
1128  iYear += 2000;
1129  /* Remaining years < 100 are treated as 1900 + year */
1130  else if (iYear >= 30 && iYear < 100)
1131  iYear += 1900;
1132 
1133  iMinute += iSecond / 60;
1134  iSecond = iSecond % 60;
1135  iHour += iMinute / 60;
1136  iMinute = iMinute % 60;
1137  iDay += iHour / 24;
1138  iHour = iHour % 24;
1139  iYear += iMonth / 12;
1140  iMonth = iMonth % 12;
1141  if (iMonth<=0) {iMonth+=12; iYear--;}
1142  while (iDay > days[iMonth])
1143  {
1144  if (iMonth == 2 && IsLeapYear(iYear))
1145  iDay -= 29;
1146  else
1147  iDay -= days[iMonth];
1148  iMonth++;
1149  iYear += iMonth / 12;
1150  iMonth = iMonth % 12;
1151  }
1152  while (iDay <= 0)
1153  {
1154  iMonth--;
1155  if (iMonth<=0) {iMonth+=12; iYear--;}
1156  if (iMonth == 2 && IsLeapYear(iYear))
1157  iDay += 29;
1158  else
1159  iDay += days[iMonth];
1160  }
1161 
1162  if (iSecond<0){iSecond+=60; iMinute--;}
1163  if (iMinute<0){iMinute+=60; iHour--;}
1164  if (iHour<0) {iHour+=24; iDay--;}
1165  if (iYear<=0) iYear+=2000;
1166 
1167  lpUd->st.wYear = iYear;
1168  lpUd->st.wMonth = iMonth;
1169  lpUd->st.wDay = iDay;
1170  lpUd->st.wHour = iHour;
1171  lpUd->st.wMinute = iMinute;
1172  lpUd->st.wSecond = iSecond;
1173 
1174  TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth,
1175  lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond);
1176  return S_OK;
1177 }
1178 
1179 /**********************************************************************
1180  * DosDateTimeToVariantTime [OLEAUT32.14]
1181  *
1182  * Convert a Dos format date and time into variant VT_DATE format.
1183  *
1184  * PARAMS
1185  * wDosDate [I] Dos format date
1186  * wDosTime [I] Dos format time
1187  * pDateOut [O] Destination for VT_DATE format
1188  *
1189  * RETURNS
1190  * Success: TRUE. pDateOut contains the converted time.
1191  * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1192  *
1193  * NOTES
1194  * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1195  * - Dos format times are accurate to only 2 second precision.
1196  * - The format of a Dos Date is:
1197  *| Bits Values Meaning
1198  *| ---- ------ -------
1199  *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1200  *| the days in the month rolls forward the extra days.
1201  *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1202  *| year. 13-15 are invalid.
1203  *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1204  * - The format of a Dos Time is:
1205  *| Bits Values Meaning
1206  *| ---- ------ -------
1207  *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1208  *| 5-10 0-59 Minutes. 60-63 are invalid.
1209  *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1210  */
1212  double *pDateOut)
1213 {
1214  UDATE ud;
1215 
1216  TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1217  wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate),
1218  wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime),
1219  pDateOut);
1220 
1221  ud.st.wYear = DOS_YEAR(wDosDate);
1222  ud.st.wMonth = DOS_MONTH(wDosDate);
1223  if (ud.st.wYear > 2099 || ud.st.wMonth > 12)
1224  return FALSE;
1225  ud.st.wDay = DOS_DAY(wDosDate);
1226  ud.st.wHour = DOS_HOUR(wDosTime);
1227  ud.st.wMinute = DOS_MINUTE(wDosTime);
1228  ud.st.wSecond = DOS_SECOND(wDosTime);
1229  ud.st.wDayOfWeek = ud.st.wMilliseconds = 0;
1230  if (ud.st.wHour > 23 || ud.st.wMinute > 59 || ud.st.wSecond > 59)
1231  return FALSE; /* Invalid values in Dos*/
1232 
1233  return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1234 }
1235 
1236 /**********************************************************************
1237  * VariantTimeToDosDateTime [OLEAUT32.13]
1238  *
1239  * Convert a variant format date into a Dos format date and time.
1240  *
1241  * dateIn [I] VT_DATE time format
1242  * pwDosDate [O] Destination for Dos format date
1243  * pwDosTime [O] Destination for Dos format time
1244  *
1245  * RETURNS
1246  * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1247  * Failure: FALSE, if dateIn cannot be represented in Dos format.
1248  *
1249  * NOTES
1250  * See DosDateTimeToVariantTime() for Dos format details and bugs.
1251  */
1252 INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime)
1253 {
1254  UDATE ud;
1255 
1256  TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime);
1257 
1258  if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1259  return FALSE;
1260 
1261  if (ud.st.wYear < 1980 || ud.st.wYear > 2099)
1262  return FALSE;
1263 
1264  *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear);
1265  *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond);
1266 
1267  TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1268  *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate),
1269  *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime));
1270  return TRUE;
1271 }
1272 
1273 /***********************************************************************
1274  * SystemTimeToVariantTime [OLEAUT32.184]
1275  *
1276  * Convert a System format date and time into variant VT_DATE format.
1277  *
1278  * PARAMS
1279  * lpSt [I] System format date and time
1280  * pDateOut [O] Destination for VT_DATE format date
1281  *
1282  * RETURNS
1283  * Success: TRUE. *pDateOut contains the converted value.
1284  * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1285  */
1287 {
1288  UDATE ud;
1289 
1290  TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth,
1291  lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut);
1292 
1293  if (lpSt->wMonth > 12)
1294  return FALSE;
1295  if (lpSt->wDay > 31)
1296  return FALSE;
1297  if ((short)lpSt->wYear < 0)
1298  return FALSE;
1299 
1300  ud.st = *lpSt;
1301  return VarDateFromUdate(&ud, 0, pDateOut) == S_OK;
1302 }
1303 
1304 /***********************************************************************
1305  * VariantTimeToSystemTime [OLEAUT32.185]
1306  *
1307  * Convert a variant VT_DATE into a System format date and time.
1308  *
1309  * PARAMS
1310  * datein [I] Variant VT_DATE format date
1311  * lpSt [O] Destination for System format date and time
1312  *
1313  * RETURNS
1314  * Success: TRUE. *lpSt contains the converted value.
1315  * Failure: FALSE, if dateIn is too large or small.
1316  */
1318 {
1319  UDATE ud;
1320 
1321  TRACE("(%g,%p)\n", dateIn, lpSt);
1322 
1323  if (FAILED(VarUdateFromDate(dateIn, 0, &ud)))
1324  return FALSE;
1325 
1326  *lpSt = ud.st;
1327  return TRUE;
1328 }
1329 
1330 /***********************************************************************
1331  * VarDateFromUdateEx [OLEAUT32.319]
1332  *
1333  * Convert an unpacked format date and time to a variant VT_DATE.
1334  *
1335  * PARAMS
1336  * pUdateIn [I] Unpacked format date and time to convert
1337  * lcid [I] Locale identifier for the conversion
1338  * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1339  * pDateOut [O] Destination for variant VT_DATE.
1340  *
1341  * RETURNS
1342  * Success: S_OK. *pDateOut contains the converted value.
1343  * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1344  */
1346 {
1347  UDATE ud;
1348  double dateVal = 0;
1349 
1350  TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn,
1351  pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear,
1352  pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond,
1353  pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek,
1354  pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut);
1355 
1357  FIXME("lcid possibly not handled, treating as en-us\n");
1359  FIXME("unsupported flags: %x\n", dwFlags);
1360 
1361  ud = *pUdateIn;
1362 
1363  if (dwFlags & VAR_VALIDDATE)
1364  WARN("Ignoring VAR_VALIDDATE\n");
1365 
1366  if (FAILED(VARIANT_RollUdate(&ud)))
1367  return E_INVALIDARG;
1368 
1369  /* Date */
1370  if (!(dwFlags & VAR_TIMEVALUEONLY))
1372 
1374  {
1375  double dateSign = (dateVal < 0.0) ? -1.0 : 1.0;
1376 
1377  /* Time */
1378  dateVal += ud.st.wHour / 24.0 * dateSign;
1379  dateVal += ud.st.wMinute / 1440.0 * dateSign;
1380  dateVal += ud.st.wSecond / 86400.0 * dateSign;
1381  }
1382 
1383  TRACE("Returning %g\n", dateVal);
1384  *pDateOut = dateVal;
1385  return S_OK;
1386 }
1387 
1388 /***********************************************************************
1389  * VarDateFromUdate [OLEAUT32.330]
1390  *
1391  * Convert an unpacked format date and time to a variant VT_DATE.
1392  *
1393  * PARAMS
1394  * pUdateIn [I] Unpacked format date and time to convert
1395  * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1396  * pDateOut [O] Destination for variant VT_DATE.
1397  *
1398  * RETURNS
1399  * Success: S_OK. *pDateOut contains the converted value.
1400  * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1401  *
1402  * NOTES
1403  * This function uses the United States English locale for the conversion. Use
1404  * VarDateFromUdateEx() for alternate locales.
1405  */
1407 {
1409 
1410  return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut);
1411 }
1412 
1413 /***********************************************************************
1414  * VarUdateFromDate [OLEAUT32.331]
1415  *
1416  * Convert a variant VT_DATE into an unpacked format date and time.
1417  *
1418  * PARAMS
1419  * datein [I] Variant VT_DATE format date
1420  * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1421  * lpUdate [O] Destination for unpacked format date and time
1422  *
1423  * RETURNS
1424  * Success: S_OK. *lpUdate contains the converted value.
1425  * Failure: E_INVALIDARG, if dateIn is too large or small.
1426  */
1428 {
1429  /* Cumulative totals of days per month */
1430  static const USHORT cumulativeDays[] =
1431  {
1432  0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1433  };
1434  double datePart, timePart;
1435  int julianDays;
1436 
1437  TRACE("(%g,0x%08x,%p)\n", dateIn, dwFlags, lpUdate);
1438 
1439  if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0))
1440  return E_INVALIDARG;
1441 
1442  datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn);
1443  /* Compensate for int truncation (always downwards) */
1444  timePart = fabs(dateIn - datePart) + 0.00000000001;
1445  if (timePart >= 1.0)
1446  timePart -= 0.00000000001;
1447 
1448  /* Date */
1449  julianDays = VARIANT_JulianFromDate(dateIn);
1450  VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth,
1451  &lpUdate->st.wDay);
1452 
1453  datePart = (datePart + 1.5) / 7.0;
1454  lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7;
1455  if (lpUdate->st.wDayOfWeek == 0)
1456  lpUdate->st.wDayOfWeek = 5;
1457  else if (lpUdate->st.wDayOfWeek == 1)
1458  lpUdate->st.wDayOfWeek = 6;
1459  else
1460  lpUdate->st.wDayOfWeek -= 2;
1461 
1462  if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear))
1463  lpUdate->wDayOfYear = 1; /* After February, in a leap year */
1464  else
1465  lpUdate->wDayOfYear = 0;
1466 
1467  lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth];
1468  lpUdate->wDayOfYear += lpUdate->st.wDay;
1469 
1470  /* Time */
1471  timePart *= 24.0;
1472  lpUdate->st.wHour = timePart;
1473  timePart -= lpUdate->st.wHour;
1474  timePart *= 60.0;
1475  lpUdate->st.wMinute = timePart;
1476  timePart -= lpUdate->st.wMinute;
1477  timePart *= 60.0;
1478  lpUdate->st.wSecond = timePart;
1479  timePart -= lpUdate->st.wSecond;
1480  lpUdate->st.wMilliseconds = 0;
1481  if (timePart > 0.5)
1482  {
1483  /* Round the milliseconds, adjusting the time/date forward if needed */
1484  if (lpUdate->st.wSecond < 59)
1485  lpUdate->st.wSecond++;
1486  else
1487  {
1488  lpUdate->st.wSecond = 0;
1489  if (lpUdate->st.wMinute < 59)
1490  lpUdate->st.wMinute++;
1491  else
1492  {
1493  lpUdate->st.wMinute = 0;
1494  if (lpUdate->st.wHour < 23)
1495  lpUdate->st.wHour++;
1496  else
1497  {
1498  lpUdate->st.wHour = 0;
1499  /* Roll over a whole day */
1500  if (++lpUdate->st.wDay > 28)
1501  VARIANT_RollUdate(lpUdate);
1502  }
1503  }
1504  }
1505  }
1506  return S_OK;
1507 }
1508 
1509 #define GET_NUMBER_TEXT(fld,name) \
1510  buff[0] = 0; \
1511  if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1512  WARN("buffer too small for " #fld "\n"); \
1513  else \
1514  if (buff[0]) lpChars->name = buff[0]; \
1515  TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1516 
1517 /* Get the valid number characters for an lcid */
1519 {
1520  static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' };
1521  static VARIANT_NUMBER_CHARS lastChars;
1522  static LCID lastLcid = -1;
1523  static DWORD lastFlags = 0;
1525  WCHAR buff[4];
1526 
1527  /* To make caching thread-safe, a critical section is needed */
1529 
1530  /* Asking for default locale entries is very expensive: It is a registry
1531  server call. So cache one locally, as Microsoft does it too */
1532  if(lcid == lastLcid && dwFlags == lastFlags)
1533  {
1534  memcpy(lpChars, &lastChars, sizeof(defaultChars));
1536  return;
1537  }
1538 
1539  memcpy(lpChars, &defaultChars, sizeof(defaultChars));
1540  GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol);
1541  GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol);
1542  GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint);
1543  GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeparator);
1544  GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint);
1545  GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeparator);
1546 
1547  /* Local currency symbols are often 2 characters */
1548  lpChars->cCurrencyLocal2 = '\0';
1549  switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, ARRAY_SIZE(buff)))
1550  {
1551  case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */
1552  case 2: lpChars->cCurrencyLocal = buff[0];
1553  break;
1554  default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1555  }
1556  TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal,
1557  lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2);
1558 
1559  memcpy(&lastChars, lpChars, sizeof(defaultChars));
1560  lastLcid = lcid;
1561  lastFlags = dwFlags;
1563 }
1564 
1565 /* Number Parsing States */
1566 #define B_PROCESSING_EXPONENT 0x1
1567 #define B_NEGATIVE_EXPONENT 0x2
1568 #define B_EXPONENT_START 0x4
1569 #define B_INEXACT_ZEROS 0x8
1570 #define B_LEADING_ZERO 0x10
1571 #define B_PROCESSING_HEX 0x20
1572 #define B_PROCESSING_OCT 0x40
1573 
1574 /**********************************************************************
1575  * VarParseNumFromStr [OLEAUT32.46]
1576  *
1577  * Parse a string containing a number into a NUMPARSE structure.
1578  *
1579  * PARAMS
1580  * lpszStr [I] String to parse number from
1581  * lcid [I] Locale Id for the conversion
1582  * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1583  * pNumprs [I/O] Destination for parsed number
1584  * rgbDig [O] Destination for digits read in
1585  *
1586  * RETURNS
1587  * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1588  * the number.
1589  * Failure: E_INVALIDARG, if any parameter is invalid.
1590  * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1591  * incorrectly.
1592  * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1593  *
1594  * NOTES
1595  * pNumprs must have the following fields set:
1596  * cDig: Set to the size of rgbDig.
1597  * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1598  * from "oleauto.h".
1599  *
1600  * FIXME
1601  * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1602  * numerals, so this has not been implemented.
1603  */
1605  NUMPARSE *pNumprs, BYTE *rgbDig)
1606 {
1607  VARIANT_NUMBER_CHARS chars;
1608  BYTE rgbTmp[1024];
1610  int iMaxDigits = ARRAY_SIZE(rgbTmp);
1611  int cchUsed = 0;
1612 
1613  TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig);
1614 
1615  if (!pNumprs || !rgbDig)
1616  return E_INVALIDARG;
1617 
1618  if (pNumprs->cDig < iMaxDigits)
1619  iMaxDigits = pNumprs->cDig;
1620 
1621  pNumprs->cDig = 0;
1622  pNumprs->dwOutFlags = 0;
1623  pNumprs->cchUsed = 0;
1624  pNumprs->nBaseShift = 0;
1625  pNumprs->nPwr10 = 0;
1626 
1627  if (!lpszStr)
1628  return DISP_E_TYPEMISMATCH;
1629 
1631 
1632  /* First consume all the leading symbols and space from the string */
1633  while (1)
1634  {
1635  if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && iswspace(*lpszStr))
1636  {
1637  pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE;
1638  do
1639  {
1640  cchUsed++;
1641  lpszStr++;
1642  } while (iswspace(*lpszStr));
1643  }
1644  else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS &&
1645  *lpszStr == chars.cPositiveSymbol &&
1646  !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS))
1647  {
1648  pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS;
1649  cchUsed++;
1650  lpszStr++;
1651  }
1652  else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS &&
1653  *lpszStr == chars.cNegativeSymbol &&
1654  !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS))
1655  {
1657  cchUsed++;
1658  lpszStr++;
1659  }
1660  else if (pNumprs->dwInFlags & NUMPRS_CURRENCY &&
1661  !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) &&
1662  *lpszStr == chars.cCurrencyLocal &&
1663  (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2))
1664  {
1665  pNumprs->dwOutFlags |= NUMPRS_CURRENCY;
1666  cchUsed++;
1667  lpszStr++;
1668  /* Only accept currency characters */
1669  chars.cDecimalPoint = chars.cCurrencyDecimalPoint;
1671  }
1672  else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' &&
1673  !(pNumprs->dwOutFlags & NUMPRS_PARENS))
1674  {
1675  pNumprs->dwOutFlags |= NUMPRS_PARENS;
1676  cchUsed++;
1677  lpszStr++;
1678  }
1679  else
1680  break;
1681  }
1682 
1683  if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY))
1684  {
1685  /* Only accept non-currency characters */
1686  chars.cCurrencyDecimalPoint = chars.cDecimalPoint;
1688  }
1689 
1690  if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) &&
1691  pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1692  {
1693  dwState |= B_PROCESSING_HEX;
1694  pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1695  cchUsed=cchUsed+2;
1696  lpszStr=lpszStr+2;
1697  }
1698  else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) &&
1699  pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1700  {
1701  dwState |= B_PROCESSING_OCT;
1702  pNumprs->dwOutFlags |= NUMPRS_HEX_OCT;
1703  cchUsed=cchUsed+2;
1704  lpszStr=lpszStr+2;
1705  }
1706 
1707  /* Strip Leading zeros */
1708  while (*lpszStr == '0')
1709  {
1710  dwState |= B_LEADING_ZERO;
1711  cchUsed++;
1712  lpszStr++;
1713  }
1714 
1715  while (*lpszStr)
1716  {
1717  if (iswdigit(*lpszStr))
1718  {
1719  if (dwState & B_PROCESSING_EXPONENT)
1720  {
1721  int exponentSize = 0;
1722  if (dwState & B_EXPONENT_START)
1723  {
1724  if (!iswdigit(*lpszStr))
1725  break; /* No exponent digits - invalid */
1726  while (*lpszStr == '0')
1727  {
1728  /* Skip leading zero's in the exponent */
1729  cchUsed++;
1730  lpszStr++;
1731  }
1732  }
1733 
1734  while (iswdigit(*lpszStr))
1735  {
1736  exponentSize *= 10;
1737  exponentSize += *lpszStr - '0';
1738  cchUsed++;
1739  lpszStr++;
1740  }
1741  if (dwState & B_NEGATIVE_EXPONENT)
1742  exponentSize = -exponentSize;
1743  /* Add the exponent into the powers of 10 */
1744  pNumprs->nPwr10 += exponentSize;
1746  lpszStr--; /* back up to allow processing of next char */
1747  }
1748  else
1749  {
1750  if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX)
1751  && !(dwState & B_PROCESSING_OCT))
1752  {
1753  pNumprs->dwOutFlags |= NUMPRS_INEXACT;
1754 
1755  if (*lpszStr != '0')
1756  dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */
1757 
1758  /* This digit can't be represented, but count it in nPwr10 */
1759  if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1760  pNumprs->nPwr10--;
1761  else
1762  pNumprs->nPwr10++;
1763  }
1764  else
1765  {
1766  if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9')))
1767  break;
1768 
1769  if (pNumprs->dwOutFlags & NUMPRS_DECIMAL)
1770  pNumprs->nPwr10--; /* Count decimal points in nPwr10 */
1771 
1772  rgbTmp[pNumprs->cDig] = *lpszStr - '0';
1773  }
1774  pNumprs->cDig++;
1775  cchUsed++;
1776  }
1777  }
1778  else if (*lpszStr == chars.cDigitSeparator && pNumprs->dwInFlags & NUMPRS_THOUSANDS)
1779  {
1780  pNumprs->dwOutFlags |= NUMPRS_THOUSANDS;
1781  cchUsed++;
1782  }
1783  else if (*lpszStr == chars.cDecimalPoint &&
1784  pNumprs->dwInFlags & NUMPRS_DECIMAL &&
1785  !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT)))
1786  {
1787  pNumprs->dwOutFlags |= NUMPRS_DECIMAL;
1788  cchUsed++;
1789 
1790  /* If we have no digits so far, skip leading zeros */
1791  if (!pNumprs->cDig)
1792  {
1793  while (lpszStr[1] == '0')
1794  {
1795  dwState |= B_LEADING_ZERO;
1796  cchUsed++;
1797  lpszStr++;
1798  pNumprs->nPwr10--;
1799  }
1800  }
1801  }
1802  else if (((*lpszStr >= 'a' && *lpszStr <= 'f') ||
1803  (*lpszStr >= 'A' && *lpszStr <= 'F')) &&
1804  dwState & B_PROCESSING_HEX)
1805  {
1806  if (pNumprs->cDig >= iMaxDigits)
1807  {
1808  return DISP_E_OVERFLOW;
1809  }
1810  else
1811  {
1812  if (*lpszStr >= 'a')
1813  rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10;
1814  else
1815  rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10;
1816  }
1817  pNumprs->cDig++;
1818  cchUsed++;
1819  }
1820  else if ((*lpszStr == 'e' || *lpszStr == 'E') &&
1821  pNumprs->dwInFlags & NUMPRS_EXPONENT &&
1822  !(pNumprs->dwOutFlags & NUMPRS_EXPONENT))
1823  {
1824  dwState |= B_PROCESSING_EXPONENT;
1825  pNumprs->dwOutFlags |= NUMPRS_EXPONENT;
1826  cchUsed++;
1827  }
1828  else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol)
1829  {
1830  cchUsed++; /* Ignore positive exponent */
1831  }
1832  else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol)
1833  {
1834  dwState |= B_NEGATIVE_EXPONENT;
1835  cchUsed++;
1836  }
1837  else
1838  break; /* Stop at an unrecognised character */
1839 
1840  lpszStr++;
1841  }
1842 
1843  if (!pNumprs->cDig && dwState & B_LEADING_ZERO)
1844  {
1845  /* Ensure a 0 on its own gets stored */
1846  pNumprs->cDig = 1;
1847  rgbTmp[0] = 0;
1848  }
1849 
1850  if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT)
1851  {
1852  pNumprs->cchUsed = cchUsed;
1853  WARN("didn't completely parse exponent\n");
1854  return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */
1855  }
1856 
1857  if (pNumprs->dwOutFlags & NUMPRS_INEXACT)
1858  {
1859  if (dwState & B_INEXACT_ZEROS)
1860  pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */
1861  } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT)
1862  {
1863  /* copy all of the digits into the output digit buffer */
1864  /* this is exactly what windows does although it also returns */
1865  /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1866  memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1867 
1868  if (dwState & B_PROCESSING_HEX) {
1869  /* hex numbers have always the same format */
1870  pNumprs->nPwr10=0;
1871  pNumprs->nBaseShift=4;
1872  } else {
1873  if (dwState & B_PROCESSING_OCT) {
1874  /* oct numbers have always the same format */
1875  pNumprs->nPwr10=0;
1876  pNumprs->nBaseShift=3;
1877  } else {
1878  while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1879  {
1880  pNumprs->nPwr10++;
1881  pNumprs->cDig--;
1882  }
1883  }
1884  }
1885  } else
1886  {
1887  /* Remove trailing zeros from the last (whole number or decimal) part */
1888  while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1])
1889  {
1890  pNumprs->nPwr10++;
1891  pNumprs->cDig--;
1892  }
1893  }
1894 
1895  if (pNumprs->cDig <= iMaxDigits)
1896  pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */
1897  else
1898  pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */
1899 
1900  /* Copy the digits we processed into rgbDig */
1901  memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE));
1902 
1903  /* Consume any trailing symbols and space */
1904  while (1)
1905  {
1906  if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && iswspace(*lpszStr))
1907  {
1908  pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE;
1909  do
1910  {
1911  cchUsed++;
1912  lpszStr++;
1913  } while (iswspace(*lpszStr));
1914  }
1915  else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS &&
1916  !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) &&
1917  *lpszStr == chars.cPositiveSymbol)
1918  {
1919  pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS;
1920  cchUsed++;
1921  lpszStr++;
1922  }
1923  else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS &&
1924  !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) &&
1925  *lpszStr == chars.cNegativeSymbol)
1926  {
1928  cchUsed++;
1929  lpszStr++;
1930  }
1931  else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' &&
1932  pNumprs->dwOutFlags & NUMPRS_PARENS)
1933  {
1934  cchUsed++;
1935  lpszStr++;
1936  pNumprs->dwOutFlags |= NUMPRS_NEG;
1937  }
1938  else
1939  break;
1940  }
1941 
1942  if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG))
1943  {
1944  pNumprs->cchUsed = cchUsed;
1945  return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */
1946  }
1947 
1948  if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0')
1949  return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */
1950 
1951  if (!pNumprs->cDig)
1952  return DISP_E_TYPEMISMATCH; /* No Number found */
1953 
1954  pNumprs->cchUsed = cchUsed;
1955  return S_OK;
1956 }
1957 
1958 /* VTBIT flags indicating an integer value */
1959 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1960 /* VTBIT flags indicating a real number value */
1961 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1962 
1963 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1964 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1965 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1966 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1967 
1968 /**********************************************************************
1969  * VarNumFromParseNum [OLEAUT32.47]
1970  *
1971  * Convert a NUMPARSE structure into a numeric Variant type.
1972  *
1973  * PARAMS
1974  * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1975  * rgbDig [I] Source for the numbers digits
1976  * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1977  * pVarDst [O] Destination for the converted Variant value.
1978  *
1979  * RETURNS
1980  * Success: S_OK. pVarDst contains the converted value.
1981  * Failure: E_INVALIDARG, if any parameter is invalid.
1982  * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1983  *
1984  * NOTES
1985  * - The smallest favoured type present in dwVtBits that can represent the
1986  * number in pNumprs without losing precision is used.
1987  * - Signed types are preferred over unsigned types of the same size.
1988  * - Preferred types in order are: integer, float, double, currency then decimal.
1989  * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1990  * for details of the rounding method.
1991  * - pVarDst is not cleared before the result is stored in it.
1992  * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1993  * design?): If some other VTBIT's for integers are specified together
1994  * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
1995  * the number to the smallest requested integer truncating this way the
1996  * number. Wine doesn't implement this "feature" (yet?).
1997  */
1999  ULONG dwVtBits, VARIANT *pVarDst)
2000 {
2001  /* Scale factors and limits for double arithmetic */
2002  static const double dblMultipliers[11] = {
2003  1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2004  1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2005  };
2006  static const double dblMinimums[11] = {
2007  R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0,
2008  R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0,
2009  R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0
2010  };
2011  static const double dblMaximums[11] = {
2012  R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0,
2013  R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0,
2014  R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0
2015  };
2016 
2017  int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0;
2018 
2019  TRACE("(%p,%p,0x%x,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst);
2020 
2021  if (pNumprs->nBaseShift)
2022  {
2023  /* nBaseShift indicates a hex or octal number */
2024  ULONG64 ul64 = 0;
2025  LONG64 l64;
2026  int i;
2027 
2028  /* Convert the hex or octal number string into a UI64 */
2029  for (i = 0; i < pNumprs->cDig; i++)
2030  {
2031  if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i]))
2032  {
2033  TRACE("Overflow multiplying digits\n");
2034  return DISP_E_OVERFLOW;
2035  }
2036  ul64 = (ul64<<pNumprs->nBaseShift) + rgbDig[i];
2037  }
2038 
2039  /* also make a negative representation */
2040  l64=-ul64;
2041 
2042  /* Try signed and unsigned types in size order */
2043  if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64))
2044  {
2045  V_VT(pVarDst) = VT_I1;
2046  V_I1(pVarDst) = ul64;
2047  return S_OK;
2048  }
2049  else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64))
2050  {
2051  V_VT(pVarDst) = VT_UI1;
2052  V_UI1(pVarDst) = ul64;
2053  return S_OK;
2054  }
2055  else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64))
2056  {
2057  V_VT(pVarDst) = VT_I2;
2058  V_I2(pVarDst) = ul64;
2059  return S_OK;
2060  }
2061  else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64))
2062  {
2063  V_VT(pVarDst) = VT_UI2;
2064  V_UI2(pVarDst) = ul64;
2065  return S_OK;
2066  }
2067  else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64))
2068  {
2069  V_VT(pVarDst) = VT_I4;
2070  V_I4(pVarDst) = ul64;
2071  return S_OK;
2072  }
2073  else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64))
2074  {
2075  V_VT(pVarDst) = VT_UI4;
2076  V_UI4(pVarDst) = ul64;
2077  return S_OK;
2078  }
2079  else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN)))
2080  {
2081  V_VT(pVarDst) = VT_I8;
2082  V_I8(pVarDst) = ul64;
2083  return S_OK;
2084  }
2085  else if (dwVtBits & VTBIT_UI8)
2086  {
2087  V_VT(pVarDst) = VT_UI8;
2088  V_UI8(pVarDst) = ul64;
2089  return S_OK;
2090  }
2091  else if ((dwVtBits & VTBIT_DECIMAL) == VTBIT_DECIMAL)
2092  {
2093  V_VT(pVarDst) = VT_DECIMAL;
2094  DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2095  DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2096  DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2097  return S_OK;
2098  }
2099  else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2100  {
2101  V_VT(pVarDst) = VT_R4;
2102  if (ul64 <= I4_MAX)
2103  V_R4(pVarDst) = ul64;
2104  else
2105  V_R4(pVarDst) = l64;
2106  return S_OK;
2107  }
2108  else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN)))
2109  {
2110  V_VT(pVarDst) = VT_R8;
2111  if (ul64 <= I4_MAX)
2112  V_R8(pVarDst) = ul64;
2113  else
2114  V_R8(pVarDst) = l64;
2115  return S_OK;
2116  }
2117 
2118  TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64));
2119  return DISP_E_OVERFLOW;
2120  }
2121 
2122  /* Count the number of relevant fractional and whole digits stored,
2123  * And compute the divisor/multiplier to scale the number by.
2124  */
2125  if (pNumprs->nPwr10 < 0)
2126  {
2127  if (-pNumprs->nPwr10 >= pNumprs->cDig)
2128  {
2129  /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2130  wholeNumberDigits = 0;
2131  fractionalDigits = pNumprs->cDig;
2132  divisor10 = -pNumprs->nPwr10;
2133  }
2134  else
2135  {
2136  /* An exactly represented real number e.g. 1.024 */
2137  wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10;
2138  fractionalDigits = pNumprs->cDig - wholeNumberDigits;
2139  divisor10 = pNumprs->cDig - wholeNumberDigits;
2140  }
2141  }
2142  else if (pNumprs->nPwr10 == 0)
2143  {
2144  /* An exactly represented whole number e.g. 1024 */
2145  wholeNumberDigits = pNumprs->cDig;
2146  fractionalDigits = 0;
2147  }
2148  else /* pNumprs->nPwr10 > 0 */
2149  {
2150  /* A whole number followed by nPwr10 0's e.g. 102400 */
2151  wholeNumberDigits = pNumprs->cDig;
2152  fractionalDigits = 0;
2153  multiplier10 = pNumprs->nPwr10;
2154  }
2155 
2156  TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2157  pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits,
2158  multiplier10, divisor10);
2159 
2160  if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) &&
2161  (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL))))
2162  {
2163  /* We have one or more integer output choices, and either:
2164  * 1) An integer input value, or
2165  * 2) A real number input value but no floating output choices.
2166  * Alternately, we have a DECIMAL output available and an integer input.
2167  *
2168  * So, place the integer value into pVarDst, using the smallest type
2169  * possible and preferring signed over unsigned types.
2170  */
2171  BOOL bOverflow = FALSE, bNegative;
2172  ULONG64 ul64 = 0;
2173  int i;
2174 
2175  /* Convert the integer part of the number into a UI8 */
2176  for (i = 0; i < wholeNumberDigits; i++)
2177  {
2178  if (ul64 > UI8_MAX / 10 || (ul64 == UI8_MAX / 10 && rgbDig[i] > UI8_MAX % 10))
2179  {
2180  TRACE("Overflow multiplying digits\n");
2181  bOverflow = TRUE;
2182  break;
2183  }
2184  ul64 = ul64 * 10 + rgbDig[i];
2185  }
2186 
2187  /* Account for the scale of the number */
2188  if (!bOverflow && multiplier10)
2189  {
2190  for (i = 0; i < multiplier10; i++)
2191  {
2192  if (ul64 > (UI8_MAX / 10))
2193  {
2194  TRACE("Overflow scaling number\n");
2195  bOverflow = TRUE;
2196  break;
2197  }
2198  ul64 = ul64 * 10;
2199  }
2200  }
2201 
2202  /* If we have any fractional digits, round the value.
2203  * Note we don't have to do this if divisor10 is < 1,
2204  * because this means the fractional part must be < 0.5
2205  */
2206  if (!bOverflow && fractionalDigits && divisor10 > 0)
2207  {
2208  const BYTE* fracDig = rgbDig + wholeNumberDigits;
2209  BOOL bAdjust = FALSE;
2210 
2211  TRACE("first decimal value is %d\n", *fracDig);
2212 
2213  if (*fracDig > 5)
2214  bAdjust = TRUE; /* > 0.5 */
2215  else if (*fracDig == 5)
2216  {
2217  for (i = 1; i < fractionalDigits; i++)
2218  {
2219  if (fracDig[i])
2220  {
2221  bAdjust = TRUE; /* > 0.5 */
2222  break;
2223  }
2224  }
2225  /* If exactly 0.5, round only odd values */
2226  if (i == fractionalDigits && (ul64 & 1))
2227  bAdjust = TRUE;
2228  }
2229 
2230  if (bAdjust)
2231  {
2232  if (ul64 == UI8_MAX)
2233  {
2234  TRACE("Overflow after rounding\n");
2235  bOverflow = TRUE;
2236  }
2237  ul64++;
2238  }
2239  }
2240 
2241  /* Zero is not a negative number */
2242  bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64;
2243 
2244  TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64), bNegative);
2245 
2246  /* For negative integers, try the signed types in size order */
2247  if (!bOverflow && bNegative)
2248  {
2249  if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8))
2250  {
2251  if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN)
2252  {
2253  V_VT(pVarDst) = VT_I1;
2254  V_I1(pVarDst) = -ul64;
2255  return S_OK;
2256  }
2257  else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN)
2258  {
2259  V_VT(pVarDst) = VT_I2;
2260  V_I2(pVarDst) = -ul64;
2261  return S_OK;
2262  }
2263  else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN))
2264  {
2265  V_VT(pVarDst) = VT_I4;
2266  V_I4(pVarDst) = -ul64;
2267  return S_OK;
2268  }
2269  else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1)
2270  {
2271  V_VT(pVarDst) = VT_I8;
2272  V_I8(pVarDst) = -ul64;
2273  return S_OK;
2274  }
2275  else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2276  {
2277  /* Decimal is only output choice left - fast path */
2278  V_VT(pVarDst) = VT_DECIMAL;
2279  DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0);
2280  DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2281  DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64;
2282  return S_OK;
2283  }
2284  }
2285  }
2286  else if (!bOverflow)
2287  {
2288  /* For positive integers, try signed then unsigned types in size order */
2289  if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX)
2290  {
2291  V_VT(pVarDst) = VT_I1;
2292  V_I1(pVarDst) = ul64;
2293  return S_OK;
2294  }
2295  else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX)
2296  {
2297  V_VT(pVarDst) = VT_UI1;
2298  V_UI1(pVarDst) = ul64;
2299  return S_OK;
2300  }
2301  else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX)
2302  {
2303  V_VT(pVarDst) = VT_I2;
2304  V_I2(pVarDst) = ul64;
2305  return S_OK;
2306  }
2307  else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX)
2308  {
2309  V_VT(pVarDst) = VT_UI2;
2310  V_UI2(pVarDst) = ul64;
2311  return S_OK;
2312  }
2313  else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX)
2314  {
2315  V_VT(pVarDst) = VT_I4;
2316  V_I4(pVarDst) = ul64;
2317  return S_OK;
2318  }
2319  else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX)
2320  {
2321  V_VT(pVarDst) = VT_UI4;
2322  V_UI4(pVarDst) = ul64;
2323  return S_OK;
2324  }
2325  else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX)
2326  {
2327  V_VT(pVarDst) = VT_I8;
2328  V_I8(pVarDst) = ul64;
2329  return S_OK;
2330  }
2331  else if (dwVtBits & VTBIT_UI8)
2332  {
2333  V_VT(pVarDst) = VT_UI8;
2334  V_UI8(pVarDst) = ul64;
2335  return S_OK;
2336  }
2337  else if ((dwVtBits & (REAL_VTBITS|VTBIT_DECIMAL)) == VTBIT_DECIMAL)
2338  {
2339  /* Decimal is only output choice left - fast path */
2340  V_VT(pVarDst) = VT_DECIMAL;
2341  DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0);
2342  DEC_HI32(&V_DECIMAL(pVarDst)) = 0;
2343  DEC_LO64(&V_DECIMAL(pVarDst)) = ul64;
2344  return S_OK;
2345  }
2346  }
2347  }
2348 
2349  if (dwVtBits & REAL_VTBITS)
2350  {
2351  /* Try to put the number into a float or real */
2352  BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG;
2353  double whole = 0.0;
2354  int i;
2355 
2356  /* Convert the number into a double */
2357  for (i = 0; i < pNumprs->cDig; i++)
2358  whole = whole * 10.0 + rgbDig[i];
2359 
2360  TRACE("Whole double value is %16.16g\n", whole);
2361 
2362  /* Account for the scale */
2363  while (multiplier10 > 10)
2364  {
2365  if (whole > dblMaximums[10])
2366  {
2367  dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2368  bOverflow = TRUE;
2369  break;
2370  }
2371  whole = whole * dblMultipliers[10];
2372  multiplier10 -= 10;
2373  }
2374  if (multiplier10 && !bOverflow)
2375  {
2376  if (whole > dblMaximums[multiplier10])
2377  {
2378  dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY);
2379  bOverflow = TRUE;
2380  }
2381  else
2382  whole = whole * dblMultipliers[multiplier10];
2383  }
2384 
2385  if (!bOverflow)
2386  TRACE("Scaled double value is %16.16g\n", whole);
2387 
2388  while (divisor10 > 10 && !bOverflow)
2389  {
2390  if (whole < dblMinimums[10] && whole != 0)
2391  {
2392  whole = 0; /* ignore underflow */
2393  divisor10 = 0;
2394  break;
2395  }
2396  whole = whole / dblMultipliers[10];
2397  divisor10 -= 10;
2398  }
2399  if (divisor10 && !bOverflow)
2400  {
2401  if (whole < dblMinimums[divisor10] && whole != 0)
2402  {
2403  whole = 0; /* ignore underflow */
2404  divisor10 = 0;
2405  }
2406  else
2407  whole = whole / dblMultipliers[divisor10];
2408  }
2409  if (!bOverflow)
2410  TRACE("Final double value is %16.16g\n", whole);
2411 
2412  if (dwVtBits & VTBIT_R4 &&
2413  ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0))
2414  {
2415  TRACE("Set R4 to final value\n");
2416  V_VT(pVarDst) = VT_R4; /* Fits into a float */
2417  V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2418  return S_OK;
2419  }
2420 
2421  if (dwVtBits & VTBIT_R8)
2422  {
2423  TRACE("Set R8 to final value\n");
2424  V_VT(pVarDst) = VT_R8; /* Fits into a double */
2425  V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole;
2426  return S_OK;
2427  }
2428 
2429  if (dwVtBits & VTBIT_CY)
2430  {
2431  if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst))))
2432  {
2433  V_VT(pVarDst) = VT_CY; /* Fits into a currency */
2434  TRACE("Set CY to final value\n");
2435  return S_OK;
2436  }
2437  TRACE("Value Overflows CY\n");
2438  }
2439  }
2440 
2441  if (dwVtBits & VTBIT_DECIMAL)
2442  {
2443  int i;
2444  ULONG carry;
2445  ULONG64 tmp;
2446  DECIMAL* pDec = &V_DECIMAL(pVarDst);
2447 
2448  DECIMAL_SETZERO(*pDec);
2449  DEC_LO32(pDec) = 0;
2450 
2451  if (pNumprs->dwOutFlags & NUMPRS_NEG)
2452  DEC_SIGN(pDec) = DECIMAL_NEG;
2453  else
2454  DEC_SIGN(pDec) = DECIMAL_POS;
2455 
2456  /* Factor the significant digits */
2457  for (i = 0; i < pNumprs->cDig; i++)
2458  {
2459  tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i];
2460  carry = (ULONG)(tmp >> 32);
2461  DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2462  tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2463  carry = (ULONG)(tmp >> 32);
2464  DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2465  tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2466  DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2467 
2468  if (tmp >> 32 & UI4_MAX)
2469  {
2470 VarNumFromParseNum_DecOverflow:
2471  TRACE("Overflow\n");
2472  DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX;
2473  return DISP_E_OVERFLOW;
2474  }
2475  }
2476 
2477  /* Account for the scale of the number */
2478  while (multiplier10 > 0)
2479  {
2480  tmp = (ULONG64)DEC_LO32(pDec) * 10;
2481  carry = (ULONG)(tmp >> 32);
2482  DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX);
2483  tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry;
2484  carry = (ULONG)(tmp >> 32);
2485  DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX);
2486  tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry;
2487  DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX);
2488 
2489  if (tmp >> 32 & UI4_MAX)
2490  goto VarNumFromParseNum_DecOverflow;
2491  multiplier10--;
2492  }
2493  DEC_SCALE(pDec) = divisor10;
2494 
2495  V_VT(pVarDst) = VT_DECIMAL;
2496  return S_OK;
2497  }
2498  return DISP_E_OVERFLOW; /* No more output choices */
2499 }
2500 
2501 /**********************************************************************
2502  * VarCat [OLEAUT32.318]
2503  *
2504  * Concatenates one variant onto another.
2505  *
2506  * PARAMS
2507  * left [I] First variant
2508  * right [I] Second variant
2509  * result [O] Result variant
2510  *
2511  * RETURNS
2512  * Success: S_OK.
2513  * Failure: An HRESULT error code indicating the error.
2514  */
2516 {
2517  BSTR left_str = NULL, right_str = NULL;
2518  VARTYPE leftvt, rightvt;
2519  HRESULT hres;
2520 
2521  TRACE("%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), out);
2522 
2523  leftvt = V_VT(left);
2524  rightvt = V_VT(right);
2525 
2526  /* when both left and right are NULL the result is NULL */
2527  if (leftvt == VT_NULL && rightvt == VT_NULL)
2528  {
2529  V_VT(out) = VT_NULL;
2530  return S_OK;
2531  }
2532 
2533  /* There are many special case for errors and return types */
2534  if (leftvt == VT_VARIANT && (rightvt == VT_ERROR ||
2535  rightvt == VT_DATE || rightvt == VT_DECIMAL))
2537  else if ((leftvt == VT_I2 || leftvt == VT_I4 ||
2538  leftvt == VT_R4 || leftvt == VT_R8 ||
2539  leftvt == VT_CY || leftvt == VT_BOOL ||
2540  leftvt == VT_BSTR || leftvt == VT_I1 ||
2541  leftvt == VT_UI1 || leftvt == VT_UI2 ||
2542  leftvt == VT_UI4 || leftvt == VT_I8 ||
2543  leftvt == VT_UI8 || leftvt == VT_INT ||
2544  leftvt == VT_UINT || leftvt == VT_EMPTY ||
2545  leftvt == VT_NULL || leftvt == VT_DATE ||
2546  leftvt == VT_DECIMAL || leftvt == VT_DISPATCH)
2547  &&
2548  (rightvt == VT_I2 || rightvt == VT_I4 ||
2549  rightvt == VT_R4 || rightvt == VT_R8 ||
2550  rightvt == VT_CY || rightvt == VT_BOOL ||
2551  rightvt == VT_BSTR || rightvt == VT_I1 ||
2552  rightvt == VT_UI1 || rightvt == VT_UI2 ||
2553  rightvt == VT_UI4 || rightvt == VT_I8 ||
2554  rightvt == VT_UI8 || rightvt == VT_INT ||
2555  rightvt == VT_UINT || rightvt == VT_EMPTY ||
2556  rightvt == VT_NULL || rightvt == VT_DATE ||
2557  rightvt == VT_DECIMAL || rightvt == VT_DISPATCH))
2558  hres = S_OK;
2559  else if (rightvt == VT_ERROR && leftvt < VT_VOID)
2561  else if (leftvt == VT_ERROR && (rightvt == VT_DATE ||
2562  rightvt == VT_ERROR || rightvt == VT_DECIMAL))
2564  else if (rightvt == VT_DATE || rightvt == VT_ERROR ||
2565  rightvt == VT_DECIMAL)
2567  else if (leftvt == VT_ERROR || rightvt == VT_ERROR)
2569  else if (leftvt == VT_VARIANT)
2571  else if (rightvt == VT_VARIANT && (leftvt == VT_EMPTY ||
2572  leftvt == VT_NULL || leftvt == VT_I2 ||
2573  leftvt == VT_I4 || leftvt == VT_R4 ||
2574  leftvt == VT_R8 || leftvt == VT_CY ||
2575  leftvt == VT_DATE || leftvt == VT_BSTR ||
2576  leftvt == VT_BOOL || leftvt == VT_DECIMAL ||
2577  leftvt == VT_I1 || leftvt == VT_UI1 ||
2578  leftvt == VT_UI2 || leftvt == VT_UI4 ||
2579  leftvt == VT_I8 || leftvt == VT_UI8 ||
2580  leftvt == VT_INT || leftvt == VT_UINT))
2582  else
2584 
2585  /* if result type is not S_OK, then no need to go further */
2586  if (hres != S_OK)
2587  {
2588  V_VT(out) = VT_EMPTY;
2589  return hres;
2590  }
2591 
2592  if (leftvt == VT_BSTR)
2593  left_str = V_BSTR(left);
2594  else
2595  {
2596  VARIANT converted, *tmp = left;
2597 
2598  VariantInit(&converted);
2599  if(leftvt == VT_DISPATCH)
2600  {
2601  hres = VARIANT_FetchDispatchValue(left, &converted);
2602  if(FAILED(hres))
2603  goto failed;
2604 
2605  tmp = &converted;
2606  }
2607 
2609  if (SUCCEEDED(hres))
2610  left_str = V_BSTR(&converted);
2611  else if (hres != DISP_E_TYPEMISMATCH)
2612  {
2613  VariantClear(&converted);
2614  goto failed;
2615  }
2616  }
2617 
2618  if (rightvt == VT_BSTR)
2619  right_str = V_BSTR(right);
2620  else
2621  {
2622  VARIANT converted, *tmp = right;
2623 
2624  VariantInit(&converted);
2625  if(rightvt == VT_DISPATCH)
2626  {
2627  hres = VARIANT_FetchDispatchValue(right, &converted);
2628  if(FAILED(hres))
2629  goto failed;
2630 
2631  tmp = &converted;
2632  }
2633 
2635  if (SUCCEEDED(hres))
2636  right_str = V_BSTR(&converted);
2637  else if (hres != DISP_E_TYPEMISMATCH)
2638  {
2639  VariantClear(&converted);
2640  goto failed;
2641  }
2642  }
2643 
2644 
2645  V_VT(out) = VT_BSTR;
2646  hres = VarBstrCat(left_str, right_str, &V_BSTR(out));
2647 
2648 failed:
2649  if(V_VT(left) != VT_BSTR)
2650  SysFreeString(left_str);
2651  if(V_VT(right) != VT_BSTR)
2652  SysFreeString(right_str);
2653  return hres;
2654 }
2655 
2656 
2657 /* Wrapper around VariantChangeTypeEx() which permits changing a
2658  variant with VT_RESERVED flag set. Needed by VarCmp. */
2660  VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt)
2661 {
2662  VARIANTARG vtmpsrc = *pvargSrc;
2663 
2664  V_VT(&vtmpsrc) &= ~VT_RESERVED;
2665  return VariantChangeTypeEx(pvargDest,&vtmpsrc,lcid,wFlags,vt);
2666 }
2667 
2668 /**********************************************************************
2669  * VarCmp [OLEAUT32.176]
2670  *
2671  * Compare two variants.
2672  *
2673  * PARAMS
2674  * left [I] First variant
2675  * right [I] Second variant
2676  * lcid [I] LCID (locale identifier) for the comparison
2677  * flags [I] Flags to be used in the comparison:
2678  * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2679  * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2680  *
2681  * RETURNS
2682  * VARCMP_LT: left variant is less than right variant.
2683  * VARCMP_EQ: input variants are equal.
2684  * VARCMP_GT: left variant is greater than right variant.
2685  * VARCMP_NULL: either one of the input variants is NULL.
2686  * Failure: An HRESULT error code indicating the error.
2687  *
2688  * NOTES
2689  * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2690  * UI8 and UINT as input variants. INT is accepted only as left variant.
2691  *
2692  * If both input variants are ERROR then VARCMP_EQ will be returned, else
2693  * an ERROR variant will trigger an error.
2694  *
2695  * Both input variants can have VT_RESERVED flag set which is ignored
2696  * unless one and only one of the variants is a BSTR and the other one
2697  * is not an EMPTY variant. All four VT_RESERVED combinations have a
2698  * different meaning:
2699  * - BSTR and other: BSTR is always greater than the other variant.
2700  * - BSTR|VT_RESERVED and other: a string comparison is performed.
2701  * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2702  * comparison will take place else the BSTR is always greater.
2703  * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2704  * variant is ignored and the return value depends only on the sign
2705  * of the BSTR if it is a number else the BSTR is always greater. A
2706  * positive BSTR is greater, a negative one is smaller than the other
2707  * variant.
2708  *
2709  * SEE
2710  * VarBstrCmp for the lcid and flags usage.
2711  */
2713 {
2714  VARTYPE lvt, rvt, vt;
2715  VARIANT rv,lv;
2716  DWORD xmask;
2717  HRESULT rc;
2718 
2719  TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left), debugstr_variant(right), lcid, flags);
2720 
2721  lvt = V_VT(left) & VT_TYPEMASK;
2722  rvt = V_VT(right) & VT_TYPEMASK;
2723  xmask = (1 << lvt) | (1 << rvt);
2724 
2725  /* If we have any flag set except VT_RESERVED bail out.
2726  Same for the left input variant type > VT_INT and for the
2727  right input variant type > VT_I8. Yes, VT_INT is only supported
2728  as left variant. Go figure */
2729  if (((V_VT(left) | V_VT(right)) & ~VT_TYPEMASK & ~VT_RESERVED) ||
2730  lvt > VT_INT || rvt > VT_I8) {
2731  return DISP_E_BADVARTYPE;
2732  }
2733 
2734  /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2735  VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2736  if (rvt == VT_INT || xmask & (VTBIT_I1 | VTBIT_UI2 | VTBIT_UI4 | VTBIT_UI8 |
2738  return DISP_E_TYPEMISMATCH;
2739 
2740  /* If both variants are VT_ERROR return VARCMP_EQ */
2741  if (xmask == VTBIT_ERROR)
2742  return VARCMP_EQ;
2743  else if (xmask & VTBIT_ERROR)
2744  return DISP_E_TYPEMISMATCH;
2745 
2746  if (xmask & VTBIT_NULL)
2747  return VARCMP_NULL;
2748 
2749  VariantInit(&lv);
2750  VariantInit(&rv);
2751 
2752  /* Two BSTRs, ignore VT_RESERVED */
2753  if (xmask == VTBIT_BSTR)
2754  return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags);
2755 
2756  /* A BSTR and another variant; we have to take care of VT_RESERVED */
2757  if (xmask & VTBIT_BSTR) {
2758  VARIANT *bstrv, *nonbv;
2759  VARTYPE nonbvt;
2760  int swap = 0;
2761 
2762  /* Swap the variants so the BSTR is always on the left */
2763  if (lvt == VT_BSTR) {
2764  bstrv = left;
2765  nonbv = right;
2766  nonbvt = rvt;
2767  } else {
2768  swap = 1;
2769  bstrv = right;
2770  nonbv = left;
2771  nonbvt = lvt;
2772  }
2773 
2774  /* BSTR and EMPTY: ignore VT_RESERVED */
2775  if (nonbvt == VT_EMPTY)
2776  rc = (!V_BSTR(bstrv) || !*V_BSTR(bstrv)) ? VARCMP_EQ : VARCMP_GT;
2777  else {
2778  VARTYPE breserv = V_VT(bstrv) & ~VT_TYPEMASK;
2779  VARTYPE nreserv = V_VT(nonbv) & ~VT_TYPEMASK;
2780 
2781  if (!breserv && !nreserv)
2782  /* No VT_RESERVED set ==> BSTR always greater */
2783  rc = VARCMP_GT;
2784  else if (breserv && !nreserv) {
2785  /* BSTR has VT_RESERVED set. Do a string comparison */
2786  rc = VariantChangeTypeEx(&rv,nonbv,lcid,0,VT_BSTR);
2787  if (FAILED(rc))
2788  return rc;
2789  rc = VarBstrCmp(V_BSTR(bstrv), V_BSTR(&rv), lcid, flags);
2790  VariantClear(&rv);
2791  } else if (V_BSTR(bstrv) && *V_BSTR(bstrv)) {
2792  /* Non NULL nor empty BSTR */
2793  /* If the BSTR is not a number the BSTR is greater */
2794  rc = _VarChangeTypeExWrap(&lv,bstrv,lcid,0,VT_R8);
2795  if (FAILED(rc))
2796  rc = VARCMP_GT;
2797  else if (breserv && nreserv)
2798  /* FIXME: This is strange: with both VT_RESERVED set it
2799  looks like the result depends only on the sign of
2800  the BSTR number */
2801  rc = (V_R8(&lv) >= 0) ? VARCMP_GT : VARCMP_LT;
2802  else
2803  /* Numeric comparison, will be handled below.
2804  VARCMP_NULL used only to break out. */
2805  rc = VARCMP_NULL;
2806  VariantClear(&lv);
2807  VariantClear(&rv);
2808  } else
2809  /* Empty or NULL BSTR */
2810  rc = VARCMP_GT;
2811  }
2812  /* Fixup the return code if we swapped left and right */
2813  if (swap) {
2814  if (rc == VARCMP_GT)
2815  rc = VARCMP_LT;
2816  else if (rc == VARCMP_LT)
2817  rc = VARCMP_GT;
2818  }
2819  if (rc != VARCMP_NULL)
2820  return rc;
2821  }
2822 
2823  if (xmask & VTBIT_DECIMAL)
2824  vt = VT_DECIMAL;
2825  else if (xmask & VTBIT_BSTR)
2826  vt = VT_R8;
2827  else if (xmask & VTBIT_R4)
2828  vt = VT_R4;
2829  else if (xmask & (VTBIT_R8 | VTBIT_DATE))
2830  vt = VT_R8;
2831  else if (xmask & VTBIT_CY)
2832  vt = VT_CY;
2833  else
2834  /* default to I8 */
2835  vt = VT_I8;
2836 
2837  /* Coerce the variants */
2838  rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2839  if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2840  /* Overflow, change to R8 */
2841  vt = VT_R8;
2842  rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2843  }
2844  if (FAILED(rc))
2845  return rc;
2846  rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2847  if (rc == DISP_E_OVERFLOW && vt != VT_R8) {
2848  /* Overflow, change to R8 */
2849  vt = VT_R8;
2850  rc = _VarChangeTypeExWrap(&lv,left,lcid,0,vt);
2851  if (FAILED(rc))
2852  return rc;
2853  rc = _VarChangeTypeExWrap(&rv,right,lcid,0,vt);
2854  }
2855  if (FAILED(rc))
2856  return rc;
2857 
2858 #define _VARCMP(a,b) \
2859  (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2860 
2861  switch (vt) {
2862  case VT_CY:
2863  return VarCyCmp(V_CY(&lv), V_CY(&rv));
2864  case VT_DECIMAL:
2865  return VarDecCmp(&V_DECIMAL(&lv), &V_DECIMAL(&rv));
2866  case VT_I8:
2867  return _VARCMP(V_I8(&lv), V_I8(&rv));
2868  case VT_R4:
2869  return _VARCMP(V_R4(&lv), V_R4(&rv));
2870  case VT_R8:
2871  return _VARCMP(V_R8(&lv), V_R8(&rv));
2872  default:
2873  /* We should never get here */
2874  return E_FAIL;
2875  }
2876 #undef _VARCMP
2877 }
2878 
2879 /**********************************************************************
2880  * VarAnd [OLEAUT32.142]
2881  *
2882  * Computes the logical AND of two variants.
2883  *
2884  * PARAMS
2885  * left [I] First variant
2886  * right [I] Second variant
2887  * result [O] Result variant
2888  *
2889  * RETURNS
2890  * Success: S_OK.
2891  * Failure: An HRESULT error code indicating the error.
2892  */
2894 {
2895  HRESULT hres = S_OK;
2896  VARTYPE resvt = VT_EMPTY;
2897  VARTYPE leftvt,rightvt;
2898  VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
2899  VARIANT varLeft, varRight;
2900  VARIANT tempLeft, tempRight;
2901 
2902  VariantInit(&varLeft);
2903  VariantInit(&varRight);
2904  VariantInit(&tempLeft);
2905  VariantInit(&tempRight);
2906 
2907  TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
2908 
2909  /* Handle VT_DISPATCH by storing and taking address of returned value */
2910  if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
2911  {
2912  hres = VARIANT_FetchDispatchValue(left, &tempLeft);
2913  if (FAILED(hres)) goto VarAnd_Exit;
2914  left = &tempLeft;
2915  }
2916  if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
2917  {
2918  hres = VARIANT_FetchDispatchValue(right, &tempRight);
2919  if (FAILED(hres)) goto VarAnd_Exit;
2920  right = &tempRight;
2921  }
2922 
2923  leftvt = V_VT(left)&VT_TYPEMASK;
2924  rightvt = V_VT(right)&VT_TYPEMASK;
2925  leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
2926  rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
2927 
2928  if (leftExtraFlags != rightExtraFlags)
2929  {
2931  goto VarAnd_Exit;
2932  }
2933  ExtraFlags = leftExtraFlags;
2934 
2935  /* Native VarAnd always returns an error when using extra
2936  * flags or if the variant combination is I8 and INT.
2937  */
2938  if ((leftvt == VT_I8 && rightvt == VT_INT) ||
2939  (leftvt == VT_INT && rightvt == VT_I8) ||
2940  ExtraFlags != 0)
2941  {
2943  goto VarAnd_Exit;
2944  }
2945 
2946  /* Determine return type */
2947  else if (leftvt == VT_I8 || rightvt == VT_I8)
2948  resvt = VT_I8;
2949  else if (leftvt == VT_I4 || rightvt == VT_I4 ||
2950  leftvt == VT_UINT || rightvt == VT_UINT ||
2951  leftvt == VT_INT || rightvt == VT_INT ||
2952  leftvt == VT_R4 || rightvt == VT_R4 ||
2953  leftvt == VT_R8 || rightvt == VT_R8 ||
2954  leftvt == VT_CY || rightvt == VT_CY ||
2955  leftvt == VT_DATE || rightvt == VT_DATE ||
2956  leftvt == VT_I1 || rightvt == VT_I1 ||
2957  leftvt == VT_UI2 || rightvt == VT_UI2 ||
2958  leftvt == VT_UI4 || rightvt == VT_UI4 ||
2959  leftvt == VT_UI8 || rightvt == VT_UI8 ||
2960  leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
2961  resvt = VT_I4;
2962  else if (leftvt == VT_UI1 || rightvt == VT_UI1 ||
2963  leftvt == VT_I2 || rightvt == VT_I2 ||
2964  leftvt == VT_EMPTY || rightvt == VT_EMPTY)
2965  if ((leftvt == VT_NULL && rightvt == VT_UI1) ||
2966  (leftvt == VT_UI1 && rightvt == VT_NULL) ||
2967  (leftvt == VT_UI1 && rightvt == VT_UI1))
2968  resvt = VT_UI1;
2969  else
2970  resvt = VT_I2;
2971  else if (leftvt == VT_BOOL || rightvt == VT_BOOL ||
2972  (leftvt == VT_BSTR && rightvt == VT_BSTR))
2973  resvt = VT_BOOL;
2974  else if (leftvt == VT_NULL || rightvt == VT_NULL ||
2975  leftvt == VT_BSTR || rightvt == VT_BSTR)
2976  resvt = VT_NULL;
2977  else
2978  {
2980  goto VarAnd_Exit;
2981  }
2982 
2983  if (leftvt == VT_NULL || rightvt == VT_NULL)
2984  {
2985  /*
2986  * Special cases for when left variant is VT_NULL
2987  * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2988  */
2989  if (leftvt == VT_NULL)
2990  {
2991  VARIANT_BOOL b;
2992  switch(rightvt)
2993  {
2994  case VT_I1: if (V_I1(right)) resvt = VT_NULL; break;
2995  case VT_UI1: if (V_UI1(right)) resvt = VT_NULL; break;
2996  case VT_I2: if (V_I2(right)) resvt = VT_NULL; break;
2997  case VT_UI2: if (V_UI2(right)) resvt = VT_NULL; break;
2998  case VT_I4: if (V_I4(right)) resvt = VT_NULL; break;
2999  case VT_UI4: if (V_UI4(right)) resvt = VT_NULL; break;
3000  case VT_I8: if (V_I8(right)) resvt = VT_NULL; break;
3001  case VT_UI8: if (V_UI8(right)) resvt = VT_NULL; break;
3002  case VT_INT: if (V_INT(right)) resvt = VT_NULL; break;
3003  case VT_UINT: if (V_UINT(right)) resvt = VT_NULL; break;
3004  case VT_BOOL: if (V_BOOL(right)) resvt = VT_NULL; break;
3005  case VT_R4: if (V_R4(right)) resvt = VT_NULL; break;
3006  case VT_R8: if (V_R8(right)) resvt = VT_NULL; break;
3007  case VT_CY:
3008  if(V_CY(right).int64)
3009  resvt = VT_NULL;
3010  break;
3011  case VT_DECIMAL:
3012  if (DEC_HI32(&V_DECIMAL(right)) ||
3014  resvt = VT_NULL;
3015  break;
3016  case VT_BSTR:
3019  if (FAILED(hres))
3020  return hres;
3021  else if (b)
3022  V_VT(result) = VT_NULL;
3023  else
3024  {
3025  V_VT(result) = VT_BOOL;
3026  V_BOOL(result) = b;
3027  }
3028  goto VarAnd_Exit;
3029  }
3030  }
3031  V_VT(result) = resvt;
3032  goto VarAnd_Exit;
3033  }
3034 
3035  hres = VariantCopy(&varLeft, left);
3036  if (FAILED(hres)) goto VarAnd_Exit;
3037 
3038  hres = VariantCopy(&varRight, right);
3039  if (FAILED(hres)) goto VarAnd_Exit;
3040 
3041  if (resvt == VT_I4 && V_VT(&varLeft) == VT_UI4)
3042  V_VT(&varLeft) = VT_I4; /* Don't overflow */
3043  else
3044  {
3045  double d;
3046 
3047  if (V_VT(&varLeft) == VT_BSTR &&
3048  FAILED(VarR8FromStr(V_BSTR(&varLeft),
3049  LOCALE_USER_DEFAULT, 0, &d)))
3050  hres = VariantChangeType(&varLeft,&varLeft,
3052  if (SUCCEEDED(hres) && V_VT(&varLeft) != resvt)
3053  hres = VariantChangeType(&varLeft,&varLeft,0,resvt);
3054  if (FAILED(hres)) goto VarAnd_Exit;
3055  }
3056 
3057  if (resvt == VT_I4 && V_VT(&varRight) == VT_UI4)
3058  V_VT(&varRight) = VT_I4; /* Don't overflow */
3059  else
3060  {
3061  double d;
3062 
3063  if (V_VT(&varRight) == VT_BSTR &&
3064  FAILED(VarR8FromStr(V_BSTR(&varRight),
3065  LOCALE_USER_DEFAULT, 0, &d)))
3066  hres = VariantChangeType(&varRight, &varRight,
3068  if (SUCCEEDED(hres) && V_VT(&varRight) != resvt)
3069  hres = VariantChangeType(&varRight, &varRight, 0, resvt);
3070  if (FAILED(hres)) goto VarAnd_Exit;
3071  }
3072 
3073  V_VT(result) = resvt;
3074  switch(resvt)
3075  {
3076  case VT_I8:
3077  V_I8(result) = V_I8(&varLeft) & V_I8(&varRight);
3078  break;
3079  case VT_I4:
3080  V_I4(result) = V_I4(&varLeft) & V_I4(&varRight);
3081  break;
3082  case VT_I2:
3083  V_I2(result) = V_I2(&varLeft) & V_I2(&varRight);
3084  break;
3085  case VT_UI1:
3086  V_UI1(result) = V_UI1(&varLeft) & V_UI1(&varRight);
3087  break;
3088  case VT_BOOL:
3089  V_BOOL(result) = V_BOOL(&varLeft) & V_BOOL(&varRight);
3090  break;
3091  default:
3092  FIXME("Couldn't bitwise AND variant types %d,%d\n",
3093  leftvt,rightvt);
3094  }
3095 
3096 VarAnd_Exit:
3097  VariantClear(&varLeft);
3098  VariantClear(&varRight);
3099  VariantClear(&tempLeft);
3100  VariantClear(&tempRight);
3101 
3102  return hres;
3103 }
3104 
3105 /**********************************************************************
3106  * VarAdd [OLEAUT32.141]
3107  *
3108  * Add two variants.
3109  *
3110  * PARAMS
3111  * left [I] First variant
3112  * right [I] Second variant
3113  * result [O] Result variant
3114  *
3115  * RETURNS
3116  * Success: S_OK.
3117  * Failure: An HRESULT error code indicating the error.
3118  *
3119  * NOTES
3120  * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3121  * UI8, INT and UINT as input variants.
3122  *
3123  * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3124  * same here.
3125  *
3126  * FIXME
3127  * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3128  * case.
3129  */
3131 {
3132  HRESULT hres;
3133  VARTYPE lvt, rvt, resvt, tvt;
3134  VARIANT lv, rv, tv;
3135  VARIANT tempLeft, tempRight;
3136  double r8res;
3137 
3138  /* Variant priority for coercion. Sorted from lowest to highest.
3139  VT_ERROR shows an invalid input variant type. */
3140  enum coerceprio { vt_EMPTY, vt_UI1, vt_I2, vt_I4, vt_I8, vt_BSTR,vt_R4,
3141  vt_R8, vt_CY, vt_DATE, vt_DECIMAL, vt_DISPATCH, vt_NULL,
3142  vt_ERROR };
3143  /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3144  static const VARTYPE prio2vt[] = { VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_I8, VT_BSTR, VT_R4,
3146  VT_NULL, VT_ERROR };
3147 
3148  /* Mapping for coercion from input variant to priority of result variant. */
3149  static const VARTYPE coerce[] = {
3150  /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3151  vt_EMPTY, vt_NULL, vt_I2, vt_I4, vt_R4,
3152  /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3153  vt_R8, vt_CY, vt_DATE, vt_BSTR, vt_DISPATCH,
3154  /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3155  vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3156  /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3157  vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3158  };
3159 
3160  TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3161 
3162  VariantInit(&lv);
3163  VariantInit(&rv);
3164  VariantInit(&tv);
3165  VariantInit(&tempLeft);
3166  VariantInit(&tempRight);
3167 
3168  /* Handle VT_DISPATCH by storing and taking address of returned value */
3169  if ((V_VT(left) & VT_TYPEMASK) != VT_NULL && (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3170  {
3171  if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3172  {
3173  hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3174  if (FAILED(hres)) goto end;
3175  left = &tempLeft;
3176  }
3177  if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3178  {
3179  hres = VARIANT_FetchDispatchValue(right, &tempRight);
3180  if (FAILED(hres)) goto end;
3181  right = &tempRight;
3182  }
3183  }
3184 
3185  lvt = V_VT(left)&VT_TYPEMASK;
3186  rvt = V_VT(right)&VT_TYPEMASK;
3187 
3188  /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3189  Same for any input variant type > VT_I8 */
3190  if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3191  lvt > VT_I8 || rvt > VT_I8) {
3193  goto end;
3194  }
3195 
3196  /* Determine the variant type to coerce to. */
3197  if (coerce[lvt] > coerce[rvt]) {
3198  resvt = prio2vt[coerce[lvt]];
3199  tvt = prio2vt[coerce[rvt]];
3200  } else {
3201  resvt = prio2vt[coerce[rvt]];
3202  tvt = prio2vt[coerce[lvt]];
3203  }
3204 
3205  /* Special cases where the result variant type is defined by both
3206  input variants and not only that with the highest priority */
3207  if (resvt == VT_BSTR) {
3208  if (tvt == VT_EMPTY || tvt == VT_BSTR)
3209  resvt = VT_BSTR;
3210  else
3211  resvt = VT_R8;
3212  }
3213  if (resvt == VT_R4 && (tvt == VT_BSTR || tvt == VT_I8 || tvt == VT_I4))
3214  resvt = VT_R8;
3215 
3216  /* For overflow detection use the biggest compatible type for the
3217  addition */
3218  switch (resvt) {
3219  case VT_ERROR:
3221  goto end;
3222  case VT_NULL:
3223  hres = S_OK;
3224  V_VT(result) = VT_NULL;
3225  goto end;
3226  case VT_DISPATCH:
3227  FIXME("cannot handle variant type VT_DISPATCH\n");
3229  goto end;
3230  case VT_EMPTY:
3231  resvt = VT_I2;
3232  /* Fall through */
3233  case VT_UI1:
3234  case VT_I2:
3235  case VT_I4:
3236  case VT_I8:
3237  tvt = VT_I8;
3238  break;
3239  case VT_DATE:
3240  case VT_R4:
3241  tvt = VT_R8;
3242  break;
3243  default:
3244  tvt = resvt;
3245  }
3246 
3247  /* Now coerce the variants */
3248  hres = VariantChangeType(&lv, left, 0, tvt);
3249  if (FAILED(hres))
3250  goto end;
3251  hres = VariantChangeType(&rv, right, 0, tvt);
3252  if (FAILED(hres))
3253  goto end;
3254 
3255  /* Do the math */
3256  hres = S_OK;
3257  V_VT(result) = resvt;
3258  switch (tvt) {
3259  case VT_DECIMAL:
3260  hres = VarDecAdd(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3261  &V_DECIMAL(result));
3262  goto end;
3263  case VT_CY:
3264  hres = VarCyAdd(V_CY(&lv), V_CY(&rv), &V_CY(result));
3265  goto end;
3266  case VT_BSTR:
3267  /* We do not add those, we concatenate them. */
3268  hres = VarBstrCat(V_BSTR(&lv), V_BSTR(&rv), &V_BSTR(result));
3269  goto end;
3270  case VT_I8:
3271  /* Overflow detection */
3272  r8res = (double)V_I8(&lv) + (double)V_I8(&rv);
3273  if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3274  V_VT(result) = VT_R8;
3275  V_R8(result) = r8res;
3276  goto end;
3277  } else {
3278  V_VT(&tv) = tvt;
3279  V_I8(&tv) = V_I8(&lv) + V_I8(&rv);
3280  }
3281  break;
3282  case VT_R8:
3283  V_VT(&tv) = tvt;
3284  /* FIXME: overflow detection */
3285  V_R8(&tv) = V_R8(&lv) + V_R8(&rv);
3286  break;
3287  default:
3288  ERR("We shouldn't get here! tvt = %d!\n", tvt);
3289  break;
3290  }
3291  if (resvt != tvt) {
3292  if ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3293  /* Overflow! Change to the vartype with the next higher priority.
3294  With one exception: I4 ==> R8 even if it would fit in I8 */
3295  if (resvt == VT_I4)
3296  resvt = VT_R8;
3297  else
3298  resvt = prio2vt[coerce[resvt] + 1];
3299  hres = VariantChangeType(result, &tv, 0, resvt);
3300  }
3301  } else
3302  hres = VariantCopy(result, &tv);
3303 
3304 end:
3305  if (hres != S_OK) {
3306  V_VT(result) = VT_EMPTY;
3307  V_I4(result) = 0; /* No V_EMPTY */
3308  }
3309  VariantClear(&lv);
3310  VariantClear(&rv);
3311  VariantClear(&tv);
3312  VariantClear(&tempLeft);
3313  VariantClear(&tempRight);
3314  TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3315  return hres;
3316 }
3317 
3318 /**********************************************************************
3319  * VarMul [OLEAUT32.156]
3320  *
3321  * Multiply two variants.
3322  *
3323  * PARAMS
3324  * left [I] First variant
3325  * right [I] Second variant
3326  * result [O] Result variant
3327  *
3328  * RETURNS
3329  * Success: S_OK.
3330  * Failure: An HRESULT error code indicating the error.
3331  *
3332  * NOTES
3333  * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3334  * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3335  *
3336  * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3337  * same here.
3338  *
3339  * FIXME
3340  * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3341  * case.
3342  */
3344 {
3345  HRESULT hres;
3346  VARTYPE lvt, rvt, resvt, tvt;
3347  VARIANT lv, rv, tv;
3348  VARIANT tempLeft, tempRight;
3349  double r8res;
3350 
3351  /* Variant priority for coercion. Sorted from lowest to highest.
3352  VT_ERROR shows an invalid input variant type. */
3353  enum coerceprio { vt_UI1 = 0, vt_I2, vt_I4, vt_I8, vt_CY, vt_R4, vt_R8,
3354  vt_DECIMAL, vt_NULL, vt_ERROR };
3355  /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3356  static const VARTYPE prio2vt[] = { VT_UI1, VT_I2, VT_I4, VT_I8, VT_CY, VT_R4, VT_R8,
3358 
3359  /* Mapping for coercion from input variant to priority of result variant. */
3360  static const VARTYPE coerce[] = {
3361  /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3362  vt_UI1, vt_NULL, vt_I2, vt_I4, vt_R4,
3363  /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3364  vt_R8, vt_CY, vt_R8, vt_R8, vt_ERROR,
3365  /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3366  vt_ERROR, vt_I2, vt_ERROR, vt_ERROR, vt_DECIMAL,
3367  /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3368  vt_ERROR, vt_ERROR, vt_UI1, vt_ERROR, vt_ERROR, vt_I8
3369  };
3370 
3371  TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3372 
3373  VariantInit(&lv);
3374  VariantInit(&rv);
3375  VariantInit(&tv);
3376  VariantInit(&tempLeft);
3377  VariantInit(&tempRight);
3378 
3379  /* Handle VT_DISPATCH by storing and taking address of returned value */
3380  if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3381  {
3382  hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3383  if (FAILED(hres)) goto end;
3384  left = &tempLeft;
3385  }
3386  if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3387  {
3388  hres = VARIANT_FetchDispatchValue(right, &tempRight);
3389  if (FAILED(hres)) goto end;
3390  right = &tempRight;
3391  }
3392 
3393  lvt = V_VT(left)&VT_TYPEMASK;
3394  rvt = V_VT(right)&VT_TYPEMASK;
3395 
3396  /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3397  Same for any input variant type > VT_I8 */
3398  if (V_VT(left) & ~VT_TYPEMASK || V_VT(right) & ~VT_TYPEMASK ||
3399  lvt > VT_I8 || rvt > VT_I8) {
3401  goto end;
3402  }
3403 
3404  /* Determine the variant type to coerce to. */
3405  if (coerce[lvt] > coerce[rvt]) {
3406  resvt = prio2vt[coerce[lvt]];
3407  tvt = prio2vt[coerce[rvt]];
3408  } else {
3409  resvt = prio2vt[coerce[rvt]];
3410  tvt = prio2vt[coerce[lvt]];
3411  }
3412 
3413  /* Special cases where the result variant type is defined by both
3414  input variants and not only that with the highest priority */
3415  if (resvt == VT_R4 && (tvt == VT_CY || tvt == VT_I8 || tvt == VT_I4))
3416  resvt = VT_R8;
3417  if (lvt == VT_EMPTY && rvt == VT_EMPTY)
3418  resvt = VT_I2;
3419 
3420  /* For overflow detection use the biggest compatible type for the
3421  multiplication */
3422  switch (resvt) {
3423  case VT_ERROR:
3425  goto end;
3426  case VT_NULL:
3427  hres = S_OK;
3428  V_VT(result) = VT_NULL;
3429  goto end;
3430  case VT_UI1:
3431  case VT_I2:
3432  case VT_I4:
3433  case VT_I8:
3434  tvt = VT_I8;
3435  break;
3436  case VT_R4:
3437  tvt = VT_R8;
3438  break;
3439  default:
3440  tvt = resvt;
3441  }
3442 
3443  /* Now coerce the variants */
3444  hres = VariantChangeType(&lv, left, 0, tvt);
3445  if (FAILED(hres))
3446  goto end;
3447  hres = VariantChangeType(&rv, right, 0, tvt);
3448  if (FAILED(hres))
3449  goto end;
3450 
3451  /* Do the math */
3452  hres = S_OK;
3453  V_VT(&tv) = tvt;
3454  V_VT(result) = resvt;
3455  switch (tvt) {
3456  case VT_DECIMAL:
3457  hres = VarDecMul(&V_DECIMAL(&lv), &V_DECIMAL(&rv),
3458  &V_DECIMAL(result));
3459  goto end;
3460  case VT_CY:
3461  hres = VarCyMul(V_CY(&lv), V_CY(&rv), &V_CY(result));
3462  goto end;
3463  case VT_I8:
3464  /* Overflow detection */
3465  r8res = (double)V_I8(&lv) * (double)V_I8(&rv);
3466  if (r8res > (double)I8_MAX || r8res < (double)I8_MIN) {
3467  V_VT(result) = VT_R8;
3468  V_R8(result) = r8res;
3469  goto end;
3470  } else
3471  V_I8(&tv) = V_I8(&lv) * V_I8(&rv);
3472  break;
3473  case VT_R8:
3474  /* FIXME: overflow detection */
3475  V_R8(&tv) = V_R8(&lv) * V_R8(&rv);
3476  break;
3477  default:
3478  ERR("We shouldn't get here! tvt = %d!\n", tvt);
3479  break;
3480  }
3481  if (resvt != tvt) {
3482  while ((hres = VariantChangeType(result, &tv, 0, resvt)) != S_OK) {
3483  /* Overflow! Change to the vartype with the next higher priority.
3484  With one exception: I4 ==> R8 even if it would fit in I8 */
3485  if (resvt == VT_I4)
3486  resvt = VT_R8;
3487  else
3488  resvt = prio2vt[coerce[resvt] + 1];
3489  }
3490  } else
3491  hres = VariantCopy(result, &tv);
3492 
3493 end:
3494  if (hres != S_OK) {
3495  V_VT(result) = VT_EMPTY;
3496  V_I4(result) = 0; /* No V_EMPTY */
3497  }
3498  VariantClear(&lv);
3499  VariantClear(&rv);
3500  VariantClear(&tv);
3501  VariantClear(&tempLeft);
3502  VariantClear(&tempRight);
3503  TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3504  return hres;
3505 }
3506 
3507 /**********************************************************************
3508  * VarDiv [OLEAUT32.143]
3509  *
3510  * Divides one variant with another.
3511  *
3512  * PARAMS
3513  * left [I] First variant
3514  * right [I] Second variant
3515  * result [O] Result variant
3516  *
3517  * RETURNS
3518  * Success: S_OK.
3519  * Failure: An HRESULT error code indicating the error.
3520  */
3522 {
3523  HRESULT hres = S_OK;
3524  VARTYPE resvt = VT_EMPTY;
3525  VARTYPE leftvt,rightvt;
3526  VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3527  VARIANT lv,rv;
3528  VARIANT tempLeft, tempRight;
3529 
3530  VariantInit(&tempLeft);
3531  VariantInit(&tempRight);
3532  VariantInit(&lv);
3533  VariantInit(&rv);
3534 
3535  TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3536 
3537  /* Handle VT_DISPATCH by storing and taking address of returned value */
3538  if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH)
3539  {
3540  hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3541  if (FAILED(hres)) goto end;
3542  left = &tempLeft;
3543  }
3544  if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH)
3545  {
3546  hres = VARIANT_FetchDispatchValue(right, &tempRight);
3547  if (FAILED(hres)) goto end;
3548  right = &tempRight;
3549  }
3550 
3551  leftvt = V_VT(left)&VT_TYPEMASK;
3552  rightvt = V_VT(right)&VT_TYPEMASK;
3553  leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3554  rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3555 
3556  if (leftExtraFlags != rightExtraFlags)
3557  {
3559  goto end;
3560  }
3561  ExtraFlags = leftExtraFlags;
3562 
3563  /* Native VarDiv always returns an error when using extra flags */
3564  if (ExtraFlags != 0)
3565  {
3567  goto end;
3568  }
3569 
3570  /* Determine return type */
3571  if (rightvt != VT_EMPTY)
3572  {
3573  if (leftvt == VT_NULL || rightvt == VT_NULL)
3574  {
3575  V_VT(result) = VT_NULL;
3576  hres = S_OK;
3577  goto end;
3578  }
3579  else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3580  resvt = VT_DECIMAL;
3581  else if (leftvt == VT_I8 || rightvt == VT_I8 ||
3582  leftvt == VT_CY || rightvt == VT_CY ||
3583  leftvt == VT_DATE || rightvt == VT_DATE ||
3584  leftvt == VT_I4 || rightvt == VT_I4 ||
3585  leftvt == VT_BSTR || rightvt == VT_BSTR ||
3586  leftvt == VT_I2 || rightvt == VT_I2 ||
3587  leftvt == VT_BOOL || rightvt == VT_BOOL ||
3588  leftvt == VT_R8 || rightvt == VT_R8 ||
3589  leftvt == VT_UI1 || rightvt == VT_UI1)
3590  {
3591  if ((leftvt == VT_UI1 && rightvt == VT_R4) ||
3592  (leftvt == VT_R4 && rightvt == VT_UI1))
3593  resvt = VT_R4;
3594  else if ((leftvt == VT_R4 && (rightvt == VT_BOOL ||
3595  rightvt == VT_I2)) || (rightvt == VT_R4 &&
3596  (leftvt == VT_BOOL || leftvt == VT_I2)))
3597  resvt = VT_R4;
3598  else
3599  resvt = VT_R8;
3600  }
3601  else if (leftvt == VT_R4 || rightvt == VT_R4)
3602  resvt = VT_R4;
3603  }
3604  else if (leftvt == VT_NULL)
3605  {
3606  V_VT(result) = VT_NULL;
3607  hres = S_OK;
3608  goto end;
3609  }
3610  else
3611  {
3613  goto end;
3614  }
3615 
3616  /* coerce to the result type */
3617  hres = VariantChangeType(&lv, left, 0, resvt);
3618  if (hres != S_OK) goto end;
3619 
3620  hres = VariantChangeType(&rv, right, 0, resvt);
3621  if (hres != S_OK) goto end;
3622 
3623  /* do the math */
3624  V_VT(result) = resvt;
3625  switch (resvt)
3626  {
3627  case VT_R4:
3628  if (V_R4(&lv) == 0.0 && V_R4(&rv) == 0.0)
3629  {
3631  V_VT(result) = VT_EMPTY;
3632  }
3633  else if (V_R4(&rv) == 0.0)
3634  {
3636  V_VT(result) = VT_EMPTY;
3637  }
3638  else
3639  V_R4(result) = V_R4(&lv) / V_R4(&rv);
3640  break;
3641  case VT_R8:
3642  if (V_R8(&lv) == 0.0 && V_R8(&rv) == 0.0)
3643  {
3645  V_VT(result) = VT_EMPTY;
3646  }
3647  else if (V_R8(&rv) == 0.0)
3648  {
3650  V_VT(result) = VT_EMPTY;
3651  }
3652  else
3653  V_R8(result) = V_R8(&lv) / V_R8(&rv);
3654  break;
3655  case VT_DECIMAL:
3656  hres = VarDecDiv(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3657  break;
3658  }
3659 
3660 end:
3661  VariantClear(&lv);
3662  VariantClear(&rv);
3663  VariantClear(&tempLeft);
3664  VariantClear(&tempRight);
3665  TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3666  return hres;
3667 }
3668 
3669 /**********************************************************************
3670  * VarSub [OLEAUT32.159]
3671  *
3672  * Subtract two variants.
3673  *
3674  * PARAMS
3675  * left [I] First variant
3676  * right [I] Second variant
3677  * result [O] Result variant
3678  *
3679  * RETURNS
3680  * Success: S_OK.
3681  * Failure: An HRESULT error code indicating the error.
3682  */
3684 {
3685  HRESULT hres = S_OK;
3686  VARTYPE resvt = VT_EMPTY;
3687  VARTYPE leftvt,rightvt;
3688  VARTYPE rightExtraFlags,leftExtraFlags,ExtraFlags;
3689  VARIANT lv,rv;
3690  VARIANT tempLeft, tempRight;
3691 
3692  VariantInit(&lv);
3693  VariantInit(&rv);
3694  VariantInit(&tempLeft);
3695  VariantInit(&tempRight);
3696 
3697  TRACE("(%s,%s,%p)\n", debugstr_variant(left), debugstr_variant(right), result);
3698 
3699  if ((V_VT(left) & VT_TYPEMASK) == VT_DISPATCH &&
3700  (V_VT(left)&(~VT_TYPEMASK)) == 0 &&
3701  (V_VT(right) & VT_TYPEMASK) != VT_NULL)
3702  {
3703  if (NULL == V_DISPATCH(left)) {
3704  if ((V_VT(right) & VT_TYPEMASK) >= VT_INT_PTR)
3706  else if ((V_VT(right) & VT_TYPEMASK) >= VT_UI8 &&
3709  else switch (V_VT(right) & VT_TYPEMASK)
3710  {
3711  case VT_VARIANT:
3712  case VT_UNKNOWN:
3713  case 15:
3714  case VT_I1:
3715  case VT_UI2:
3716  case VT_UI4:
3718  }
3719  if (FAILED(hres)) goto end;
3720  }
3721  hres = VARIANT_FetchDispatchValue(left, &tempLeft);
3722  if (FAILED(hres)) goto end;
3723  left = &tempLeft;
3724  }
3725  if ((V_VT(right) & VT_TYPEMASK) == VT_DISPATCH &&
3726  (V_VT(right)&(~VT_TYPEMASK)) == 0 &&
3727  (V_VT(left) & VT_TYPEMASK) != VT_NULL)
3728  {
3729  if (NULL == V_DISPATCH(right))
3730  {
3731  if ((V_VT(left) & VT_TYPEMASK) >= VT_INT_PTR)
3733  else if ((V_VT(left) & VT_TYPEMASK) >= VT_UI8 &&
3734  (V_VT(left) & VT_TYPEMASK) < VT_RECORD)
3736  else switch (V_VT(left) & VT_TYPEMASK)
3737  {
3738  case VT_VARIANT:
3739  case VT_UNKNOWN:
3740  case 15:
3741  case VT_I1:
3742  case VT_UI2:
3743  case VT_UI4:
3745  }
3746  if (FAILED(hres)) goto end;
3747  }
3748  hres = VARIANT_FetchDispatchValue(right, &tempRight);
3749  if (FAILED(hres)) goto end;
3750  right = &tempRight;
3751  }
3752 
3753  leftvt = V_VT(left)&VT_TYPEMASK;
3754  rightvt = V_VT(right)&VT_TYPEMASK;
3755  leftExtraFlags = V_VT(left)&(~VT_TYPEMASK);
3756  rightExtraFlags = V_VT(right)&(~VT_TYPEMASK);
3757 
3758  if (leftExtraFlags != rightExtraFlags)
3759  {
3761  goto end;
3762  }
3763  ExtraFlags = leftExtraFlags;
3764 
3765  /* determine return type and return code */
3766  /* All extra flags produce errors */
3769  ExtraFlags == (VT_VECTOR|VT_BYREF) ||
3771  ExtraFlags == VT_VECTOR ||
3772  ExtraFlags == VT_BYREF ||
3774  {
3776  goto end;
3777  }
3778  else if (ExtraFlags >= VT_ARRAY)
3779  {
3781  goto end;
3782  }
3783  /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3784  VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3785  else if (leftvt == VT_CLSID || rightvt == VT_CLSID ||
3786  leftvt == VT_VARIANT || rightvt == VT_VARIANT ||
3787  leftvt == VT_I1 || rightvt == VT_I1 ||
3788  leftvt == VT_UI2 || rightvt == VT_UI2 ||
3789  leftvt == VT_UI4 || rightvt == VT_UI4 ||
3790  leftvt == VT_UI8 || rightvt == VT_UI8 ||
3791  leftvt == VT_INT || rightvt == VT_INT ||
3792  leftvt == VT_UINT || rightvt == VT_UINT ||
3793  leftvt == VT_UNKNOWN || rightvt == VT_UNKNOWN ||
3794  leftvt == VT_RECORD || rightvt == VT_RECORD)
3795  {
3796  if (leftvt == VT_RECORD && rightvt == VT_I8)
3798  else if (leftvt < VT_UI1 && rightvt == VT_RECORD)
3800  else if (leftvt >= VT_UI1 && rightvt == VT_RECORD)
3802  else if (leftvt == VT_RECORD && rightvt <= VT_UI1)
3804  else if (leftvt == VT_RECORD && rightvt > VT_UI1)
3806  else
3808  goto end;
3809  }
3810  /* The following flags/types are invalid for left variant */
3811  else if (!((leftvt <= VT_LPWSTR || leftvt == VT_RECORD ||
3812  leftvt == VT_CLSID) && leftvt != (VARTYPE)15 /* undefined vt */ &&
3813  (leftvt < VT_VOID || leftvt > VT_LPWSTR)))
3814  {
3816  goto end;
3817  }
3818  /* The following flags/types are invalid for right variant */
3819  else if (!((rightvt <= VT_LPWSTR || rightvt == VT_RECORD ||
3820  rightvt == VT_CLSID) && rightvt != (VARTYPE)15 /* undefined vt */ &&
3821  (rightvt < VT_VOID || rightvt > VT_LPWSTR)))
3822  {
3824  goto end;
3825  }
3826  else if ((leftvt == VT_NULL && rightvt == VT_DISPATCH) ||
3827  (leftvt == VT_DISPATCH && rightvt == VT_NULL))
3828  resvt = VT_NULL;
3829  else if (leftvt == VT_DISPATCH || rightvt == VT_DISPATCH ||
3830  leftvt == VT_ERROR || rightvt == VT_ERROR)
3831  {
3833  goto end;
3834  }
3835  else if (leftvt == VT_NULL || rightvt == VT_NULL)
3836  resvt = VT_NULL;
3837  else if ((leftvt == VT_EMPTY && rightvt == VT_BSTR) ||
3838  (leftvt == VT_DATE && rightvt == VT_DATE) ||
3839  (leftvt == VT_BSTR && rightvt == VT_EMPTY) ||
3840  (leftvt == VT_BSTR && rightvt == VT_BSTR))
3841  resvt = VT_R8;
3842  else if (leftvt == VT_DECIMAL || rightvt == VT_DECIMAL)
3843  resvt = VT_DECIMAL;
3844  else if (leftvt == VT_DATE || rightvt == VT_DATE)
3845  resvt = VT_DATE;
3846  else if (leftvt == VT_CY || rightvt == VT_CY)
3847  resvt = VT_CY;
3848  else if (leftvt == VT_R8 || rightvt == VT_R8)
3849  resvt = VT_R8;
3850  else if (leftvt == VT_BSTR || rightvt == VT_BSTR)
3851  resvt = VT_R8;
3852  else if (leftvt == VT_R4 || rightvt == VT_R4)
3853  {
3854  if (leftvt == VT_I4 || rightvt == VT_I4 ||
3855  leftvt == VT_I8 || rightvt == VT_I8)
3856  resvt = VT_R8;
3857  else
3858  resvt = VT_R4;
3859  }
3860  else if (leftvt == VT_I8 || rightvt == VT_I8)
3861  resvt = VT_I8;
3862  else if (leftvt == VT_I4 || rightvt == VT_I4)
3863  resvt = VT_I4;
3864  else if (leftvt == VT_I2 || rightvt == VT_I2 ||
3865  leftvt == VT_BOOL || rightvt == VT_BOOL ||
3866  (leftvt == VT_EMPTY && rightvt == VT_EMPTY))
3867  resvt = VT_I2;
3868  else if (leftvt == VT_UI1 || rightvt == VT_UI1)
3869  resvt = VT_UI1;
3870  else
3871  {
3873  goto end;
3874  }
3875 
3876  /* coerce to the result type */
3877  if (leftvt == VT_BSTR && rightvt == VT_DATE)
3878  hres = VariantChangeType(&lv, left, 0, VT_R8);
3879  else
3880  hres = VariantChangeType(&lv, left, 0, resvt);
3881  if (hres != S_OK) goto end;
3882  if (leftvt == VT_DATE && rightvt == VT_BSTR)
3883  hres = VariantChangeType(&rv, right, 0, VT_R8);
3884  else
3885  hres = VariantChangeType(&rv, right, 0, resvt);
3886  if (hres != S_OK) goto end;
3887 
3888  /* do the math */
3889  V_VT(result) = resvt;
3890  switch (resvt)
3891  {
3892  case VT_NULL:
3893  break;
3894  case VT_DATE:
3895  V_DATE(result) = V_DATE(&lv) - V_DATE(&rv);
3896  break;
3897  case VT_CY:
3898  hres = VarCySub(V_CY(&lv), V_CY(&rv), &(V_CY(result)));
3899  break;
3900  case VT_R4:
3901  V_R4(result) = V_R4(&lv) - V_R4(&rv);
3902  break;
3903  case VT_I8:
3904  V_I8(result) = V_I8(&lv) - V_I8(&rv);
3905  break;
3906  case VT_I4:
3907  V_I4(result) = V_I4(&lv) - V_I4(&rv);
3908  break;
3909  case VT_I2:
3910  V_I2(result) = V_I2(&lv) - V_I2(&rv);
3911  break;
3912  case VT_UI1:
3913  V_UI1(result) = V_UI2(&lv) - V_UI1(&rv);
3914  break;
3915  case VT_R8:
3916  V_R8(result) = V_R8(&lv) - V_R8(&rv);
3917  break;
3918  case VT_DECIMAL:
3919  hres = VarDecSub(&(V_DECIMAL(&lv)), &(V_DECIMAL(&rv)), &(V_DECIMAL(result)));
3920  break;
3921  }
3922 
3923 end:
3924  VariantClear(&lv);
3925  VariantClear(&rv);
3926  VariantClear(&tempLeft);
3927  VariantClear(&tempRight);
3928  TRACE("returning 0x%8x %s\n", hres, debugstr_variant(result));
3929  return hres;
3930 }
3931 
3932 
3933 /**********************************************************************
3934  * VarOr [OLEAUT32.157]
3935  *
3936  * Perform a logical or (OR) operation on two variants.
3937  *
3938  * PARAMS
3939  * pVarLeft [I] First variant
3940  * pVarRight [I] Variant to OR with pVarLeft
3941  * pVarOut [O] Destination for OR result
3942  *
3943  * RETURNS
3944  * Success: S_OK. pVarOut contains the result of the operation with its type
3945  * taken from the table listed under VarXor().
3946  * Failure: An HRESULT error code indicating the error.
3947  *
3948  * NOTES
3949  * See the Notes section of VarXor() for further information.
3950  */
3951 HRESULT WINAPI VarOr(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut)
3952 {
3953  VARTYPE vt = VT_I4;
3954  VARIANT varLeft, varRight, varStr;
3955  HRESULT hRet;
3956  VARIANT tempLeft, tempRight;
3957 
3958  VariantInit(&tempLeft);
3959  VariantInit(&tempRight);
3960  VariantInit(&varLeft);
3961  VariantInit(&varRight);
3962  VariantInit(&varStr);
3963 
3964  TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft), debugstr_variant(pVarRight), pVarOut);
3965 
3966  /* Handle VT_DISPATCH by storing and taking address of returned value */
3967  if ((V_VT(pVarLeft) & VT_TYPEMASK) == VT_DISPATCH)
3968  {
3969  hRet = VARIANT_FetchDispatchValue(pVarLeft, &tempLeft);
3970  if (FAILED(hRet)) goto VarOr_Exit;
3971  pVarLeft = &tempLeft;
3972  }
3973  if ((V_VT(pVarRight) & VT_TYPEMASK) == VT_DISPATCH)
3974  {
3975  hRet = VARIANT_FetchDispatchValue(pVarRight, &tempRight);
3976  if (FAILED(hRet)) goto VarOr_Exit;
3977  pVarRight = &tempRight;
3978  }
3979 
3980  if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) ||
3981  V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN ||
3982  V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH ||
3983  V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD)
3984  {
3985  hRet = DISP_E_BADVARTYPE;
3986  goto VarOr_Exit;
3987  }
3988 
3989  V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY;
3990 
3991  if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL)
3992  {
3993  /* NULL OR Zero is NULL, NULL OR value is value */
3994  if (V_VT(pVarLeft) == VT_NULL)
3995  pVarLeft = pVarRight; /* point to the non-NULL var */
3996 
3997  V_VT(pVarOut) = VT_NULL;
3998  V_I4(pVarOut) = 0;
3999 
4000  switch (V_VT(pVarLeft))
4001  {
4002  case VT_DATE: case VT_R8:
4003  if (V_R8(pVarLeft))
4004  goto VarOr_AsEmpty;
4005  hRet = S_OK;
4006  goto VarOr_Exit;
4007  case VT_BOOL:
4008  if (V_BOOL(pVarLeft))
4009  *pVarOut = *pVarLeft;
4010  hRet = S_OK;
4011  goto VarOr_Exit;
4012  case VT_I2: case VT_UI2:
4013  if (V_I2(pVarLeft))
4014  goto VarOr_AsEmpty;
4015  hRet = S_OK;
4016  goto VarOr_Exit;
4017  case VT_I1:
4018  if (V_I1(pVarLeft))
4019  goto VarOr_AsEmpty;
4020  hRet = S_OK;
4021  goto VarOr_Exit;
4022  case VT_UI1:
4023  if (V_UI1(pVarLeft))
4024  *pVarOut = *pVarLeft;
4025  hRet = S_OK;
4026  goto VarOr_Exit;
4027  case VT_R4:
4028  if (V_R4(pVarLeft))
4029  goto VarOr_AsEmpty;
4030  hRet = S_OK;
4031  goto VarOr_Exit;
4032  case VT_I4: case VT_UI4: case VT_INT: case VT_UINT:
4033  if (V_I4(pVarLeft))
4034  goto VarOr_AsEmpty;
4035  hRet = S_OK;
4036  goto VarOr_Exit;
4037  case VT_CY:
4038  if (V_CY(pVarLeft).int64)
4039  goto VarOr_AsEmpty;
4040  hRet = S_OK;
4041  goto VarOr_Exit;
4042  case VT_I8: case VT_UI8:
4043  if (V_I8(pVarLeft))
4044  goto VarOr_AsEmpty;
4045  hRet = S_OK;
4046  goto VarOr_Exit;
4047  case VT_DECIMAL:
4048  if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft)))
4049  goto VarOr_AsEmpty;
4050  hRet = S_OK;
4051  goto VarOr_Exit;
4052  case VT_BSTR:
4053  {
4054  VARIANT_BOOL b;
4055 
4056  if (!V_BSTR(pVarLeft))
4057  {
4058  hRet = DISP_E_BADVARTYPE;
4059  goto VarOr_Exit;
4060  }
4061 
4063  if (SUCCEEDED(hRet) && b)
4064  {
4065  V_VT(pVarOut) = VT_BOOL;
4066  V_BOOL(pVarOut) = b;
4067  }
4068  goto VarOr_Exit;
4069  }
4070  case VT_NULL: case VT_EMPTY:
4071  V_VT(pVarOut) = VT_NULL;
4072  hRet = S_OK;
4073  goto VarOr_Exit;
4074  default:
4075  hRet = DISP_E_BADVARTYPE;
4076  goto VarOr_Exit;
4077  }
4078  }
4079 
4080  if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY)
4081  {
4082  if (V_VT(pVarLeft) == VT_EMPTY)
4083  pVarLeft = pVarRight; /* point to the non-EMPTY var */
4084 
4085 VarOr_AsEmpty:
4086  /* Since one argument is empty (0), OR'ing it with the other simply
4087  * gives the others value (as 0|x => x). So just convert the other
4088  * argument to the required result type.
4089