ReactOS 0.4.16-dev-736-g28b802b
virtual.c
Go to the documentation of this file.
1/*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/virtual.c
5 * PURPOSE: ARM Memory Manager Virtual Memory Management
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9/* INCLUDES *******************************************************************/
10
11#include <ntoskrnl.h>
12#define NDEBUG
13#include <debug.h>
14
15#define MODULE_INVOLVED_IN_ARM3
16#include <mm/ARM3/miarm.h>
17
18#define MI_MAPPED_COPY_PAGES 14
19#define MI_POOL_COPY_BYTES 512
20#define MI_MAX_TRANSFER_SIZE 64 * 1024
21
25 IN OUT PSIZE_T NumberOfBytesToProtect,
26 IN ULONG NewAccessProtection,
27 OUT PULONG OldAccessProtection OPTIONAL);
28
29VOID
32 IN PMMPTE PointerPte,
33 IN ULONG ProtectionMask,
34 IN PMMPFN Pfn1,
35 IN BOOLEAN CaptureDirtyBit);
36
37
38/* PRIVATE FUNCTIONS **********************************************************/
39
43 IN ULONG_PTR EndingAddress,
44 IN PMMVAD Vad,
46{
47 PMMPTE PointerPte, LastPte;
48 PMMPDE PointerPde;
49 BOOLEAN OnPdeBoundary = TRUE;
50#if _MI_PAGING_LEVELS >= 3
51 PMMPPE PointerPpe;
52 BOOLEAN OnPpeBoundary = TRUE;
53#if _MI_PAGING_LEVELS == 4
54 PMMPXE PointerPxe;
55 BOOLEAN OnPxeBoundary = TRUE;
56#endif
57#endif
58
59 /* Make sure this all makes sense */
60 ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
61 ASSERT(EndingAddress >= StartingAddress);
62 PointerPte = MiAddressToPte(StartingAddress);
63 LastPte = MiAddressToPte(EndingAddress);
64
65 /*
66 * In case this is a committed VAD, assume the whole range is committed
67 * and count the individually decommitted pages.
68 * In case it is not, assume the range is not committed and count the individually committed pages.
69 */
70 ULONG_PTR CommittedPages = Vad->u.VadFlags.MemCommit ? BYTES_TO_PAGES(EndingAddress - StartingAddress) : 0;
71
72 while (PointerPte <= LastPte)
73 {
74#if _MI_PAGING_LEVELS == 4
75 /* Check if PXE was ever paged in. */
76 if (OnPxeBoundary)
77 {
78 PointerPxe = MiPteToPxe(PointerPte);
79
80 /* Check that this loop is sane */
81 ASSERT(OnPpeBoundary);
82 ASSERT(OnPdeBoundary);
83
84 if (PointerPxe->u.Long == 0)
85 {
86 PointerPxe++;
87 PointerPte = MiPxeToPte(PointerPde);
88 continue;
89 }
90
91 if (PointerPxe->u.Hard.Valid == 0)
93 }
94 ASSERT(PointerPxe->u.Hard.Valid == 1);
95#endif
96
97#if _MI_PAGING_LEVELS >= 3
98 /* Now PPE */
99 if (OnPpeBoundary)
100 {
101 PointerPpe = MiPteToPpe(PointerPte);
102
103 /* Sanity again */
104 ASSERT(OnPdeBoundary);
105
106 if (PointerPpe->u.Long == 0)
107 {
108 PointerPpe++;
109 PointerPte = MiPpeToPte(PointerPpe);
110#if _MI_PAGING_LEVELS == 4
111 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
112#endif
113 continue;
114 }
115
116 if (PointerPpe->u.Hard.Valid == 0)
118 }
119 ASSERT(PointerPpe->u.Hard.Valid == 1);
120#endif
121
122 /* Last level is the PDE */
123 if (OnPdeBoundary)
124 {
125 PointerPde = MiPteToPde(PointerPte);
126 if (PointerPde->u.Long == 0)
127 {
128 PointerPde++;
129 PointerPte = MiPdeToPte(PointerPde);
130#if _MI_PAGING_LEVELS >= 3
131 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
132#if _MI_PAGING_LEVELS == 4
133 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
134#endif
135#endif
136 continue;
137 }
138
139 if (PointerPde->u.Hard.Valid == 0)
141 }
142 ASSERT(PointerPde->u.Hard.Valid == 1);
143
144 /* Is this PTE demand zero? */
145 if (PointerPte->u.Long != 0)
146 {
147 /* It isn't -- is it a decommited, invalid, or faulted PTE? */
148 if ((PointerPte->u.Hard.Valid == 0) &&
149 (PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
150 ((PointerPte->u.Soft.Prototype == 0) ||
151 (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
152 {
153 /* It is, so remove it from the count of committed pages if we have to */
154 if (Vad->u.VadFlags.MemCommit)
155 CommittedPages--;
156 }
157 else if (!Vad->u.VadFlags.MemCommit)
158 {
159 /* It is a valid, non-decommited, non-paged out PTE. Count it in. */
160 CommittedPages++;
161 }
162 }
163
164 /* Move to the next PTE */
165 PointerPte++;
166 /* Manage page tables */
167 OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
168#if _MI_PAGING_LEVELS >= 3
169 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
170#if _MI_PAGING_LEVELS == 4
171 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
172#endif
173#endif
174 }
175
176 /* Make sure we didn't mess this up */
177 ASSERT(CommittedPages <= BYTES_TO_PAGES(EndingAddress - StartingAddress));
178 return CommittedPages;
179}
180
181ULONG
182NTAPI
183MiMakeSystemAddressValid(IN PVOID PageTableVirtualAddress,
184 IN PEPROCESS CurrentProcess)
185{
187 BOOLEAN WsShared = FALSE, WsSafe = FALSE, LockChange = FALSE;
188 PETHREAD CurrentThread = PsGetCurrentThread();
189
190 /* Must be a non-pool page table, since those are double-mapped already */
191 ASSERT(PageTableVirtualAddress > MM_HIGHEST_USER_ADDRESS);
192 ASSERT((PageTableVirtualAddress < MmPagedPoolStart) ||
193 (PageTableVirtualAddress > MmPagedPoolEnd));
194
195 /* Working set lock or PFN lock should be held */
197
198 /* Check if the page table is valid */
199 while (!MmIsAddressValid(PageTableVirtualAddress))
200 {
201 /* Release the working set lock */
203 CurrentThread,
204 &WsSafe,
205 &WsShared);
206
207 /* Fault it in */
208 Status = MmAccessFault(FALSE, PageTableVirtualAddress, KernelMode, NULL);
209 if (!NT_SUCCESS(Status))
210 {
211 /* This should not fail */
212 KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
213 1,
214 Status,
215 (ULONG_PTR)CurrentProcess,
216 (ULONG_PTR)PageTableVirtualAddress);
217 }
218
219 /* Lock the working set again */
220 MiLockProcessWorkingSetForFault(CurrentProcess,
221 CurrentThread,
222 WsSafe,
223 WsShared);
224
225 /* This flag will be useful later when we do better locking */
226 LockChange = TRUE;
227 }
228
229 /* Let caller know what the lock state is */
230 return LockChange;
231}
232
233ULONG
234NTAPI
237{
239 BOOLEAN LockChange = FALSE;
240
241 /* Must be e kernel address */
243
244 /* Check if the page is valid */
246 {
247 /* Release the PFN database */
248 MiReleasePfnLock(OldIrql);
249
250 /* Fault it in */
252 if (!NT_SUCCESS(Status))
253 {
254 /* This should not fail */
255 KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
256 3,
257 Status,
258 0,
260 }
261
262 /* This flag will be useful later when we do better locking */
263 LockChange = TRUE;
264
265 /* Lock the PFN database */
266 OldIrql = MiAcquirePfnLock();
267 }
268
269 /* Let caller know what the lock state is */
270 return LockChange;
271}
272
274NTAPI
276 IN PFN_NUMBER PageCount,
277 IN ULONG Flags,
278 OUT PPFN_NUMBER ValidPages)
279{
280 PFN_COUNT ActualPages = 0;
281 PETHREAD CurrentThread = PsGetCurrentThread();
282 PMMPFN Pfn1, Pfn2;
283 PFN_NUMBER PageFrameIndex, PageTableIndex;
286
287 /* Lock the system working set */
288 MiLockWorkingSet(CurrentThread, &MmSystemCacheWs);
289
290 /* Loop all pages */
291 while (PageCount)
292 {
293 /* Make sure there's some data about the page */
294 if (PointerPte->u.Long)
295 {
296 /* Normally this is one possibility -- freeing a valid page */
297 if (PointerPte->u.Hard.Valid)
298 {
299 /* Get the page PFN */
300 PageFrameIndex = PFN_FROM_PTE(PointerPte);
301 Pfn1 = MiGetPfnEntry(PageFrameIndex);
302
303 /* Should not have any working set data yet */
304 ASSERT(Pfn1->u1.WsIndex == 0);
305
306 /* Actual valid, legitimate, pages */
307 if (ValidPages) (*ValidPages)++;
308
309 /* Get the page table entry */
310 PageTableIndex = Pfn1->u4.PteFrame;
311 Pfn2 = MiGetPfnEntry(PageTableIndex);
312
313 /* Lock the PFN database */
314 OldIrql = MiAcquirePfnLock();
315
316 /* Delete it the page */
317 MI_SET_PFN_DELETED(Pfn1);
318 MiDecrementShareCount(Pfn1, PageFrameIndex);
319
320 /* Decrement the page table too */
321 MiDecrementShareCount(Pfn2, PageTableIndex);
322
323 /* Release the PFN database */
324 MiReleasePfnLock(OldIrql);
325
326 /* Destroy the PTE */
327 MI_ERASE_PTE(PointerPte);
328 }
329 else
330 {
331 /* As always, only handle current ARM3 scenarios */
332 ASSERT(PointerPte->u.Soft.Prototype == 0);
333 ASSERT(PointerPte->u.Soft.Transition == 0);
334
335 /*
336 * The only other ARM3 possibility is a demand zero page, which would
337 * mean freeing some of the paged pool pages that haven't even been
338 * touched yet, as part of a larger allocation.
339 *
340 * Right now, we shouldn't expect any page file information in the PTE
341 */
342 ASSERT(PointerPte->u.Soft.PageFileHigh == 0);
343
344 /* Destroy the PTE */
345 MI_ERASE_PTE(PointerPte);
346 }
347
348 /* Actual legitimate pages */
349 ActualPages++;
350 }
351
352 /* Keep going */
353 PointerPte++;
354 PageCount--;
355 }
356
357 /* Release the working set */
358 MiUnlockWorkingSet(CurrentThread, &MmSystemCacheWs);
359
360 /* Flush the entire TLB */
362
363 /* Done */
364 return ActualPages;
365}
366
367VOID
368NTAPI
371 IN PEPROCESS CurrentProcess,
373{
374 PMMPFN Pfn1;
376 PFN_NUMBER PageFrameIndex;
377 PMMPDE PointerPde;
378
379 /* PFN lock must be held */
381
382 /* WorkingSet must be exclusively locked */
384
385 /* This must be current process. */
386 ASSERT(CurrentProcess == PsGetCurrentProcess());
387
388 /* Capture the PTE */
389 TempPte = *PointerPte;
390
391 /* See if the PTE is valid */
392 if (TempPte.u.Hard.Valid == 0)
393 {
394 /* Prototype and paged out PTEs not supported yet */
395 ASSERT(TempPte.u.Soft.Prototype == 0);
396 ASSERT((TempPte.u.Soft.PageFileHigh == 0) || (TempPte.u.Soft.Transition == 1));
397
398 if (TempPte.u.Soft.Transition)
399 {
400 /* Get the PFN entry */
401 PageFrameIndex = PFN_FROM_PTE(&TempPte);
402 Pfn1 = MiGetPfnEntry(PageFrameIndex);
403
404 DPRINT("Pte %p is transitional!\n", PointerPte);
405
406 /* Make sure the saved PTE address is valid */
407 ASSERT((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) == PointerPte);
408
409 /* Destroy the PTE */
410 MI_ERASE_PTE(PointerPte);
411
412 /* Drop the reference on the page table. */
414
415 /* In case of shared page, the prototype PTE must be in transition, not the process one */
416 ASSERT(Pfn1->u3.e1.PrototypePte == 0);
417
418 /* Delete the PFN */
419 MI_SET_PFN_DELETED(Pfn1);
420
421 /* It must be either free (refcount == 0) or being written (refcount == 1) */
422 ASSERT(Pfn1->u3.e2.ReferenceCount == Pfn1->u3.e1.WriteInProgress);
423
424 /* See if we must free it ourselves, or if it will be freed once I/O is over */
425 if (Pfn1->u3.e2.ReferenceCount == 0)
426 {
427 /* And it should be in standby or modified list */
429
430 /* Unlink it and set its reference count to one */
432 Pfn1->u3.e2.ReferenceCount++;
433
434 /* This will put it back in free list and clean properly up */
435 MiDecrementReferenceCount(Pfn1, PageFrameIndex);
436 }
437 return;
438 }
439 }
440
441 /* Get the PFN entry */
442 PageFrameIndex = PFN_FROM_PTE(&TempPte);
443 Pfn1 = MiGetPfnEntry(PageFrameIndex);
444
445 /* Check if this is a valid, prototype PTE */
446 if (Pfn1->u3.e1.PrototypePte == 1)
447 {
448 /* Get the PDE and make sure it's faulted in */
449 PointerPde = MiPteToPde(PointerPte);
450 if (PointerPde->u.Hard.Valid == 0)
451 {
452#if (_MI_PAGING_LEVELS == 2)
453 /* Could be paged pool access from a new process -- synchronize the page directories */
455 {
456#endif
457 /* The PDE must be valid at this point */
458 KeBugCheckEx(MEMORY_MANAGEMENT,
459 0x61940,
460 (ULONG_PTR)PointerPte,
461 PointerPte->u.Long,
463 }
464#if (_MI_PAGING_LEVELS == 2)
465 }
466#endif
467 /* Drop the share count on the page table */
468 PointerPde = MiPteToPde(PointerPte);
470 PointerPde->u.Hard.PageFrameNumber);
471
472 /* Drop the share count */
473 MiDecrementShareCount(Pfn1, PageFrameIndex);
474
475 /* Either a fork, or this is the shared user data page */
476 if ((PointerPte <= MiHighestUserPte) && (PrototypePte != Pfn1->PteAddress))
477 {
478 /* If it's not the shared user page, then crash, since there's no fork() yet */
481 {
482 /* Must be some sort of memory corruption */
483 KeBugCheckEx(MEMORY_MANAGEMENT,
484 0x400,
485 (ULONG_PTR)PointerPte,
487 (ULONG_PTR)Pfn1->PteAddress);
488 }
489 }
490
491 /* Erase it */
492 MI_ERASE_PTE(PointerPte);
493 }
494 else
495 {
496 /* Make sure the saved PTE address is valid */
497 if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte)
498 {
499 /* The PFN entry is illegal, or invalid */
500 KeBugCheckEx(MEMORY_MANAGEMENT,
501 0x401,
502 (ULONG_PTR)PointerPte,
503 PointerPte->u.Long,
504 (ULONG_PTR)Pfn1->PteAddress);
505 }
506
507 /* Erase the PTE */
508 MI_ERASE_PTE(PointerPte);
509
510 /* There should only be 1 shared reference count */
511 ASSERT(Pfn1->u2.ShareCount == 1);
512
513 /* Drop the reference on the page table. */
515
516 /* Mark the PFN for deletion and dereference what should be the last ref */
517 MI_SET_PFN_DELETED(Pfn1);
518 MiDecrementShareCount(Pfn1, PageFrameIndex);
519
520 /* We should eventually do this */
521 //CurrentProcess->NumberOfPrivatePages--;
522 }
523
524 /* Flush the TLB */
526}
527
528VOID
529NTAPI
531 IN ULONG_PTR EndingAddress,
532 IN PMMVAD Vad)
533{
534 PMMPTE PointerPte, PrototypePte, LastPrototypePte;
535 PMMPDE PointerPde;
536#if (_MI_PAGING_LEVELS >= 3)
537 PMMPPE PointerPpe;
538#endif
539#if (_MI_PAGING_LEVELS >= 4)
540 PMMPPE PointerPxe;
541#endif
543 PEPROCESS CurrentProcess;
545 BOOLEAN AddressGap = FALSE;
546 PSUBSECTION Subsection;
547
548 /* Get out if this is a fake VAD, RosMm will free the marea pages */
549 if ((Vad) && (Vad->u.VadFlags.Spare == 1)) return;
550
551 /* Get the current process */
552 CurrentProcess = PsGetCurrentProcess();
553
554 /* Check if this is a section VAD or a VM VAD */
555 if (!(Vad) || (Vad->u.VadFlags.PrivateMemory) || !(Vad->FirstPrototypePte))
556 {
557 /* Don't worry about prototypes */
558 PrototypePte = LastPrototypePte = NULL;
559 }
560 else
561 {
562 /* Get the prototype PTE */
563 PrototypePte = Vad->FirstPrototypePte;
564 LastPrototypePte = Vad->FirstPrototypePte + 1;
565 }
566
567 /* In all cases, we don't support fork() yet */
568 ASSERT(CurrentProcess->CloneRoot == NULL);
569
570 /* Loop the PTE for each VA (EndingAddress is inclusive!) */
571 while (Va <= EndingAddress)
572 {
573#if (_MI_PAGING_LEVELS >= 4)
574 /* Get the PXE and check if it's valid */
575 PointerPxe = MiAddressToPxe((PVOID)Va);
576 if (!PointerPxe->u.Hard.Valid)
577 {
578 /* Check for unmapped range and skip it */
579 if (!PointerPxe->u.Long)
580 {
581 /* There are gaps in the address space */
582 AddressGap = TRUE;
583
584 /* Update Va and continue looping */
585 Va = (ULONG_PTR)MiPxeToAddress(PointerPxe + 1);
586 continue;
587 }
588
589 /* Make the PXE valid */
590 MiMakeSystemAddressValid(MiPteToAddress(PointerPxe), CurrentProcess);
591 }
592#endif
593#if (_MI_PAGING_LEVELS >= 3)
594 /* Get the PPE and check if it's valid */
595 PointerPpe = MiAddressToPpe((PVOID)Va);
596 if (!PointerPpe->u.Hard.Valid)
597 {
598 /* Check for unmapped range and skip it */
599 if (!PointerPpe->u.Long)
600 {
601 /* There are gaps in the address space */
602 AddressGap = TRUE;
603
604 /* Update Va and continue looping */
605 Va = (ULONG_PTR)MiPpeToAddress(PointerPpe + 1);
606 continue;
607 }
608
609 /* Make the PPE valid */
610 MiMakeSystemAddressValid(MiPteToAddress(PointerPpe), CurrentProcess);
611 }
612#endif
613 /* Skip invalid PDEs */
614 PointerPde = MiAddressToPde((PVOID)Va);
615 if (!PointerPde->u.Long)
616 {
617 /* There are gaps in the address space */
618 AddressGap = TRUE;
619
620 /* Check if all the PDEs are invalid, so there's nothing to free */
621 Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
622 continue;
623 }
624
625 /* Now check if the PDE is mapped in */
626 if (!PointerPde->u.Hard.Valid)
627 {
628 /* It isn't, so map it in */
629 PointerPte = MiPteToAddress(PointerPde);
630 MiMakeSystemAddressValid(PointerPte, CurrentProcess);
631 }
632
633 /* Now we should have a valid PDE, mapped in, and still have some VA */
634 ASSERT(PointerPde->u.Hard.Valid == 1);
635 ASSERT(Va <= EndingAddress);
636
637 /* Check if this is a section VAD with gaps in it */
638 if ((AddressGap) && (LastPrototypePte))
639 {
640 /* We need to skip to the next correct prototype PTE */
642
643 /* And we need the subsection to skip to the next last prototype PTE */
644 Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
645 if (Subsection)
646 {
647 /* Found it! */
648 LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
649 }
650 else
651 {
652 /* No more subsections, we are done with prototype PTEs */
654 }
655 }
656
657 /* Lock the PFN Database while we delete the PTEs */
658 OldIrql = MiAcquirePfnLock();
659 PointerPte = MiAddressToPte(Va);
660 do
661 {
662 /* Making sure the PDE is still valid */
663 ASSERT(PointerPde->u.Hard.Valid == 1);
664
665 /* Capture the PDE and make sure it exists */
666 TempPte = *PointerPte;
667 if (TempPte.u.Long)
668 {
669 /* Check if the PTE is actually mapped in */
671 {
672 /* Are we dealing with section VAD? */
673 if ((LastPrototypePte) && (PrototypePte > LastPrototypePte))
674 {
675 /* We need to skip to the next correct prototype PTE */
677
678 /* And we need the subsection to skip to the next last prototype PTE */
679 Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
680 if (Subsection)
681 {
682 /* Found it! */
683 LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
684 }
685 else
686 {
687 /* No more subsections, we are done with prototype PTEs */
689 }
690 }
691
692 /* Check for prototype PTE */
693 if ((TempPte.u.Hard.Valid == 0) &&
694 (TempPte.u.Soft.Prototype == 1))
695 {
696 /* Just nuke it */
697 MI_ERASE_PTE(PointerPte);
698 }
699 else
700 {
701 /* Delete the PTE proper */
702 MiDeletePte(PointerPte,
703 (PVOID)Va,
704 CurrentProcess,
706 }
707 }
708 else
709 {
710 /* The PTE was never mapped, just nuke it here */
711 MI_ERASE_PTE(PointerPte);
712 }
713
715 {
716 ASSERT(PointerPde->u.Long != 0);
717
718 /* Delete the PDE proper */
719 MiDeletePde(PointerPde, CurrentProcess);
720
721 /* Continue with the next PDE */
722 Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
723
724 /* Use this to detect address gaps */
725 PointerPte++;
726
727 PrototypePte++;
728 break;
729 }
730 }
731
732 /* Update the address and PTE for it */
733 Va += PAGE_SIZE;
734 PointerPte++;
735 PrototypePte++;
736 } while ((Va & (PDE_MAPPED_VA - 1)) && (Va <= EndingAddress));
737
738 /* Release the lock */
739 MiReleasePfnLock(OldIrql);
740
741 if (Va > EndingAddress) return;
742
743 /* Check if we exited the loop regularly */
744 AddressGap = (PointerPte != MiAddressToPte(Va));
745 }
746}
747
748LONG
750 OUT PBOOLEAN HaveBadAddress,
751 OUT PULONG_PTR BadAddress)
752{
753 PEXCEPTION_RECORD ExceptionRecord;
754 PAGED_CODE();
755
756 //
757 // Assume default
758 //
759 *HaveBadAddress = FALSE;
760
761 //
762 // Get the exception record
763 //
764 ExceptionRecord = ExceptionInfo->ExceptionRecord;
765
766 //
767 // Look at the exception code
768 //
769 if ((ExceptionRecord->ExceptionCode == STATUS_ACCESS_VIOLATION) ||
770 (ExceptionRecord->ExceptionCode == STATUS_GUARD_PAGE_VIOLATION) ||
771 (ExceptionRecord->ExceptionCode == STATUS_IN_PAGE_ERROR))
772 {
773 //
774 // We can tell the address if we have more than one parameter
775 //
776 if (ExceptionRecord->NumberParameters > 1)
777 {
778 //
779 // Return the address
780 //
781 *HaveBadAddress = TRUE;
782 *BadAddress = ExceptionRecord->ExceptionInformation[1];
783 }
784 }
785
786 //
787 // Continue executing the next handler
788 //
790}
791
793NTAPI
796 IN PEPROCESS TargetProcess,
800 OUT PSIZE_T ReturnSize)
801{
802 PFN_NUMBER MdlBuffer[(sizeof(MDL) / sizeof(PFN_NUMBER)) + MI_MAPPED_COPY_PAGES + 1];
803 PMDL Mdl = (PMDL)MdlBuffer;
804 SIZE_T TotalSize, CurrentSize, RemainingSize;
805 volatile BOOLEAN FailedInProbe = FALSE;
806 volatile BOOLEAN PagesLocked = FALSE;
807 PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
808 volatile PVOID MdlAddress = NULL;
810 BOOLEAN HaveBadAddress;
811 ULONG_PTR BadAddress;
813 PAGED_CODE();
814
815 //
816 // Calculate the maximum amount of data to move
817 //
818 TotalSize = MI_MAPPED_COPY_PAGES * PAGE_SIZE;
819 if (BufferSize <= TotalSize) TotalSize = BufferSize;
820 CurrentSize = TotalSize;
821 RemainingSize = BufferSize;
822
823 //
824 // Loop as long as there is still data
825 //
826 while (RemainingSize > 0)
827 {
828 //
829 // Check if this transfer will finish everything off
830 //
831 if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
832
833 //
834 // Attach to the source address space
835 //
836 KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
837
838 //
839 // Check state for this pass
840 //
841 ASSERT(MdlAddress == NULL);
842 ASSERT(PagesLocked == FALSE);
843 ASSERT(FailedInProbe == FALSE);
844
845 //
846 // Protect user-mode copy
847 //
849 {
850 //
851 // If this is our first time, probe the buffer
852 //
853 if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
854 {
855 //
856 // Catch a failure here
857 //
858 FailedInProbe = TRUE;
859
860 //
861 // Do the probe
862 //
864
865 //
866 // Passed
867 //
868 FailedInProbe = FALSE;
869 }
870
871 //
872 // Initialize and probe and lock the MDL
873 //
874 MmInitializeMdl(Mdl, CurrentAddress, CurrentSize);
876 PagesLocked = TRUE;
877 }
879 {
881 }
883
884 /* Detach from source process */
886
887 if (Status != STATUS_SUCCESS)
888 {
889 goto Exit;
890 }
891
892 //
893 // Now map the pages
894 //
897 MmCached,
898 NULL,
899 FALSE,
901 if (!MdlAddress)
902 {
904 goto Exit;
905 }
906
907 //
908 // Grab to the target process
909 //
910 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
911
913 {
914 //
915 // Check if this is our first time through
916 //
917 if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
918 {
919 //
920 // Catch a failure here
921 //
922 FailedInProbe = TRUE;
923
924 //
925 // Do the probe
926 //
928
929 //
930 // Passed
931 //
932 FailedInProbe = FALSE;
933 }
934
935 //
936 // Now do the actual move
937 //
938 RtlCopyMemory(CurrentTargetAddress, MdlAddress, CurrentSize);
939 }
941 &HaveBadAddress,
942 &BadAddress))
943 {
944 *ReturnSize = BufferSize - RemainingSize;
945 //
946 // Check if we failed during the probe
947 //
948 if (FailedInProbe)
949 {
950 //
951 // Exit
952 //
954 }
955 else
956 {
957 //
958 // Othewise we failed during the move.
959 // Check if we know exactly where we stopped copying
960 //
961 if (HaveBadAddress)
962 {
963 //
964 // Return the exact number of bytes copied
965 //
966 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
967 }
968 //
969 // Return partial copy
970 //
972 }
973 }
974 _SEH2_END;
975
976 /* Detach from target process */
978
979 //
980 // Check for SEH status
981 //
982 if (Status != STATUS_SUCCESS)
983 {
984 goto Exit;
985 }
986
987 //
988 // Unmap and unlock
989 //
990 MmUnmapLockedPages(MdlAddress, Mdl);
991 MdlAddress = NULL;
993 PagesLocked = FALSE;
994
995 //
996 // Update location and size
997 //
998 RemainingSize -= CurrentSize;
999 CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
1000 CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress + CurrentSize);
1001 }
1002
1003Exit:
1004 if (MdlAddress != NULL)
1005 MmUnmapLockedPages(MdlAddress, Mdl);
1006 if (PagesLocked)
1008
1009 //
1010 // All bytes read
1011 //
1012 if (Status == STATUS_SUCCESS)
1013 *ReturnSize = BufferSize;
1014 return Status;
1015}
1016
1018NTAPI
1021 IN PEPROCESS TargetProcess,
1025 OUT PSIZE_T ReturnSize)
1026{
1027 UCHAR StackBuffer[MI_POOL_COPY_BYTES];
1028 SIZE_T TotalSize, CurrentSize, RemainingSize;
1029 volatile BOOLEAN FailedInProbe = FALSE, HavePoolAddress = FALSE;
1030 PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
1031 PVOID PoolAddress;
1033 BOOLEAN HaveBadAddress;
1034 ULONG_PTR BadAddress;
1036 PAGED_CODE();
1037
1038 DPRINT("Copying %Iu bytes from process %p (address %p) to process %p (Address %p)\n",
1039 BufferSize, SourceProcess, SourceAddress, TargetProcess, TargetAddress);
1040
1041 //
1042 // Calculate the maximum amount of data to move
1043 //
1044 TotalSize = MI_MAX_TRANSFER_SIZE;
1045 if (BufferSize <= MI_MAX_TRANSFER_SIZE) TotalSize = BufferSize;
1046 CurrentSize = TotalSize;
1047 RemainingSize = BufferSize;
1048
1049 //
1050 // Check if we can use the stack
1051 //
1053 {
1054 //
1055 // Use it
1056 //
1057 PoolAddress = (PVOID)StackBuffer;
1058 }
1059 else
1060 {
1061 //
1062 // Allocate pool
1063 //
1064 PoolAddress = ExAllocatePoolWithTag(NonPagedPool, TotalSize, 'VmRw');
1065 if (!PoolAddress) ASSERT(FALSE);
1066 HavePoolAddress = TRUE;
1067 }
1068
1069 //
1070 // Loop as long as there is still data
1071 //
1072 while (RemainingSize > 0)
1073 {
1074 //
1075 // Check if this transfer will finish everything off
1076 //
1077 if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
1078
1079 //
1080 // Attach to the source address space
1081 //
1082 KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
1083
1084 /* Check that state is sane */
1085 ASSERT(FailedInProbe == FALSE);
1087
1088 //
1089 // Protect user-mode copy
1090 //
1091 _SEH2_TRY
1092 {
1093 //
1094 // If this is our first time, probe the buffer
1095 //
1096 if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
1097 {
1098 //
1099 // Catch a failure here
1100 //
1101 FailedInProbe = TRUE;
1102
1103 //
1104 // Do the probe
1105 //
1107
1108 //
1109 // Passed
1110 //
1111 FailedInProbe = FALSE;
1112 }
1113
1114 //
1115 // Do the copy
1116 //
1117 RtlCopyMemory(PoolAddress, CurrentAddress, CurrentSize);
1118 }
1120 &HaveBadAddress,
1121 &BadAddress))
1122 {
1123 *ReturnSize = BufferSize - RemainingSize;
1124
1125 //
1126 // Check if we failed during the probe
1127 //
1128 if (FailedInProbe)
1129 {
1130 //
1131 // Exit
1132 //
1134 }
1135 else
1136 {
1137 //
1138 // We failed during the move.
1139 // Check if we know exactly where we stopped copying
1140 //
1141 if (HaveBadAddress)
1142 {
1143 //
1144 // Return the exact number of bytes copied
1145 //
1146 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1147 }
1148 //
1149 // Return partial copy
1150 //
1152 }
1153 }
1154 _SEH2_END
1155
1156 /* Let go of the source */
1158
1159 if (Status != STATUS_SUCCESS)
1160 {
1161 goto Exit;
1162 }
1163
1164 /* Grab the target process */
1165 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1166
1167 _SEH2_TRY
1168 {
1169 //
1170 // Check if this is our first time through
1171 //
1172 if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
1173 {
1174 //
1175 // Catch a failure here
1176 //
1177 FailedInProbe = TRUE;
1178
1179 //
1180 // Do the probe
1181 //
1183
1184 //
1185 // Passed
1186 //
1187 FailedInProbe = FALSE;
1188 }
1189
1190 //
1191 // Now do the actual move
1192 //
1193 RtlCopyMemory(CurrentTargetAddress, PoolAddress, CurrentSize);
1194 }
1196 &HaveBadAddress,
1197 &BadAddress))
1198 {
1199 *ReturnSize = BufferSize - RemainingSize;
1200 //
1201 // Check if we failed during the probe
1202 //
1203 if (FailedInProbe)
1204 {
1205 //
1206 // Exit
1207 //
1209 }
1210 else
1211 {
1212 //
1213 // Otherwise we failed during the move.
1214 // Check if we know exactly where we stopped copying
1215 //
1216 if (HaveBadAddress)
1217 {
1218 //
1219 // Return the exact number of bytes copied
1220 //
1221 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1222 }
1223 //
1224 // Return partial copy
1225 //
1227 }
1228 }
1229 _SEH2_END;
1230
1231 //
1232 // Detach from target
1233 //
1235
1236 //
1237 // Check for SEH status
1238 //
1239 if (Status != STATUS_SUCCESS)
1240 {
1241 goto Exit;
1242 }
1243
1244 //
1245 // Update location and size
1246 //
1247 RemainingSize -= CurrentSize;
1248 CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
1249 CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress +
1250 CurrentSize);
1251 }
1252
1253Exit:
1254 //
1255 // Check if we had allocated pool
1256 //
1257 if (HavePoolAddress)
1258 ExFreePoolWithTag(PoolAddress, 'VmRw');
1259
1260 //
1261 // All bytes read
1262 //
1263 if (Status == STATUS_SUCCESS)
1264 *ReturnSize = BufferSize;
1265 return Status;
1266}
1267
1269NTAPI
1272 IN PEPROCESS TargetProcess,
1276 OUT PSIZE_T ReturnSize)
1277{
1279 PEPROCESS Process = SourceProcess;
1280
1281 //
1282 // Don't accept zero-sized buffers
1283 //
1284 if (!BufferSize) return STATUS_SUCCESS;
1285
1286 //
1287 // If we are copying from ourselves, lock the target instead
1288 //
1289 if (SourceProcess == PsGetCurrentProcess()) Process = TargetProcess;
1290
1291 //
1292 // Acquire rundown protection
1293 //
1294 if (!ExAcquireRundownProtection(&Process->RundownProtect))
1295 {
1296 //
1297 // Fail
1298 //
1300 }
1301
1302 //
1303 // See if we should use the pool copy
1304 //
1306 {
1307 //
1308 // Use MDL-copy
1309 //
1310 Status = MiDoMappedCopy(SourceProcess,
1312 TargetProcess,
1314 BufferSize,
1316 ReturnSize);
1317 }
1318 else
1319 {
1320 //
1321 // Do pool copy
1322 //
1323 Status = MiDoPoolCopy(SourceProcess,
1325 TargetProcess,
1327 BufferSize,
1329 ReturnSize);
1330 }
1331
1332 //
1333 // Release the lock
1334 //
1335 ExReleaseRundownProtection(&Process->RundownProtect);
1336 return Status;
1337}
1338
1340NTAPI
1345{
1346 PAGED_CODE();
1347
1349
1351}
1352
1353ULONG
1354NTAPI
1356{
1357 MMPTE TempPte;
1358 PMMPFN Pfn;
1359 PEPROCESS CurrentProcess;
1360 PETHREAD CurrentThread;
1361 BOOLEAN WsSafe, WsShared;
1362 ULONG Protect;
1363 KIRQL OldIrql;
1364 PAGED_CODE();
1365
1366 /* Copy this PTE's contents */
1367 TempPte = *PointerPte;
1368
1369 /* Assure it's not totally zero */
1370 ASSERT(TempPte.u.Long);
1371
1372 /* Check for a special prototype format */
1373 if ((TempPte.u.Soft.Valid == 0) &&
1374 (TempPte.u.Soft.Prototype == 1))
1375 {
1376 /* Check if the prototype PTE is not yet pointing to a PTE */
1377 if (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)
1378 {
1379 /* The prototype PTE contains the protection */
1380 return MmProtectToValue[TempPte.u.Soft.Protection];
1381 }
1382
1383 /* Get a pointer to the underlying shared PTE */
1384 PointerPte = MiProtoPteToPte(&TempPte);
1385
1386 /* Since the PTE we want to read can be paged out at any time, we need
1387 to release the working set lock first, so that it can be paged in */
1388 CurrentThread = PsGetCurrentThread();
1389 CurrentProcess = PsGetCurrentProcess();
1390 MiUnlockProcessWorkingSetForFault(CurrentProcess,
1391 CurrentThread,
1392 &WsSafe,
1393 &WsShared);
1394
1395 /* Now read the PTE value */
1396 TempPte = *PointerPte;
1397
1398 /* Check if that one is invalid */
1399 if (!TempPte.u.Hard.Valid)
1400 {
1401 /* We get the protection directly from this PTE */
1402 Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1403 }
1404 else
1405 {
1406 /* The PTE is valid, so we might need to get the protection from
1407 the PFN. Lock the PFN database */
1408 OldIrql = MiAcquirePfnLock();
1409
1410 /* Check if the PDE is still valid */
1411 if (MiAddressToPte(PointerPte)->u.Hard.Valid == 0)
1412 {
1413 /* It's not, make it valid */
1415 }
1416
1417 /* Now it's safe to read the PTE value again */
1418 TempPte = *PointerPte;
1419 ASSERT(TempPte.u.Long != 0);
1420
1421 /* Check again if the PTE is invalid */
1422 if (!TempPte.u.Hard.Valid)
1423 {
1424 /* The PTE is not valid, so we can use it's protection field */
1425 Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1426 }
1427 else
1428 {
1429 /* The PTE is valid, so we can find the protection in the
1430 OriginalPte field of the PFN */
1433 }
1434
1435 /* Release the PFN database */
1436 MiReleasePfnLock(OldIrql);
1437 }
1438
1439 /* Lock the working set again */
1440 MiLockProcessWorkingSetForFault(CurrentProcess,
1441 CurrentThread,
1442 WsSafe,
1443 WsShared);
1444
1445 return Protect;
1446 }
1447
1448 /* In the easy case of transition or demand zero PTE just return its protection */
1449 if (!TempPte.u.Hard.Valid) return MmProtectToValue[TempPte.u.Soft.Protection];
1450
1451 /* If we get here, the PTE is valid, so look up the page in PFN database */
1453 if (!Pfn->u3.e1.PrototypePte)
1454 {
1455 /* Return protection of the original pte */
1456 ASSERT(Pfn->u4.AweAllocation == 0);
1458 }
1459
1460 /* This is software PTE */
1461 DPRINT("Prototype PTE: %lx %p\n", TempPte.u.Hard.PageFrameNumber, Pfn);
1462 DPRINT("VA: %p\n", MiPteToAddress(&TempPte));
1463 DPRINT("Mask: %lx\n", TempPte.u.Soft.Protection);
1464 DPRINT("Mask2: %lx\n", Pfn->OriginalPte.u.Soft.Protection);
1465 return MmProtectToValue[TempPte.u.Soft.Protection];
1466}
1467
1468ULONG
1469NTAPI
1471 IN PMMVAD Vad,
1472 IN PEPROCESS TargetProcess,
1473 OUT PULONG ReturnedProtect,
1474 OUT PVOID *NextVa)
1475{
1476
1477 PMMPTE PointerPte, ProtoPte;
1478 PMMPDE PointerPde;
1479#if (_MI_PAGING_LEVELS >= 3)
1480 PMMPPE PointerPpe;
1481#endif
1482#if (_MI_PAGING_LEVELS >= 4)
1483 PMMPXE PointerPxe;
1484#endif
1485 MMPTE TempPte, TempProtoPte;
1486 BOOLEAN DemandZeroPte = TRUE, ValidPte = FALSE;
1488 ASSERT((Vad->StartingVpn <= ((ULONG_PTR)Va >> PAGE_SHIFT)) &&
1489 (Vad->EndingVpn >= ((ULONG_PTR)Va >> PAGE_SHIFT)));
1490
1491 /* Only normal VADs supported */
1492 ASSERT(Vad->u.VadFlags.VadType == VadNone);
1493
1494 /* Get the PDE and PTE for the address */
1495 PointerPde = MiAddressToPde(Va);
1496 PointerPte = MiAddressToPte(Va);
1497#if (_MI_PAGING_LEVELS >= 3)
1498 PointerPpe = MiAddressToPpe(Va);
1499#endif
1500#if (_MI_PAGING_LEVELS >= 4)
1501 PointerPxe = MiAddressToPxe(Va);
1502#endif
1503
1504 /* Return the next range */
1505 *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1506
1507 do
1508 {
1509#if (_MI_PAGING_LEVELS >= 4)
1510 /* Does the PXE exist? */
1511 if (PointerPxe->u.Long == 0)
1512 {
1513 /* It does not, next range starts at the next PXE */
1514 *NextVa = MiPxeToAddress(PointerPxe + 1);
1515 break;
1516 }
1517
1518 /* Is the PXE valid? */
1519 if (PointerPxe->u.Hard.Valid == 0)
1520 {
1521 /* Is isn't, fault it in (make the PPE accessible) */
1522 MiMakeSystemAddressValid(PointerPpe, TargetProcess);
1523 }
1524#endif
1525#if (_MI_PAGING_LEVELS >= 3)
1526 /* Does the PPE exist? */
1527 if (PointerPpe->u.Long == 0)
1528 {
1529 /* It does not, next range starts at the next PPE */
1530 *NextVa = MiPpeToAddress(PointerPpe + 1);
1531 break;
1532 }
1533
1534 /* Is the PPE valid? */
1535 if (PointerPpe->u.Hard.Valid == 0)
1536 {
1537 /* Is isn't, fault it in (make the PDE accessible) */
1538 MiMakeSystemAddressValid(PointerPde, TargetProcess);
1539 }
1540#endif
1541
1542 /* Does the PDE exist? */
1543 if (PointerPde->u.Long == 0)
1544 {
1545 /* It does not, next range starts at the next PDE */
1546 *NextVa = MiPdeToAddress(PointerPde + 1);
1547 break;
1548 }
1549
1550 /* Is the PDE valid? */
1551 if (PointerPde->u.Hard.Valid == 0)
1552 {
1553 /* Is isn't, fault it in (make the PTE accessible) */
1554 MiMakeSystemAddressValid(PointerPte, TargetProcess);
1555 }
1556
1557 /* We have a PTE that we can access now! */
1558 ValidPte = TRUE;
1559
1560 } while (FALSE);
1561
1562 /* Is it safe to try reading the PTE? */
1563 if (ValidPte)
1564 {
1565 /* FIXME: watch out for large pages */
1566 ASSERT(PointerPde->u.Hard.LargePage == FALSE);
1567
1568 /* Capture the PTE */
1569 TempPte = *PointerPte;
1570 if (TempPte.u.Long != 0)
1571 {
1572 /* The PTE is valid, so it's not zeroed out */
1574
1575 /* Is it a decommited, invalid, or faulted PTE? */
1576 if ((TempPte.u.Soft.Protection == MM_DECOMMIT) &&
1577 (TempPte.u.Hard.Valid == 0) &&
1578 ((TempPte.u.Soft.Prototype == 0) ||
1579 (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
1580 {
1581 /* Otherwise our defaults should hold */
1582 ASSERT(Protect == 0);
1584 }
1585 else
1586 {
1587 /* This means it's committed */
1588 State = MEM_COMMIT;
1589
1590 /* We don't support these */
1591 ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1592 ASSERT(Vad->u.VadFlags.VadType != VadRotatePhysical);
1593 ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1594
1595 /* Get protection state of this page */
1596 Protect = MiGetPageProtection(PointerPte);
1597
1598 /* Check if this is an image-backed VAD */
1599 if ((TempPte.u.Soft.Valid == 0) &&
1600 (TempPte.u.Soft.Prototype == 1) &&
1601 (Vad->u.VadFlags.PrivateMemory == 0) &&
1602 (Vad->ControlArea))
1603 {
1604 DPRINT1("Not supported\n");
1605 ASSERT(FALSE);
1606 }
1607 }
1608 }
1609 }
1610
1611 /* Check if this was a demand-zero PTE, since we need to find the state */
1612 if (DemandZeroPte)
1613 {
1614 /* Not yet handled */
1615 ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1616 ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1617
1618 /* Check if this is private commited memory, or an section-backed VAD */
1619 if ((Vad->u.VadFlags.PrivateMemory == 0) && (Vad->ControlArea))
1620 {
1621 /* Tell caller about the next range */
1622 *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1623
1624 /* Get the prototype PTE for this VAD */
1625 ProtoPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(Vad,
1626 (ULONG_PTR)Va >> PAGE_SHIFT);
1627 if (ProtoPte)
1628 {
1629 /* We should unlock the working set, but it's not being held! */
1630
1631 /* Is the prototype PTE actually valid (committed)? */
1632 TempProtoPte = *ProtoPte;
1633 if (TempProtoPte.u.Long)
1634 {
1635 /* Unless this is a memory-mapped file, handle it like private VAD */
1636 State = MEM_COMMIT;
1637 ASSERT(Vad->u.VadFlags.VadType != VadImageMap);
1638 Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1639 }
1640
1641 /* We should re-lock the working set */
1642 }
1643 }
1644 else if (Vad->u.VadFlags.MemCommit)
1645 {
1646 /* This is committed memory */
1647 State = MEM_COMMIT;
1648
1649 /* Convert the protection */
1650 Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1651 }
1652 }
1653
1654 /* Return the protection code */
1655 *ReturnedProtect = Protect;
1656 return State;
1657}
1658
1660NTAPI
1663 OUT PVOID MemoryInformation,
1664 IN SIZE_T MemoryInformationLength,
1666{
1667 PEPROCESS TargetProcess;
1669 PMMVAD Vad = NULL;
1670 PVOID Address, NextAddress;
1672 ULONG NewProtect, NewState;
1673 ULONG_PTR BaseVpn;
1674 MEMORY_BASIC_INFORMATION MemoryInfo;
1679
1680 /* Check for illegal addresses in user-space, or the shared memory area */
1683 {
1685
1686 /* Make up an info structure describing this range */
1687 MemoryInfo.BaseAddress = Address;
1688 MemoryInfo.AllocationProtect = PAGE_READONLY;
1689 MemoryInfo.Type = MEM_PRIVATE;
1690
1691 /* Special case for shared data */
1693 {
1695 MemoryInfo.State = MEM_COMMIT;
1696 MemoryInfo.Protect = PAGE_READONLY;
1697 MemoryInfo.RegionSize = PAGE_SIZE;
1698 }
1699 else
1700 {
1702 MemoryInfo.State = MEM_RESERVE;
1703 MemoryInfo.Protect = PAGE_NOACCESS;
1705 }
1706
1707 /* Return the data, NtQueryInformation already probed it*/
1708 if (PreviousMode != KernelMode)
1709 {
1710 _SEH2_TRY
1711 {
1712 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1714 }
1716 {
1718 }
1719 _SEH2_END;
1720 }
1721 else
1722 {
1723 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1725 }
1726
1727 return Status;
1728 }
1729
1730 /* Check if this is for a local or remote process */
1732 {
1733 TargetProcess = PsGetCurrentProcess();
1734 }
1735 else
1736 {
1737 /* Reference the target process */
1742 (PVOID*)&TargetProcess,
1743 NULL);
1744 if (!NT_SUCCESS(Status)) return Status;
1745
1746 /* Attach to it now */
1747 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1748 }
1749
1750 /* Lock the address space and make sure the process isn't already dead */
1751 MmLockAddressSpace(&TargetProcess->Vm);
1752 if (TargetProcess->VmDeleted)
1753 {
1754 /* Unlock the address space of the process */
1755 MmUnlockAddressSpace(&TargetProcess->Vm);
1756
1757 /* Check if we were attached */
1759 {
1760 /* Detach and dereference the process */
1762 ObDereferenceObject(TargetProcess);
1763 }
1764
1765 /* Bail out */
1766 DPRINT1("Process is dying\n");
1768 }
1769
1770 /* Loop the VADs */
1772 if (TargetProcess->VadRoot.NumberGenericTableElements)
1773 {
1774 /* Scan on the right */
1775 Vad = (PMMVAD)TargetProcess->VadRoot.BalancedRoot.RightChild;
1776 BaseVpn = (ULONG_PTR)BaseAddress >> PAGE_SHIFT;
1777 while (Vad)
1778 {
1779 /* Check if this VAD covers the allocation range */
1780 if ((BaseVpn >= Vad->StartingVpn) &&
1781 (BaseVpn <= Vad->EndingVpn))
1782 {
1783 /* We're done */
1784 Found = TRUE;
1785 break;
1786 }
1787
1788 /* Check if this VAD is too high */
1789 if (BaseVpn < Vad->StartingVpn)
1790 {
1791 /* Stop if there is no left child */
1792 if (!Vad->LeftChild) break;
1793
1794 /* Search on the left next */
1795 Vad = Vad->LeftChild;
1796 }
1797 else
1798 {
1799 /* Then this VAD is too low, keep searching on the right */
1800 ASSERT(BaseVpn > Vad->EndingVpn);
1801
1802 /* Stop if there is no right child */
1803 if (!Vad->RightChild) break;
1804
1805 /* Search on the right next */
1806 Vad = Vad->RightChild;
1807 }
1808 }
1809 }
1810
1811 /* Was a VAD found? */
1812 if (!Found)
1813 {
1815
1816 /* Calculate region size */
1817 if (Vad)
1818 {
1819 if (Vad->StartingVpn >= BaseVpn)
1820 {
1821 /* Region size is the free space till the start of that VAD */
1822 MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1823 }
1824 else
1825 {
1826 /* Get the next VAD */
1828 if (Vad)
1829 {
1830 /* Region size is the free space till the start of that VAD */
1831 MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1832 }
1833 else
1834 {
1835 /* Maximum possible region size with that base address */
1837 }
1838 }
1839 }
1840 else
1841 {
1842 /* Maximum possible region size with that base address */
1844 }
1845
1846 /* Unlock the address space of the process */
1847 MmUnlockAddressSpace(&TargetProcess->Vm);
1848
1849 /* Check if we were attached */
1851 {
1852 /* Detach and dereference the process */
1854 ObDereferenceObject(TargetProcess);
1855 }
1856
1857 /* Build the rest of the initial information block */
1858 MemoryInfo.BaseAddress = Address;
1859 MemoryInfo.AllocationBase = NULL;
1860 MemoryInfo.AllocationProtect = 0;
1861 MemoryInfo.State = MEM_FREE;
1862 MemoryInfo.Protect = PAGE_NOACCESS;
1863 MemoryInfo.Type = 0;
1864
1865 /* Return the data, NtQueryInformation already probed it*/
1866 if (PreviousMode != KernelMode)
1867 {
1868 _SEH2_TRY
1869 {
1870 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1872 }
1874 {
1876 }
1877 _SEH2_END;
1878 }
1879 else
1880 {
1881 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1883 }
1884
1885 return Status;
1886 }
1887
1888 /* Set the correct memory type based on what kind of VAD this is */
1889 if ((Vad->u.VadFlags.PrivateMemory) ||
1891 {
1892 MemoryInfo.Type = MEM_PRIVATE;
1893 }
1894 else if (Vad->u.VadFlags.VadType == VadImageMap)
1895 {
1896 MemoryInfo.Type = MEM_IMAGE;
1897 }
1898 else
1899 {
1900 MemoryInfo.Type = MEM_MAPPED;
1901 }
1902
1903 /* Find the memory area the specified address belongs to */
1906
1907 /* Determine information dependent on the memory area type */
1909 {
1911 if (!NT_SUCCESS(Status))
1912 {
1913 DPRINT1("MmQuerySectionView failed. MemoryArea=%p (%p-%p), BaseAddress=%p\n",
1916 }
1917 }
1918 else
1919 {
1920 /* Build the initial information block */
1922 MemoryInfo.BaseAddress = Address;
1923 MemoryInfo.AllocationBase = (PVOID)(Vad->StartingVpn << PAGE_SHIFT);
1925 MemoryInfo.Type = MEM_PRIVATE;
1926
1927 /* Acquire the working set lock (shared is enough) */
1929
1930 /* Find the largest chunk of memory which has the same state and protection mask */
1931 MemoryInfo.State = MiQueryAddressState(Address,
1932 Vad,
1933 TargetProcess,
1934 &MemoryInfo.Protect,
1935 &NextAddress);
1936 Address = NextAddress;
1937 while (((ULONG_PTR)Address >> PAGE_SHIFT) <= Vad->EndingVpn)
1938 {
1939 /* Keep going unless the state or protection mask changed */
1940 NewState = MiQueryAddressState(Address, Vad, TargetProcess, &NewProtect, &NextAddress);
1941 if ((NewState != MemoryInfo.State) || (NewProtect != MemoryInfo.Protect)) break;
1942 Address = NextAddress;
1943 }
1944
1945 /* Release the working set lock */
1947
1948 /* Check if we went outside of the VAD */
1949 if (((ULONG_PTR)Address >> PAGE_SHIFT) > Vad->EndingVpn)
1950 {
1951 /* Set the end of the VAD as the end address */
1952 Address = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
1953 }
1954
1955 /* Now that we know the last VA address, calculate the region size */
1956 MemoryInfo.RegionSize = ((ULONG_PTR)Address - (ULONG_PTR)MemoryInfo.BaseAddress);
1957 }
1958
1959 /* Unlock the address space of the process */
1960 MmUnlockAddressSpace(&TargetProcess->Vm);
1961
1962 /* Check if we were attached */
1964 {
1965 /* Detach and dereference the process */
1967 ObDereferenceObject(TargetProcess);
1968 }
1969
1970 /* Return the data, NtQueryInformation already probed it */
1971 if (PreviousMode != KernelMode)
1972 {
1973 _SEH2_TRY
1974 {
1975 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1977 }
1979 {
1981 }
1982 _SEH2_END;
1983 }
1984 else
1985 {
1986 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1988 }
1989
1990 /* All went well */
1991 DPRINT("Base: %p AllocBase: %p AllocProtect: %lx Protect: %lx "
1992 "State: %lx Type: %lx Size: %lx\n",
1993 MemoryInfo.BaseAddress, MemoryInfo.AllocationBase,
1994 MemoryInfo.AllocationProtect, MemoryInfo.Protect,
1995 MemoryInfo.State, MemoryInfo.Type, MemoryInfo.RegionSize);
1996
1997 return Status;
1998}
1999
2000BOOLEAN
2001NTAPI
2003 IN ULONG_PTR EndingAddress,
2004 IN PMMVAD Vad,
2006{
2007 PMMPTE PointerPte, LastPte;
2008 PMMPDE PointerPde;
2009 BOOLEAN OnPdeBoundary = TRUE;
2010#if _MI_PAGING_LEVELS >= 3
2011 PMMPPE PointerPpe;
2012 BOOLEAN OnPpeBoundary = TRUE;
2013#if _MI_PAGING_LEVELS == 4
2014 PMMPXE PointerPxe;
2015 BOOLEAN OnPxeBoundary = TRUE;
2016#endif
2017#endif
2018
2019 PAGED_CODE();
2020
2021 /* Check that we hols the right locks */
2022 ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
2023
2024 /* Get the PTE addresses */
2025 PointerPte = MiAddressToPte(StartingAddress);
2026 LastPte = MiAddressToPte(EndingAddress);
2027
2028 /* Loop all the PTEs */
2029 while (PointerPte <= LastPte)
2030 {
2031#if _MI_PAGING_LEVELS == 4
2032 /* Check for new PXE boundary */
2033 if (OnPxeBoundary)
2034 {
2035 PointerPxe = MiPteToPxe(PointerPte);
2036
2037 /* Check that this loop is sane */
2038 ASSERT(OnPpeBoundary);
2039 ASSERT(OnPdeBoundary);
2040
2041 if (PointerPxe->u.Long != 0)
2042 {
2043 /* Make it valid if needed */
2044 if (PointerPxe->u.Hard.Valid == 0)
2046 }
2047 else
2048 {
2049 /* Is the entire VAD committed? If not, fail */
2050 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2051
2052 PointerPxe++;
2053 PointerPte = MiPxeToPte(PointerPte);
2054 continue;
2055 }
2056 }
2057#endif
2058
2059#if _MI_PAGING_LEVELS >= 3
2060 /* Check for new PPE boundary */
2061 if (OnPpeBoundary)
2062 {
2063 PointerPpe = MiPteToPpe(PointerPte);
2064
2065 /* Check that this loop is sane */
2066 ASSERT(OnPdeBoundary);
2067
2068 if (PointerPpe->u.Long != 0)
2069 {
2070 /* Make it valid if needed */
2071 if (PointerPpe->u.Hard.Valid == 0)
2073 }
2074 else
2075 {
2076 /* Is the entire VAD committed? If not, fail */
2077 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2078
2079 PointerPpe++;
2080 PointerPte = MiPpeToPte(PointerPpe);
2081#if _MI_PAGING_LEVELS == 4
2082 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2083#endif
2084 continue;
2085 }
2086 }
2087#endif
2088 /* Check if we've hit a new PDE boundary */
2089 if (OnPdeBoundary)
2090 {
2091 /* Is this PDE demand zero? */
2092 PointerPde = MiPteToPde(PointerPte);
2093 if (PointerPde->u.Long != 0)
2094 {
2095 /* It isn't -- is it valid? */
2096 if (PointerPde->u.Hard.Valid == 0)
2097 {
2098 /* Nope, fault it in */
2099 MiMakeSystemAddressValid(PointerPte, Process);
2100 }
2101 }
2102 else
2103 {
2104 /* Is the entire VAD committed? If not, fail */
2105 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2106
2107 /* The PTE was already valid, so move to the next one */
2108 PointerPde++;
2109 PointerPte = MiPdeToPte(PointerPde);
2110#if _MI_PAGING_LEVELS >= 3
2111 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2112#if _MI_PAGING_LEVELS == 4
2113 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2114#endif
2115#endif
2116
2117 /* New loop iteration with our new, on-boundary PTE. */
2118 continue;
2119 }
2120 }
2121
2122 /* Is the PTE demand zero? */
2123 if (PointerPte->u.Long == 0)
2124 {
2125 /* Is the entire VAD committed? If not, fail */
2126 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2127 }
2128 else
2129 {
2130 /* It isn't -- is it a decommited, invalid, or faulted PTE? */
2131 if ((PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
2132 (PointerPte->u.Hard.Valid == 0) &&
2133 ((PointerPte->u.Soft.Prototype == 0) ||
2134 (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
2135 {
2136 /* Then part of the range is decommitted, so fail */
2137 return FALSE;
2138 }
2139 }
2140
2141 /* Move to the next PTE */
2142 PointerPte++;
2143 OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
2144#if _MI_PAGING_LEVELS >= 3
2145 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2146#if _MI_PAGING_LEVELS == 4
2147 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2148#endif
2149#endif
2150 }
2151
2152 /* All PTEs seem valid, and no VAD checks failed, the range is okay */
2153 return TRUE;
2154}
2155
2157NTAPI
2160 IN OUT PSIZE_T NumberOfBytesToProtect,
2161 IN ULONG NewAccessProtection,
2162 OUT PULONG OldAccessProtection OPTIONAL)
2163{
2166 ULONG OldAccessProtection_;
2168
2169 *NumberOfBytesToProtect = PAGE_ROUND_UP((ULONG_PTR)(*BaseAddress) + (*NumberOfBytesToProtect)) - PAGE_ROUND_DOWN(*BaseAddress);
2171
2172 AddressSpace = &Process->Vm;
2176 {
2178 return STATUS_UNSUCCESSFUL;
2179 }
2180
2181 if (OldAccessProtection == NULL) OldAccessProtection = &OldAccessProtection_;
2182
2185 MemoryArea,
2186 *BaseAddress,
2187 *NumberOfBytesToProtect,
2188 NewAccessProtection,
2189 OldAccessProtection);
2190
2192
2193 return Status;
2194}
2195
2197NTAPI
2200 IN OUT PSIZE_T NumberOfBytesToProtect,
2201 IN ULONG NewAccessProtection,
2202 OUT PULONG OldAccessProtection OPTIONAL)
2203{
2205 PMMVAD Vad;
2207 ULONG_PTR StartingAddress, EndingAddress;
2208 PMMPTE PointerPte, LastPte;
2209 PMMPDE PointerPde;
2210 MMPTE PteContents;
2211 PMMPFN Pfn1;
2212 ULONG ProtectionMask, OldProtect;
2213 BOOLEAN Committed;
2217
2218 /* We must be attached */
2220
2221 /* Calculate base address for the VAD */
2222 StartingAddress = (ULONG_PTR)PAGE_ALIGN((*BaseAddress));
2223 EndingAddress = (((ULONG_PTR)*BaseAddress + *NumberOfBytesToProtect - 1) | (PAGE_SIZE - 1));
2224
2225 /* Calculate the protection mask and make sure it's valid */
2226 ProtectionMask = MiMakeProtectionMask(NewAccessProtection);
2227 if (ProtectionMask == MM_INVALID_PROTECTION)
2228 {
2229 DPRINT1("Invalid protection mask\n");
2231 }
2232
2233 /* Lock the address space and make sure the process isn't already dead */
2236 if (Process->VmDeleted)
2237 {
2238 DPRINT1("Process is dying\n");
2240 goto FailPath;
2241 }
2242
2243 /* Check for ROS specific memory area */
2246 {
2247 /* Evil hack */
2251 NumberOfBytesToProtect,
2252 NewAccessProtection,
2253 OldAccessProtection);
2254 }
2255
2256 /* Get the VAD for this address range, and make sure it exists */
2257 Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
2258 EndingAddress >> PAGE_SHIFT,
2259 &Process->VadRoot,
2260 (PMMADDRESS_NODE*)&Vad);
2261 if (Result != TableFoundNode)
2262 {
2263 DPRINT("Could not find a VAD for this allocation\n");
2265 goto FailPath;
2266 }
2267
2268 /* Make sure the address is within this VAD's boundaries */
2269 if ((((ULONG_PTR)StartingAddress >> PAGE_SHIFT) < Vad->StartingVpn) ||
2270 (((ULONG_PTR)EndingAddress >> PAGE_SHIFT) > Vad->EndingVpn))
2271 {
2273 goto FailPath;
2274 }
2275
2276 /* These kinds of VADs are not supported atm */
2277 if ((Vad->u.VadFlags.VadType == VadAwe) ||
2279 (Vad->u.VadFlags.VadType == VadLargePages))
2280 {
2281 DPRINT1("Illegal VAD for attempting to set protection\n");
2283 goto FailPath;
2284 }
2285
2286 /* Check for a VAD whose protection can't be changed */
2287 if (Vad->u.VadFlags.NoChange == 1)
2288 {
2289 DPRINT1("Trying to change protection of a NoChange VAD\n");
2291 goto FailPath;
2292 }
2293
2294 /* Is this section, or private memory? */
2295 if (Vad->u.VadFlags.PrivateMemory == 0)
2296 {
2297 /* Not yet supported */
2299 {
2300 DPRINT1("Illegal VAD for attempting to set protection\n");
2302 goto FailPath;
2303 }
2304
2305 /* Rotate VADs are not yet supported */
2306 if (Vad->u.VadFlags.VadType == VadRotatePhysical)
2307 {
2308 DPRINT1("Illegal VAD for attempting to set protection\n");
2310 goto FailPath;
2311 }
2312
2313 /* Not valid on section files */
2314 if (NewAccessProtection & (PAGE_NOCACHE | PAGE_WRITECOMBINE))
2315 {
2316 /* Fail */
2317 DPRINT1("Invalid protection flags for section\n");
2319 goto FailPath;
2320 }
2321
2322 /* Check if data or page file mapping protection PTE is compatible */
2323 if (!Vad->ControlArea->u.Flags.Image)
2324 {
2325 /* Not yet */
2326 DPRINT1("Fixme: Not checking for valid protection\n");
2327 }
2328
2329 /* This is a section, and this is not yet supported */
2330 DPRINT1("Section protection not yet supported\n");
2331 OldProtect = 0;
2332 }
2333 else
2334 {
2335 /* Private memory, check protection flags */
2336 if ((NewAccessProtection & PAGE_WRITECOPY) ||
2337 (NewAccessProtection & PAGE_EXECUTE_WRITECOPY))
2338 {
2339 DPRINT1("Invalid protection flags for private memory\n");
2341 goto FailPath;
2342 }
2343
2344 /* Lock the working set */
2346
2347 /* Check if all pages in this range are committed */
2348 Committed = MiIsEntireRangeCommitted(StartingAddress,
2349 EndingAddress,
2350 Vad,
2351 Process);
2352 if (!Committed)
2353 {
2354 /* Fail */
2355 DPRINT1("The entire range is not committed\n");
2358 goto FailPath;
2359 }
2360
2361 /* Compute starting and ending PTE and PDE addresses */
2362 PointerPde = MiAddressToPde(StartingAddress);
2363 PointerPte = MiAddressToPte(StartingAddress);
2364 LastPte = MiAddressToPte(EndingAddress);
2365
2366 /* Make this PDE valid */
2368
2369 /* Save protection of the first page */
2370 if (PointerPte->u.Long != 0)
2371 {
2372 /* Capture the page protection and make the PDE valid */
2373 OldProtect = MiGetPageProtection(PointerPte);
2375 }
2376 else
2377 {
2378 /* Grab the old protection from the VAD itself */
2379 OldProtect = MmProtectToValue[Vad->u.VadFlags.Protection];
2380 }
2381
2382 /* Loop all the PTEs now */
2383 while (PointerPte <= LastPte)
2384 {
2385 /* Check if we've crossed a PDE boundary and make the new PDE valid too */
2386 if (MiIsPteOnPdeBoundary(PointerPte))
2387 {
2388 PointerPde = MiPteToPde(PointerPte);
2390 }
2391
2392 /* Capture the PTE and check if it was empty */
2393 PteContents = *PointerPte;
2394 if (PteContents.u.Long == 0)
2395 {
2396 /* This used to be a zero PTE and it no longer is, so we must add a
2397 reference to the pagetable. */
2399 }
2400
2401 /* Check what kind of PTE we are dealing with */
2402 if (PteContents.u.Hard.Valid == 1)
2403 {
2404 /* Get the PFN entry */
2405 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(&PteContents));
2406
2407 /* We don't support this yet */
2408 ASSERT(Pfn1->u3.e1.PrototypePte == 0);
2409
2410 /* Check if the page should not be accessible at all */
2411 if ((NewAccessProtection & PAGE_NOACCESS) ||
2412 (NewAccessProtection & PAGE_GUARD))
2413 {
2414 KIRQL OldIrql = MiAcquirePfnLock();
2415
2416 /* Mark the PTE as transition and change its protection */
2417 PteContents.u.Hard.Valid = 0;
2418 PteContents.u.Soft.Transition = 1;
2419 PteContents.u.Trans.Protection = ProtectionMask;
2420 /* Decrease PFN share count and write the PTE */
2421 MiDecrementShareCount(Pfn1, PFN_FROM_PTE(&PteContents));
2422 // FIXME: remove the page from the WS
2423 MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2424#ifdef CONFIG_SMP
2425 // FIXME: Should invalidate entry in every CPU TLB
2427#endif
2429
2430 /* We are done for this PTE */
2431 MiReleasePfnLock(OldIrql);
2432 }
2433 else
2434 {
2435 /* Write the protection mask and write it with a TLB flush */
2436 Pfn1->OriginalPte.u.Soft.Protection = ProtectionMask;
2438 PointerPte,
2439 ProtectionMask,
2440 Pfn1,
2441 TRUE);
2442 }
2443 }
2444 else
2445 {
2446 /* We don't support these cases yet */
2447 ASSERT(PteContents.u.Soft.Prototype == 0);
2448 //ASSERT(PteContents.u.Soft.Transition == 0);
2449
2450 /* The PTE is already demand-zero, just update the protection mask */
2451 PteContents.u.Soft.Protection = ProtectionMask;
2452 MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2453 ASSERT(PointerPte->u.Long != 0);
2454 }
2455
2456 /* Move to the next PTE */
2457 PointerPte++;
2458 }
2459
2460 /* Unlock the working set */
2462 }
2463
2464 /* Unlock the address space */
2466
2467 /* Return parameters and success */
2468 *NumberOfBytesToProtect = EndingAddress - StartingAddress + 1;
2469 *BaseAddress = (PVOID)StartingAddress;
2470 *OldAccessProtection = OldProtect;
2471 return STATUS_SUCCESS;
2472
2473FailPath:
2474 /* Unlock the address space and return the failure code */
2476 return Status;
2477}
2478
2479VOID
2480NTAPI
2482 IN PEPROCESS TargetProcess,
2484{
2485 PMMPTE PointerPte;
2486#if _MI_PAGING_LEVELS >= 3
2487 PMMPPE PointerPpe = MiPdeToPpe(PointerPde);
2488#if _MI_PAGING_LEVELS == 4
2489 PMMPXE PointerPxe = MiPdeToPxe(PointerPde);
2490#endif
2491#endif
2492
2493 //
2494 // Sanity checks. The latter is because we only use this function with the
2495 // PFN lock not held, so it may go away in the future.
2496 //
2499
2500 //
2501 // If everything is already valid, there is nothing to do.
2502 //
2503 if (
2504#if _MI_PAGING_LEVELS == 4
2505 (PointerPxe->u.Hard.Valid) &&
2506#endif
2507#if _MI_PAGING_LEVELS >= 3
2508 (PointerPpe->u.Hard.Valid) &&
2509#endif
2510 (PointerPde->u.Hard.Valid))
2511 {
2512 return;
2513 }
2514
2515 //
2516 // At least something is invalid, so begin by getting the PTE for the PDE itself
2517 // and then lookup each additional level. We must do it in this precise order
2518 // because the pagfault.c code (as well as in Windows) depends that the next
2519 // level up (higher) must be valid when faulting a lower level
2520 //
2521 PointerPte = MiPteToAddress(PointerPde);
2522 do
2523 {
2524 //
2525 // Make sure APCs continued to be disabled
2526 //
2528
2529#if _MI_PAGING_LEVELS == 4
2530 //
2531 // First, make the PXE valid if needed
2532 //
2533 if (!PointerPxe->u.Hard.Valid)
2534 {
2535 MiMakeSystemAddressValid(PointerPpe, TargetProcess);
2536 ASSERT(PointerPxe->u.Hard.Valid == 1);
2537 }
2538#endif
2539
2540#if _MI_PAGING_LEVELS >= 3
2541 //
2542 // Next, the PPE
2543 //
2544 if (!PointerPpe->u.Hard.Valid)
2545 {
2546 MiMakeSystemAddressValid(PointerPde, TargetProcess);
2547 ASSERT(PointerPpe->u.Hard.Valid == 1);
2548 }
2549#endif
2550
2551 //
2552 // And finally, make the PDE itself valid.
2553 //
2554 MiMakeSystemAddressValid(PointerPte, TargetProcess);
2555
2556 /* Do not increment Page table refcount here for the PDE, this must be managed by caller */
2557
2558 //
2559 // This should've worked the first time so the loop is really just for
2560 // show -- ASSERT that we're actually NOT going to be looping.
2561 //
2562 ASSERT(PointerPde->u.Hard.Valid == 1);
2563 } while (
2564#if _MI_PAGING_LEVELS == 4
2565 !PointerPxe->u.Hard.Valid ||
2566#endif
2567#if _MI_PAGING_LEVELS >= 3
2568 !PointerPpe->u.Hard.Valid ||
2569#endif
2570 !PointerPde->u.Hard.Valid);
2571}
2572
2573VOID
2574NTAPI
2576 IN ULONG Count)
2577{
2578 KIRQL OldIrql;
2579 ULONG i;
2580 MMPTE TempPte;
2581 PFN_NUMBER PageFrameIndex;
2582 PMMPFN Pfn1, Pfn2;
2583
2584 //
2585 // Acquire the PFN lock and loop all the PTEs in the list
2586 //
2587 OldIrql = MiAcquirePfnLock();
2588 for (i = 0; i != Count; i++)
2589 {
2590 //
2591 // The PTE must currently be valid
2592 //
2593 TempPte = *ValidPteList[i];
2594 ASSERT(TempPte.u.Hard.Valid == 1);
2595
2596 //
2597 // Get the PFN entry for the page itself, and then for its page table
2598 //
2599 PageFrameIndex = PFN_FROM_PTE(&TempPte);
2600 Pfn1 = MiGetPfnEntry(PageFrameIndex);
2601 Pfn2 = MiGetPfnEntry(Pfn1->u4.PteFrame);
2602
2603 //
2604 // Decrement the share count on the page table, and then on the page
2605 // itself
2606 //
2607 MiDecrementShareCount(Pfn2, Pfn1->u4.PteFrame);
2608 MI_SET_PFN_DELETED(Pfn1);
2609 MiDecrementShareCount(Pfn1, PageFrameIndex);
2610
2611 //
2612 // Make the page decommitted
2613 //
2614 MI_WRITE_INVALID_PTE(ValidPteList[i], MmDecommittedPte);
2615 }
2616
2617 //
2618 // All the PTEs have been dereferenced and made invalid, flush the TLB now
2619 // and then release the PFN lock
2620 //
2622 MiReleasePfnLock(OldIrql);
2623}
2624
2625ULONG
2626NTAPI
2627MiDecommitPages(IN PVOID StartingAddress,
2628 IN PMMPTE EndingPte,
2630 IN PMMVAD Vad)
2631{
2632 PMMPTE PointerPte, CommitPte = NULL;
2633 PMMPDE PointerPde;
2634 ULONG CommitReduction = 0;
2635 PMMPTE ValidPteList[256];
2636 ULONG PteCount = 0;
2637 PMMPFN Pfn1;
2638 MMPTE PteContents;
2639 PETHREAD CurrentThread = PsGetCurrentThread();
2640
2641 //
2642 // Get the PTE and PTE for the address, and lock the working set
2643 // If this was a VAD for a MEM_COMMIT allocation, also figure out where the
2644 // commited range ends so that we can do the right accounting.
2645 //
2646 PointerPde = MiAddressToPde(StartingAddress);
2647 PointerPte = MiAddressToPte(StartingAddress);
2648 if (Vad->u.VadFlags.MemCommit) CommitPte = MiAddressToPte(Vad->EndingVpn << PAGE_SHIFT);
2649 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
2650
2651 //
2652 // Make the PDE valid, and now loop through each page's worth of data
2653 //
2655 while (PointerPte <= EndingPte)
2656 {
2657 //
2658 // Check if we've crossed a PDE boundary
2659 //
2660 if (MiIsPteOnPdeBoundary(PointerPte))
2661 {
2662 //
2663 // Get the new PDE and flush the valid PTEs we had built up until
2664 // now. This helps reduce the amount of TLB flushing we have to do.
2665 // Note that Windows does a much better job using timestamps and
2666 // such, and does not flush the entire TLB all the time, but right
2667 // now we have bigger problems to worry about than TLB flushing.
2668 //
2669 PointerPde = MiAddressToPde(StartingAddress);
2670 if (PteCount)
2671 {
2672 MiProcessValidPteList(ValidPteList, PteCount);
2673 PteCount = 0;
2674 }
2675
2676 //
2677 // Make this PDE valid
2678 //
2680 }
2681
2682 //
2683 // Read this PTE. It might be active or still demand-zero.
2684 //
2685 PteContents = *PointerPte;
2686 if (PteContents.u.Long)
2687 {
2688 //
2689 // The PTE is active. It might be valid and in a working set, or
2690 // it might be a prototype PTE or paged out or even in transition.
2691 //
2692 if (PointerPte->u.Long == MmDecommittedPte.u.Long)
2693 {
2694 //
2695 // It's already decommited, so there's nothing for us to do here
2696 //
2697 CommitReduction++;
2698 }
2699 else
2700 {
2701 //
2702 // Remove it from the counters, and check if it was valid or not
2703 //
2704 //Process->NumberOfPrivatePages--;
2705 if (PteContents.u.Hard.Valid)
2706 {
2707 //
2708 // It's valid. At this point make sure that it is not a ROS
2709 // PFN. Also, we don't support ProtoPTEs in this code path.
2710 //
2711 Pfn1 = MiGetPfnEntry(PteContents.u.Hard.PageFrameNumber);
2712 ASSERT(MI_IS_ROS_PFN(Pfn1) == FALSE);
2713 ASSERT(Pfn1->u3.e1.PrototypePte == FALSE);
2714
2715 //
2716 // Flush any pending PTEs that we had not yet flushed, if our
2717 // list has gotten too big, then add this PTE to the flush list.
2718 //
2719 if (PteCount == 256)
2720 {
2721 MiProcessValidPteList(ValidPteList, PteCount);
2722 PteCount = 0;
2723 }
2724 ValidPteList[PteCount++] = PointerPte;
2725 }
2726 else
2727 {
2728 //
2729 // We do not support any of these other scenarios at the moment
2730 //
2731 ASSERT(PteContents.u.Soft.Prototype == 0);
2732 ASSERT(PteContents.u.Soft.Transition == 0);
2733 ASSERT(PteContents.u.Soft.PageFileHigh == 0);
2734
2735 //
2736 // So the only other possibility is that it is still a demand
2737 // zero PTE, in which case we undo the accounting we did
2738 // earlier and simply make the page decommitted.
2739 //
2740 //Process->NumberOfPrivatePages++;
2742 }
2743 }
2744 }
2745 else
2746 {
2747 //
2748 // This used to be a zero PTE and it no longer is, so we must add a
2749 // reference to the pagetable.
2750 //
2751 MiIncrementPageTableReferences(StartingAddress);
2752
2753 //
2754 // Next, we account for decommitted PTEs and make the PTE as such
2755 //
2756 if (PointerPte > CommitPte) CommitReduction++;
2758 }
2759
2760 //
2761 // Move to the next PTE and the next address
2762 //
2763 PointerPte++;
2764 StartingAddress = (PVOID)((ULONG_PTR)StartingAddress + PAGE_SIZE);
2765 }
2766
2767 //
2768 // Flush any dangling PTEs from the loop in the last page table, and then
2769 // release the working set and return the commit reduction accounting.
2770 //
2771 if (PteCount) MiProcessValidPteList(ValidPteList, PteCount);
2773 return CommitReduction;
2774}
2775
2776/* PUBLIC FUNCTIONS ***********************************************************/
2777
2778/*
2779 * @unimplemented
2780 */
2781PVOID
2782NTAPI
2784{
2786 return 0;
2787}
2788
2789/*
2790 * @unimplemented
2791 */
2792PVOID
2793NTAPI
2796 IN ULONG Mode)
2797{
2798 static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2799 return Address;
2800}
2801
2802/*
2803 * @unimplemented
2804 */
2805VOID
2806NTAPI
2808{
2809 static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2810}
2811
2812/* SYSTEM CALLS ***************************************************************/
2813
2815NTAPI
2819 IN SIZE_T NumberOfBytesToRead,
2820 OUT PSIZE_T NumberOfBytesRead OPTIONAL)
2821{
2825 SIZE_T BytesRead = 0;
2826 PAGED_CODE();
2827
2828 //
2829 // Check if we came from user mode
2830 //
2831 if (PreviousMode != KernelMode)
2832 {
2833 //
2834 // Validate the read addresses
2835 //
2836 if ((((ULONG_PTR)BaseAddress + NumberOfBytesToRead) < (ULONG_PTR)BaseAddress) ||
2837 (((ULONG_PTR)Buffer + NumberOfBytesToRead) < (ULONG_PTR)Buffer) ||
2838 (((ULONG_PTR)BaseAddress + NumberOfBytesToRead) > MmUserProbeAddress) ||
2839 (((ULONG_PTR)Buffer + NumberOfBytesToRead) > MmUserProbeAddress))
2840 {
2841 //
2842 // Don't allow to write into kernel space
2843 //
2845 }
2846
2847 //
2848 // Enter SEH for probe
2849 //
2850 _SEH2_TRY
2851 {
2852 //
2853 // Probe the output value
2854 //
2855 if (NumberOfBytesRead) ProbeForWriteSize_t(NumberOfBytesRead);
2856 }
2858 {
2859 //
2860 // Get exception code
2861 //
2863 }
2864 _SEH2_END;
2865 }
2866
2867 //
2868 // Don't do zero-byte transfers
2869 //
2870 if (NumberOfBytesToRead)
2871 {
2872 //
2873 // Reference the process
2874 //
2879 (PVOID*)(&Process),
2880 NULL);
2881 if (NT_SUCCESS(Status))
2882 {
2883 //
2884 // Do the copy
2885 //
2889 Buffer,
2890 NumberOfBytesToRead,
2892 &BytesRead);
2893
2894 //
2895 // Dereference the process
2896 //
2898 }
2899 }
2900
2901 //
2902 // Check if the caller sent this parameter
2903 //
2904 if (NumberOfBytesRead)
2905 {
2906 //
2907 // Enter SEH to guard write
2908 //
2909 _SEH2_TRY
2910 {
2911 //
2912 // Return the number of bytes read
2913 //
2914 *NumberOfBytesRead = BytesRead;
2915 }
2917 {
2918 }
2919 _SEH2_END;
2920 }
2921
2922 //
2923 // Return status
2924 //
2925 return Status;
2926}
2927
2929NTAPI
2932 IN PVOID Buffer,
2933 IN SIZE_T NumberOfBytesToWrite,
2934 OUT PSIZE_T NumberOfBytesWritten OPTIONAL)
2935{
2939 SIZE_T BytesWritten = 0;
2940 PAGED_CODE();
2941
2942 //
2943 // Check if we came from user mode
2944 //
2945 if (PreviousMode != KernelMode)
2946 {
2947 //
2948 // Validate the read addresses
2949 //
2950 if ((((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) < (ULONG_PTR)BaseAddress) ||
2951 (((ULONG_PTR)Buffer + NumberOfBytesToWrite) < (ULONG_PTR)Buffer) ||
2952 (((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) > MmUserProbeAddress) ||
2953 (((ULONG_PTR)Buffer + NumberOfBytesToWrite) > MmUserProbeAddress))
2954 {
2955 //
2956 // Don't allow to write into kernel space
2957 //
2959 }
2960
2961 //
2962 // Enter SEH for probe
2963 //
2964 _SEH2_TRY
2965 {
2966 //
2967 // Probe the output value
2968 //
2969 if (NumberOfBytesWritten) ProbeForWriteSize_t(NumberOfBytesWritten);
2970 }
2972 {
2973 //
2974 // Get exception code
2975 //
2977 }
2978 _SEH2_END;
2979 }
2980
2981 //
2982 // Don't do zero-byte transfers
2983 //
2984 if (NumberOfBytesToWrite)
2985 {
2986 //
2987 // Reference the process
2988 //
2993 (PVOID*)&Process,
2994 NULL);
2995 if (NT_SUCCESS(Status))
2996 {
2997 //
2998 // Do the copy
2999 //
3001 Buffer,
3002 Process,
3004 NumberOfBytesToWrite,
3006 &BytesWritten);
3007
3008 //
3009 // Dereference the process
3010 //
3012 }
3013 }
3014
3015 //
3016 // Check if the caller sent this parameter
3017 //
3018 if (NumberOfBytesWritten)
3019 {
3020 //
3021 // Enter SEH to guard write
3022 //
3023 _SEH2_TRY
3024 {
3025 //
3026 // Return the number of bytes written
3027 //
3028 *NumberOfBytesWritten = BytesWritten;
3029 }
3031 {
3032 }
3033 _SEH2_END;
3034 }
3035
3036 //
3037 // Return status
3038 //
3039 return Status;
3040}
3041
3043NTAPI
3046 _In_ SIZE_T FlushSize)
3047{
3051 PAGED_CODE();
3052
3053 /* Is a base address given? */
3054 if (BaseAddress != NULL)
3055 {
3056 /* If the requested size is 0, there is nothing to do */
3057 if (FlushSize == 0)
3058 {
3059 return STATUS_SUCCESS;
3060 }
3061
3062 /* Is this a user mode call? */
3064 {
3065 /* Make sure the base address is in user space */
3067 {
3068 DPRINT1("Invalid BaseAddress 0x%p\n", BaseAddress);
3070 }
3071 }
3072 }
3073
3074 /* Is another process requested? */
3076 {
3077 /* Reference the process */
3082 (PVOID*)&Process,
3083 NULL);
3084 if (!NT_SUCCESS(Status))
3085 {
3086 DPRINT1("Failed to reference the process %p\n", ProcessHandle);
3087 return Status;
3088 }
3089
3090 /* Attach to the process */
3092 }
3093
3094 /* Forward to Ke */
3095 KeSweepICache(BaseAddress, FlushSize);
3096
3097 /* Check if we attached */
3099 {
3100 /* Detach from the process and dereference it */
3103 }
3104
3105 /* All done, return to caller */
3106 return STATUS_SUCCESS;
3107}
3108
3110NTAPI
3112 IN OUT PVOID *UnsafeBaseAddress,
3113 IN OUT SIZE_T *UnsafeNumberOfBytesToProtect,
3114 IN ULONG NewAccessProtection,
3115 OUT PULONG UnsafeOldAccessProtection)
3116{
3118 ULONG OldAccessProtection;
3119 ULONG Protection;
3120 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3122 SIZE_T NumberOfBytesToProtect = 0;
3127 PAGED_CODE();
3128
3129 //
3130 // Check for valid protection flags
3131 //
3132 Protection = NewAccessProtection & ~(PAGE_GUARD|PAGE_NOCACHE);
3133 if (Protection != PAGE_NOACCESS &&
3134 Protection != PAGE_READONLY &&
3135 Protection != PAGE_READWRITE &&
3136 Protection != PAGE_WRITECOPY &&
3137 Protection != PAGE_EXECUTE &&
3138 Protection != PAGE_EXECUTE_READ &&
3139 Protection != PAGE_EXECUTE_READWRITE &&
3140 Protection != PAGE_EXECUTE_WRITECOPY)
3141 {
3142 //
3143 // Fail
3144 //
3146 }
3147
3148 //
3149 // Check if we came from user mode
3150 //
3151 if (PreviousMode != KernelMode)
3152 {
3153 //
3154 // Enter SEH for probing
3155 //
3156 _SEH2_TRY
3157 {
3158 //
3159 // Validate all outputs
3160 //
3161 ProbeForWritePointer(UnsafeBaseAddress);
3162 ProbeForWriteSize_t(UnsafeNumberOfBytesToProtect);
3163 ProbeForWriteUlong(UnsafeOldAccessProtection);
3164
3165 //
3166 // Capture them
3167 //
3168 BaseAddress = *UnsafeBaseAddress;
3169 NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3170 }
3172 {
3173 //
3174 // Get exception code
3175 //
3177 }
3178 _SEH2_END;
3179 }
3180 else
3181 {
3182 //
3183 // Capture directly
3184 //
3185 BaseAddress = *UnsafeBaseAddress;
3186 NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3187 }
3188
3189 //
3190 // Catch illegal base address
3191 //
3193
3194 //
3195 // Catch illegal region size
3196 //
3197 if ((MmUserProbeAddress - (ULONG_PTR)BaseAddress) < NumberOfBytesToProtect)
3198 {
3199 //
3200 // Fail
3201 //
3203 }
3204
3205 //
3206 // 0 is also illegal
3207 //
3208 if (!NumberOfBytesToProtect) return STATUS_INVALID_PARAMETER_3;
3209
3210 //
3211 // Get a reference to the process
3212 //
3217 (PVOID*)(&Process),
3218 NULL);
3219 if (!NT_SUCCESS(Status)) return Status;
3220
3221 //
3222 // Check if we should attach
3223 //
3224 if (CurrentProcess != Process)
3225 {
3226 //
3227 // Do it
3228 //
3230 Attached = TRUE;
3231 }
3232
3233 //
3234 // Do the actual work
3235 //
3237 &BaseAddress,
3238 &NumberOfBytesToProtect,
3239 NewAccessProtection,
3240 &OldAccessProtection);
3241
3242 //
3243 // Detach if needed
3244 //
3246
3247 //
3248 // Release reference
3249 //
3251
3252 //
3253 // Enter SEH to return data
3254 //
3255 _SEH2_TRY
3256 {
3257 //
3258 // Return data to user
3259 //
3260 *UnsafeOldAccessProtection = OldAccessProtection;
3261 *UnsafeBaseAddress = BaseAddress;
3262 *UnsafeNumberOfBytesToProtect = NumberOfBytesToProtect;
3263 }
3265 {
3266 }
3267 _SEH2_END;
3268
3269 //
3270 // Return status
3271 //
3272 return Status;
3273}
3274
3276BOOLEAN
3278 PMMPFN Pfn1,
3280{
3281 // HACK until we have proper WSLIST support
3282 PMMWSLE Wsle = &Pfn1->Wsle;
3283
3284 if ((LockType & MAP_PROCESS) && (Wsle->u1.e1.LockedInWs))
3285 return TRUE;
3286 if ((LockType & MAP_SYSTEM) && (Wsle->u1.e1.LockedInMemory))
3287 return TRUE;
3288
3289 return FALSE;
3290}
3291
3293VOID
3295 PMMPFN Pfn1,
3297{
3298 // HACK until we have proper WSLIST support
3299 PMMWSLE Wsle = &Pfn1->Wsle;
3300
3301 if (!Wsle->u1.e1.LockedInWs &&
3302 !Wsle->u1.e1.LockedInMemory)
3303 {
3305 }
3306
3307 if (LockType & MAP_PROCESS)
3308 Wsle->u1.e1.LockedInWs = 1;
3309 if (LockType & MAP_SYSTEM)
3310 Wsle->u1.e1.LockedInMemory = 1;
3311}
3312
3314VOID
3316 PMMPFN Pfn1,
3318{
3319 // HACK until we have proper WSLIST support
3320 PMMWSLE Wsle = &Pfn1->Wsle;
3321
3322 if (LockType & MAP_PROCESS)
3323 Wsle->u1.e1.LockedInWs = 0;
3324 if (LockType & MAP_SYSTEM)
3325 Wsle->u1.e1.LockedInMemory = 0;
3326
3327 if (!Wsle->u1.e1.LockedInWs &&
3328 !Wsle->u1.e1.LockedInMemory)
3329 {
3331 }
3332}
3333
3334static
3339 _Inout_ PVOID *EndAddress)
3340
3341{
3342 PMMVAD Vad;
3343 PVOID CurrentVa;
3344
3345 /* Get the base address and align the start address */
3346 *EndAddress = (PUCHAR)*BaseAddress + *RegionSize;
3347 *EndAddress = ALIGN_UP_POINTER_BY(*EndAddress, PAGE_SIZE);
3349
3350 /* First loop and check all VADs */
3351 CurrentVa = *BaseAddress;
3352 while (CurrentVa < *EndAddress)
3353 {
3354 /* Get VAD */
3355 Vad = MiLocateAddress(CurrentVa);
3356 if (Vad == NULL)
3357 {
3360 }
3361
3362 /* Check VAD type */
3363 if ((Vad->u.VadFlags.VadType != VadNone) &&
3364 (Vad->u.VadFlags.VadType != VadImageMap) &&
3365 (Vad->u.VadFlags.VadType != VadWriteWatch))
3366 {
3367 *EndAddress = CurrentVa;
3368 *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3370 }
3371
3372 CurrentVa = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
3373 }
3374
3375 *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3376 return STATUS_SUCCESS;
3377}
3378
3379static
3384 IN ULONG MapType)
3385{
3386 PEPROCESS CurrentProcess;
3388 PVOID CurrentVa, EndAddress;
3389 PMMPTE PointerPte, LastPte;
3390 PMMPDE PointerPde;
3391#if (_MI_PAGING_LEVELS >= 3)
3392 PMMPDE PointerPpe;
3393#endif
3394#if (_MI_PAGING_LEVELS == 4)
3395 PMMPDE PointerPxe;
3396#endif
3397 PMMPFN Pfn1;
3398 NTSTATUS Status, TempStatus;
3399
3400 /* Lock the address space */
3403
3404 /* Make sure we still have an address space */
3405 CurrentProcess = PsGetCurrentProcess();
3406 if (CurrentProcess->VmDeleted)
3407 {
3409 goto Cleanup;
3410 }
3411
3412 /* Check the VADs in the requested range */
3414 if (!NT_SUCCESS(Status))
3415 {
3416 goto Cleanup;
3417 }
3418
3419 /* Enter SEH for probing */
3420 _SEH2_TRY
3421 {
3422 /* Loop all pages and probe them */
3423 CurrentVa = *BaseAddress;
3424 while (CurrentVa < EndAddress)
3425 {
3426 (void)(*(volatile CHAR*)CurrentVa);
3427 CurrentVa = (PUCHAR)CurrentVa + PAGE_SIZE;
3428 }
3429 }
3431 {
3433 goto Cleanup;
3434 }
3435 _SEH2_END;
3436
3437 /* All pages were accessible, since we hold the address space lock, nothing
3438 can be de-committed. Assume success for now. */
3440
3441 /* Get the PTE and PDE */
3442 PointerPte = MiAddressToPte(*BaseAddress);
3443 PointerPde = MiAddressToPde(*BaseAddress);
3444#if (_MI_PAGING_LEVELS >= 3)
3445 PointerPpe = MiAddressToPpe(*BaseAddress);
3446#endif
3447#if (_MI_PAGING_LEVELS == 4)
3448 PointerPxe = MiAddressToPxe(*BaseAddress);
3449#endif
3450
3451 /* Get the last PTE */
3452 LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3453
3454 /* Lock the process working set */
3456
3457 /* Loop the pages */
3458 do
3459 {
3460 /* Check for a page that is not accessible */
3461 while (
3462#if (_MI_PAGING_LEVELS == 4)
3463 (PointerPxe->u.Hard.Valid == 0) ||
3464#endif
3465#if (_MI_PAGING_LEVELS >= 3)
3466 (PointerPpe->u.Hard.Valid == 0) ||
3467#endif
3468 (PointerPde->u.Hard.Valid == 0) ||
3469 (PointerPte->u.Hard.Valid == 0))
3470 {
3471 /* Release process working set */
3473
3474 /* Access the page */
3475 CurrentVa = MiPteToAddress(PointerPte);
3476
3477 //HACK: Pass a placeholder TrapInformation so the fault handler knows we're unlocked
3478 TempStatus = MmAccessFault(TRUE, CurrentVa, KernelMode, (PVOID)(ULONG_PTR)0xBADBADA3BADBADA3ULL);
3479 if (!NT_SUCCESS(TempStatus))
3480 {
3481 // This should only happen, when remote backing storage is not accessible
3482 ASSERT(FALSE);
3483 Status = TempStatus;
3484 goto Cleanup;
3485 }
3486
3487 /* Lock the process working set */
3489 }
3490
3491 /* Get the PFN */
3492 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3493 ASSERT(Pfn1 != NULL);
3494
3495 /* Check the previous lock status */
3496 if (MI_IS_LOCKED_VA(Pfn1, MapType))
3497 {
3499 }
3500
3501 /* Lock it */
3502 MI_LOCK_VA(Pfn1, MapType);
3503
3504 /* Go to the next PTE */
3505 PointerPte++;
3506
3507 /* Check if we're on a PDE boundary */
3508 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3509#if (_MI_PAGING_LEVELS >= 3)
3510 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3511#endif
3512#if (_MI_PAGING_LEVELS == 4)
3513 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3514#endif
3515 } while (PointerPte <= LastPte);
3516
3517 /* Release process working set */
3519
3520Cleanup:
3521 /* Unlock address space */
3523
3524 return Status;
3525}
3526
3528NTAPI
3531 IN OUT PSIZE_T NumberOfBytesToLock,
3532 IN ULONG MapType)
3533{
3535 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3540 PVOID CapturedBaseAddress;
3541 SIZE_T CapturedBytesToLock;
3542 PAGED_CODE();
3543
3544 //
3545 // Validate flags
3546 //
3547 if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3548 {
3549 //
3550 // Invalid set of flags
3551 //
3553 }
3554
3555 //
3556 // At least one flag must be specified
3557 //
3558 if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3559 {
3560 //
3561 // No flag given
3562 //
3564 }
3565
3566 //
3567 // Enter SEH for probing
3568 //
3569 _SEH2_TRY
3570 {
3571 //
3572 // Validate output data
3573 //
3575 ProbeForWriteSize_t(NumberOfBytesToLock);
3576
3577 //
3578 // Capture it
3579 //
3580 CapturedBaseAddress = *BaseAddress;
3581 CapturedBytesToLock = *NumberOfBytesToLock;
3582 }
3584 {
3585 //
3586 // Get exception code
3587 //
3589 }
3590 _SEH2_END;
3591
3592 //
3593 // Catch illegal base address
3594 //
3595 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3596
3597 //
3598 // Catch illegal region size
3599 //
3600 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToLock)
3601 {
3602 //
3603 // Fail
3604 //
3606 }
3607
3608 //
3609 // 0 is also illegal
3610 //
3611 if (!CapturedBytesToLock) return STATUS_INVALID_PARAMETER;
3612
3613 //
3614 // Get a reference to the process
3615 //
3620 (PVOID*)(&Process),
3621 NULL);
3622 if (!NT_SUCCESS(Status)) return Status;
3623
3624 //
3625 // Check if this is is system-mapped
3626 //
3627 if (MapType & MAP_SYSTEM)
3628 {
3629 //
3630 // Check for required privilege
3631 //
3633 {
3634 //
3635 // Fail: Don't have it
3636 //
3639 }
3640 }
3641
3642 //
3643 // Check if we should attach
3644 //
3645 if (CurrentProcess != Process)
3646 {
3647 //
3648 // Do it
3649 //
3651 Attached = TRUE;
3652 }
3653
3654 //
3655 // Call the internal function
3656 //
3657 Status = MiLockVirtualMemory(&CapturedBaseAddress,
3658 &CapturedBytesToLock,
3659 MapType);
3660
3661 //
3662 // Detach if needed
3663 //
3665
3666 //
3667 // Release reference
3668 //
3670
3671 //
3672 // Enter SEH to return data
3673 //
3674 _SEH2_TRY
3675 {
3676 //
3677 // Return data to user
3678 //
3679 *BaseAddress = CapturedBaseAddress;
3680 *NumberOfBytesToLock = CapturedBytesToLock;
3681 }
3683 {
3684 //
3685 // Get exception code
3686 //
3688 }
3689 _SEH2_END;
3690
3691 //
3692 // Return status
3693 //
3694 return Status;
3695}
3696
3697
3698static
3703 IN ULONG MapType)
3704{
3705 PEPROCESS CurrentProcess;
3707 PVOID EndAddress;
3708 PMMPTE PointerPte, LastPte;
3709 PMMPDE PointerPde;
3710#if (_MI_PAGING_LEVELS >= 3)
3711 PMMPDE PointerPpe;
3712#endif
3713#if (_MI_PAGING_LEVELS == 4)
3714 PMMPDE PointerPxe;
3715#endif
3716 PMMPFN Pfn1;
3718
3719 /* Lock the address space */
3722
3723 /* Make sure we still have an address space */
3724 CurrentProcess = PsGetCurrentProcess();
3725 if (CurrentProcess->VmDeleted)
3726 {
3728 goto Cleanup;
3729 }
3730
3731 /* Check the VADs in the requested range */
3733
3734 /* Note: only bail out, if we hit an area without a VAD. If we hit an
3735 incompatible VAD we continue, like Windows does */
3737 {
3739 goto Cleanup;
3740 }
3741
3742 /* Get the PTE and PDE */
3743 PointerPte = MiAddressToPte(*BaseAddress);
3744 PointerPde = MiAddressToPde(*BaseAddress);
3745#if (_MI_PAGING_LEVELS >= 3)
3746 PointerPpe = MiAddressToPpe(*BaseAddress);
3747#endif
3748#if (_MI_PAGING_LEVELS == 4)
3749 PointerPxe = MiAddressToPxe(*BaseAddress);
3750#endif
3751
3752 /* Get the last PTE */
3753 LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3754
3755 /* Lock the process working set */
3757
3758 /* Loop the pages */
3759 do
3760 {
3761 /* Check for a page that is not present */
3762 if (
3763#if (_MI_PAGING_LEVELS == 4)
3764 (PointerPxe->u.Hard.Valid == 0) ||
3765#endif
3766#if (_MI_PAGING_LEVELS >= 3)
3767 (PointerPpe->u.Hard.Valid == 0) ||
3768#endif
3769 (PointerPde->u.Hard.Valid == 0) ||
3770 (PointerPte->u.Hard.Valid == 0))
3771 {
3772 /* Remember it, but keep going */
3774 }
3775 else
3776 {
3777 /* Get the PFN */
3778 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3779 ASSERT(Pfn1 != NULL);
3780
3781 /* Check if all of the requested locks are present */
3782 if (((MapType & MAP_SYSTEM) && !MI_IS_LOCKED_VA(Pfn1, MAP_SYSTEM)) ||
3783 ((MapType & MAP_PROCESS) && !MI_IS_LOCKED_VA(Pfn1, MAP_PROCESS)))
3784 {
3785 /* Remember it, but keep going */
3787
3788 /* Check if no lock is present */
3790 {
3791 DPRINT1("FIXME: Should remove the page from WS\n");
3792 }
3793 }
3794 }
3795
3796 /* Go to the next PTE */
3797 PointerPte++;
3798
3799 /* Check if we're on a PDE boundary */
3800 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3801#if (_MI_PAGING_LEVELS >= 3)
3802 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3803#endif
3804#if (_MI_PAGING_LEVELS == 4)
3805 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3806#endif
3807 } while (PointerPte <= LastPte);
3808
3809 /* Check if we hit a page that was not locked */
3811 {
3812 goto CleanupWithWsLock;
3813 }
3814
3815 /* All pages in the region were locked, so unlock them all */
3816
3817 /* Get the PTE and PDE */
3818 PointerPte = MiAddressToPte(*BaseAddress);
3819 PointerPde = MiAddressToPde(*BaseAddress);
3820#if (_MI_PAGING_LEVELS >= 3)
3821 PointerPpe = MiAddressToPpe(*BaseAddress);
3822#endif
3823#if (_MI_PAGING_LEVELS == 4)
3824 PointerPxe = MiAddressToPxe(*BaseAddress);
3825#endif
3826
3827 /* Loop the pages */
3828 do
3829 {
3830 /* Unlock it */
3831 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3832 MI_UNLOCK_VA(Pfn1, MapType);
3833
3834 /* Go to the next PTE */
3835 PointerPte++;
3836
3837 /* Check if we're on a PDE boundary */
3838 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3839#if (_MI_PAGING_LEVELS >= 3)
3840 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3841#endif
3842#if (_MI_PAGING_LEVELS == 4)
3843 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3844#endif
3845 } while (PointerPte <= LastPte);
3846
3847 /* Everything is done */
3849
3850CleanupWithWsLock:
3851
3852 /* Release process working set */
3854
3855Cleanup:
3856 /* Unlock address space */
3858
3859 return Status;
3860}
3861
3862
3864NTAPI
3867 IN OUT PSIZE_T NumberOfBytesToUnlock,
3868 IN ULONG MapType)
3869{
3871 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3876 PVOID CapturedBaseAddress;
3877 SIZE_T CapturedBytesToUnlock;
3878 PAGED_CODE();
3879
3880 //
3881 // Validate flags
3882 //
3883 if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3884 {
3885 //
3886 // Invalid set of flags
3887 //
3889 }
3890
3891 //
3892 // At least one flag must be specified
3893 //
3894 if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3895 {
3896 //
3897 // No flag given
3898 //
3900 }
3901
3902 //
3903 // Enter SEH for probing
3904 //
3905 _SEH2_TRY
3906 {
3907 //
3908 // Validate output data
3909 //
3911 ProbeForWriteSize_t(NumberOfBytesToUnlock);
3912
3913 //
3914 // Capture it
3915 //
3916 CapturedBaseAddress = *BaseAddress;
3917 CapturedBytesToUnlock = *NumberOfBytesToUnlock;
3918 }
3920 {
3921 //
3922 // Get exception code
3923 //
3925 }
3926 _SEH2_END;
3927
3928 //
3929 // Catch illegal base address
3930 //
3931 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3932
3933 //
3934 // Catch illegal region size
3935 //
3936 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToUnlock)
3937 {
3938 //
3939 // Fail
3940 //
3942 }
3943
3944 //
3945 // 0 is also illegal
3946 //
3947 if (!CapturedBytesToUnlock) return STATUS_INVALID_PARAMETER;
3948
3949 //
3950 // Get a reference to the process
3951 //
3956 (PVOID*)(&Process),
3957 NULL);
3958 if (!NT_SUCCESS(Status)) return Status;
3959
3960 //
3961 // Check if this is is system-mapped
3962 //
3963 if (MapType & MAP_SYSTEM)
3964 {
3965 //
3966 // Check for required privilege
3967 //
3969 {
3970 //
3971 // Fail: Don't have it
3972 //
3975 }
3976 }
3977
3978 //
3979 // Check if we should attach
3980 //
3981 if (CurrentProcess != Process)
3982 {
3983 //
3984 // Do it
3985 //
3987 Attached = TRUE;
3988 }
3989
3990 //
3991 // Call the internal function
3992 //
3993 Status = MiUnlockVirtualMemory(&CapturedBaseAddress,
3994 &CapturedBytesToUnlock,
3995 MapType);
3996
3997 //
3998 // Detach if needed
3999 //
4001
4002 //
4003 // Release reference
4004 //
4006
4007 //
4008 // Enter SEH to return data
4009 //
4010 _SEH2_TRY
4011 {
4012 //
4013 // Return data to user
4014 //
4015 *BaseAddress = CapturedBaseAddress;
4016 *NumberOfBytesToUnlock = CapturedBytesToUnlock;
4017 }
4019 {
4020 //
4021 // Get exception code
4022 //
4024 }
4025 _SEH2_END;
4026
4027 //
4028 // Return status
4029 //
4030 return STATUS_SUCCESS;
4031}
4032
4034NTAPI
4037 IN OUT PSIZE_T NumberOfBytesToFlush,
4039{
4043 PVOID CapturedBaseAddress;
4044 SIZE_T CapturedBytesToFlush;
4045 IO_STATUS_BLOCK LocalStatusBlock;
4046 PAGED_CODE();
4047
4048 //
4049 // Check if we came from user mode
4050 //
4051 if (PreviousMode != KernelMode)
4052 {
4053 //
4054 // Enter SEH for probing
4055 //
4056 _SEH2_TRY
4057 {
4058 //
4059 // Validate all outputs
4060 //
4062 ProbeForWriteSize_t(NumberOfBytesToFlush);
4064
4065 //
4066 // Capture them
4067 //
4068 CapturedBaseAddress = *BaseAddress;
4069 CapturedBytesToFlush = *NumberOfBytesToFlush;
4070 }
4072 {
4073 //
4074 // Get exception code
4075 //
4077 }
4078 _SEH2_END;
4079 }
4080 else
4081 {
4082 //
4083 // Capture directly
4084 //
4085 CapturedBaseAddress = *BaseAddress;
4086 CapturedBytesToFlush = *NumberOfBytesToFlush;
4087 }
4088
4089 //
4090 // Catch illegal base address
4091 //
4092 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
4093
4094 //
4095 // Catch illegal region size
4096 //
4097 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToFlush)
4098 {
4099 //
4100 // Fail
4101 //
4103 }
4104
4105 //
4106 // Get a reference to the process
4107 //
4112 (PVOID*)(&Process),
4113 NULL);
4114 if (!NT_SUCCESS(Status)) return Status;
4115
4116 //
4117 // Do it
4118 //
4120 &CapturedBaseAddress,
4121 &CapturedBytesToFlush,
4122 &LocalStatusBlock);
4123
4124 //
4125 // Release reference
4126 //
4128
4129 //
4130 // Enter SEH to return data
4131 //
4132 _SEH2_TRY
4133 {
4134 //
4135 // Return data to user
4136 //
4137 *BaseAddress = PAGE_ALIGN(CapturedBaseAddress);
4138 *NumberOfBytesToFlush = 0;
4139 *IoStatusBlock = LocalStatusBlock;
4140 }
4142 {
4143 }
4144 _SEH2_END;
4145
4146 //
4147 // Return status
4148 //
4149 return Status;
4150}
4151
4152/*
4153 * @unimplemented
4154 */
4156NTAPI
4158 IN ULONG Flags,
4161 IN PVOID *UserAddressArray,
4162 OUT PULONG_PTR EntriesInUserAddressArray,
4163 OUT PULONG Granularity)
4164{
4167 PVOID EndAddress;
4169 ULONG_PTR CapturedEntryCount;
4170 PAGED_CODE();
4171
4172 //
4173 // Check if we came from user mode
4174 //
4175 if (PreviousMode != KernelMode)
4176 {
4177 //
4178 // Enter SEH for probing
4179 //
4180 _SEH2_TRY
4181 {
4182 //
4183 // Catch illegal base address
4184 //
4186
4187 //
4188 // Catch illegal region size
4189 //
4191 {
4192 //
4193 // Fail
4194 //
4196 }
4197
4198 //
4199 // Validate all data
4200 //
4201 ProbeForWriteSize_t(EntriesInUserAddressArray);
4202 ProbeForWriteUlong(Granularity);
4203
4204 //
4205 // Capture them
4206 //
4207 CapturedEntryCount = *EntriesInUserAddressArray;
4208
4209 //
4210 // Must have a count
4211 //
4212 if (CapturedEntryCount == 0) _SEH2_YIELD(return STATUS_INVALID_PARAMETER_5);
4213
4214 //
4215 // Can't be larger than the maximum
4216 //
4217 if (CapturedEntryCount > (MAXULONG_PTR / sizeof(ULONG_PTR)))
4218 {
4219 //
4220 // Fail
4221 //
4223 }
4224
4225 //
4226 // Probe the actual array
4227 //
4228 ProbeForWrite(UserAddressArray,
4229 CapturedEntryCount * sizeof(PVOID),
4230 sizeof(PVOID));
4231 }
4233 {
4234 //
4235 // Get exception code
4236 //
4238 }
4239 _SEH2_END;
4240 }
4241 else
4242 {
4243 //
4244 // Capture directly
4245 //
4246 CapturedEntryCount = *EntriesInUserAddressArray;
4247 ASSERT(CapturedEntryCount != 0);
4248 }
4249
4250 //
4251 // Check if this is a local request
4252 //
4254 {
4255 //
4256 // No need to reference the process
4257 //
4259 }
4260 else
4261 {
4262 //
4263 // Reference the target
4264 //
4269 (PVOID *)&Process,
4270 NULL);
4271 if (!NT_SUCCESS(Status)) return Status;
4272 }
4273
4274 //
4275 // Compute the last address and validate it
4276 //
4277 EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4278 if (BaseAddress > EndAddress)
4279 {
4280 //
4281 // Fail
4282 //
4285 }
4286
4287 //
4288 // Oops :(
4289 //
4291
4292 //
4293 // Dereference if needed
4294 //
4296
4297 //
4298 // Enter SEH to return data
4299 //
4300 _SEH2_TRY
4301 {
4302 //
4303 // Return data to user
4304 //
4305 *EntriesInUserAddressArray = 0;
4306 *Granularity = PAGE_SIZE;
4307 }
4309 {
4310 //
4311 // Get exception code
4312 //
4314 }
4315 _SEH2_END;
4316
4317 //
4318 // Return success
4319 //
4320 return STATUS_SUCCESS;
4321}
4322
4323/*
4324 * @unimplemented
4325 */
4327NTAPI
4331{
4332 PVOID EndAddress;
4337
4338 //
4339 // Catch illegal base address
4340 //
4342
4343 //
4344 // Catch illegal region size
4345 //
4347 {
4348 //
4349 // Fail
4350 //
4352 }
4353
4354 //
4355 // Check if this is a local request
4356 //
4358 {
4359 //
4360 // No need to reference the process
4361 //
4363 }
4364 else
4365 {
4366 //
4367 // Reference the target
4368 //
4373 (PVOID *)&Process,
4374 NULL);
4375 if (!NT_SUCCESS(Status)) return Status;
4376 }
4377
4378 //
4379 // Compute the last address and validate it
4380 //
4381 EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4382 if (BaseAddress > EndAddress)
4383 {
4384 //
4385 // Fail
4386 //
4389 }
4390
4391 //
4392 // Oops :(
4393 //
4395
4396 //
4397 // Dereference if needed
4398 //
4400
4401 //
4402 // Return success
4403 //
4404 return STATUS_SUCCESS;
4405}
4406
4408NTAPI
4411 IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
4412 OUT PVOID MemoryInformation,
4413 IN SIZE_T MemoryInformationLength,
4415{
4418
4419 DPRINT("Querying class %d about address: %p\n", MemoryInformationClass, BaseAddress);
4420
4421 /* Bail out if the address is invalid */
4423
4424 /* Probe return buffer */
4426 if (PreviousMode != KernelMode)
4427 {
4428 _SEH2_TRY
4429 {
4430 ProbeForWrite(MemoryInformation,
4431 MemoryInformationLength,
4432 sizeof(ULONG_PTR));
4433
4435 }
4437 {
4439 }
4440 _SEH2_END;
4441
4442 if (!NT_SUCCESS(Status))
4443 {
4444 return Status;
4445 }
4446 }
4447
4448 switch(MemoryInformationClass)
4449 {
4451 /* Validate the size information of the class */
4452 if (MemoryInformationLength < sizeof(MEMORY_BASIC_INFORMATION))
4453 {
4454 /* The size is invalid */
4456 }
4459 MemoryInformation,
4460 MemoryInformationLength,
4461 ReturnLength);
4462 break;
4463
4464 case MemorySectionName:
4465 /* Validate the size information of the class */
4466 if (MemoryInformationLength < sizeof(MEMORY_SECTION_NAME))
4467 {
4468 /* The size is invalid */
4470 }
4473 MemoryInformation,
4474 MemoryInformationLength,
4475 ReturnLength);
4476 break;
4479 default:
4480 DPRINT1("Unhandled memory information class %d\n", MemoryInformationClass);
4481 break;
4482 }
4483
4484 return Status;
4485}
4486
4487/*
4488 * @implemented
4489 */
4491NTAPI
4493 IN OUT PVOID* UBaseAddress,
4495 IN OUT PSIZE_T URegionSize,
4498{
4501 PMMVAD Vad = NULL, FoundVad;
4504 PVOID PBaseAddress;
4505 ULONG_PTR PRegionSize, StartingAddress, EndingAddress;
4506 ULONG_PTR HighestAddress = (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS;
4507 PEPROCESS CurrentProcess = PsGetCurrentProcess();
4509 PETHREAD CurrentThread = PsGetCurrentThread();
4511 ULONG ProtectionMask, QuotaCharge = 0, QuotaFree = 0;
4512 BOOLEAN Attached = FALSE, ChangeProtection = FALSE, QuotaCharged = FALSE;
4513 MMPTE TempPte;
4514 PMMPTE PointerPte, LastPte;
4515 PMMPDE PointerPde;
4517 PAGED_CODE();
4518
4519 /* Check for valid Zero bits */
4521 {
4522 DPRINT1("Too many zero bits\n");
4524 }
4525
4526 /* Check for valid Allocation Types */
4529 {
4530 DPRINT1("Invalid Allocation Type\n");
4532 }
4533
4534 /* Check for at least one of these Allocation Types to be set */
4536 {
4537 DPRINT1("No memory allocation base type\n");
4539 }
4540
4541 /* MEM_RESET is an exclusive flag, make sure that is valid too */
4543 {
4544 DPRINT1("Invalid use of MEM_RESET\n");
4546 }
4547
4548 /* Check if large pages are being used */
4550 {
4551 /* Large page allocations MUST be committed */
4552 if (!(AllocationType & MEM_COMMIT))
4553 {
4554 DPRINT1("Must supply MEM_COMMIT with MEM_LARGE_PAGES\n");
4556 }
4557
4558 /* These flags are not allowed with large page allocations */
4560 {
4561 DPRINT1("Using illegal flags with MEM_LARGE_PAGES\n");
4563 }
4564 }
4565
4566 /* MEM_WRITE_WATCH can only be used if MEM_RESERVE is also used */
4568 {
4569 DPRINT1("MEM_WRITE_WATCH used without MEM_RESERVE\n");
4571 }
4572
4573 /* Check for valid MEM_PHYSICAL usage */
4575 {
4576 /* MEM_PHYSICAL can only be used if MEM_RESERVE is also used */
4577 if (!(AllocationType & MEM_RESERVE))
4578 {
4579 DPRINT1("MEM_PHYSICAL used without MEM_RESERVE\n");
4581 }
4582
4583 /* Only these flags are allowed with MEM_PHYSIAL */
4585 {
4586 DPRINT1("Using illegal flags with MEM_PHYSICAL\n");
4588 }
4589
4590 /* Then make sure PAGE_READWRITE is used */
4591 if (Protect != PAGE_READWRITE)
4592 {
4593 DPRINT1("MEM_PHYSICAL used without PAGE_READWRITE\n");
4595 }
4596 }
4597
4598 /* Calculate the protection mask and make sure it's valid */
4599 ProtectionMask = MiMakeProtectionMask(Protect);
4600 if (ProtectionMask == MM_INVALID_PROTECTION)
4601 {
4602 DPRINT1("Invalid protection mask\n");
4604 }
4605
4606 /* Enter SEH */
4607 _SEH2_TRY
4608 {
4609 /* Check for user-mode parameters */
4610 if (PreviousMode != KernelMode)
4611 {
4612 /* Make sure they are writable */
4613 ProbeForWritePointer(UBaseAddress);
4614 ProbeForWriteSize_t(URegionSize);
4615 }
4616
4617 /* Capture their values */
4618 PBaseAddress = *UBaseAddress;
4619 PRegionSize = *URegionSize;
4620 }
4622 {
4623 /* Return the exception code */
4625 }
4626 _SEH2_END;
4627
4628 /* Make sure the allocation isn't past the VAD area */
4629 if (PBaseAddress > MM_HIGHEST_VAD_ADDRESS)
4630 {
4631 DPRINT1("Virtual allocation base above User Space\n");
4633 }
4634
4635 /* Make sure the allocation wouldn't overflow past the VAD area */
4636 if ((((ULONG_PTR)MM_HIGHEST_VAD_ADDRESS + 1) - (ULONG_PTR)PBaseAddress) < PRegionSize)
4637 {
4638 DPRINT1("Region size would overflow into kernel-memory\n");
4640 }
4641
4642 /* Make sure there's a size specified */
4643 if (!PRegionSize)
4644 {
4645 DPRINT1("Region size is invalid (zero)\n");
4647 }
4648
4649 //
4650 // If this is for the current process, just use PsGetCurrentProcess
4651 //
4653 {
4654 Process = CurrentProcess;
4655 }
4656 else
4657 {
4658 //
4659 // Otherwise, reference the process with VM rights and attach to it if
4660 // this isn't the current process. We must attach because we'll be touching
4661 // PTEs and PDEs that belong to user-mode memory, and also touching the
4662 // Working Set which is stored in Hyperspace.
4663 //
4668 (PVOID*)&Process,
4669 NULL);
4670 if (!NT_SUCCESS(Status)) return Status;
4671 if (CurrentProcess != Process)
4672 {
4674 Attached = TRUE;
4675 }
4676 }
4677
4678 DPRINT("NtAllocateVirtualMemory: Process 0x%p, Address 0x%p, Zerobits %lu , RegionSize 0x%x, Allocation type 0x%x, Protect 0x%x.\n",
4679 Process, PBaseAddress, ZeroBits, PRegionSize, AllocationType, Protect);
4680
4681 //
4682 // Check for large page allocations and make sure that the required privilege
4683 // is being held, before attempting to handle them.
4684 //
4687 {
4688 /* Fail without it */
4689 DPRINT1("Privilege not held for MEM_LARGE_PAGES\n");
4691 goto FailPathNoLock;
4692 }
4693
4694 //
4695 // Fail on the things we don't yet support
4696 //
4698 {
4699 DPRINT1("MEM_LARGE_PAGES not supported\n");
4701 goto FailPathNoLock;
4702 }
4704 {
4705 DPRINT1("MEM_PHYSICAL not supported\n");
4707 goto FailPathNoLock;
4708 }
4710 {
4711 DPRINT1("MEM_WRITE_WATCH not supported\n");
4713 goto FailPathNoLock;
4714 }
4715
4716 //
4717 // Check if the caller is reserving memory, or committing memory and letting
4718 // us pick the base address
4719 //
4720 if (!(PBaseAddress) || (AllocationType & MEM_RESERVE))
4721 {
4722 //
4723 // Do not allow COPY_ON_WRITE through this API
4724 //
4726 {
4727 DPRINT1("Copy on write not allowed through this path\n");
4729 goto FailPathNoLock;
4730 }
4731
4732 //
4733 // Does the caller have an address in mind, or is this a blind commit?
4734 //
4735 if (!PBaseAddress)
4736 {
4737 //
4738 // This is a blind commit, all we need is the region size
4739 //
4740 PRegionSize = ROUND_TO_PAGES(PRegionSize);
4741 EndingAddress = 0;
4742 StartingAddress = 0;
4743
4744 //
4745 // Check if ZeroBits were specified
4746 //
4747 if (ZeroBits != 0)
4748 {
4749 //
4750 // Calculate the highest address and check if it's valid
4751 //
4752 HighestAddress = MAXULONG_PTR >> ZeroBits;
4753 if (HighestAddress > (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS)
4754 {
4756 goto FailPathNoLock;
4757 }
4758 }
4759 }
4760 else
4761 {
4762 //
4763 // This is a reservation, so compute the starting address on the
4764 // expected 64KB granularity, and see where the ending address will
4765 // fall based on the aligned address and the passed in region size
4766 //
4767 EndingAddress = ((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1);
4768 PRegionSize = EndingAddress + 1 - ROUND_DOWN((ULONG_PTR)PBaseAddress, _64K);
4769 StartingAddress = (ULONG_PTR)PBaseAddress;
4770 }
4771
4772 // Charge quotas for the VAD
4774 if (!NT_SUCCESS(Status))
4775 {
4776 DPRINT1("Quota exceeded.\n");
4777 goto FailPathNoLock;
4778 }
4779
4781
4782 //
4783 // Allocate and initialize the VAD
4784 //
4785 Vad = ExAllocatePoolWithTag(NonPagedPool, sizeof(MMVAD_LONG), 'SdaV');
4786 if (Vad == NULL)
4787 {
4788 DPRINT1("Failed to allocate a VAD!\n");
4790 goto FailPathNoLock;
4791 }
4792
4793 RtlZeroMemory(Vad, sizeof(MMVAD_LONG));
4795 Vad->u.VadFlags.Protection = ProtectionMask;
4796 Vad->u.VadFlags.PrivateMemory = 1;
4797 Vad->ControlArea = NULL; // For Memory-Area hack
4798
4799 //
4800 // Insert the VAD
4801 //
4802 Status = MiInsertVadEx(Vad,
4803 &StartingAddress,
4804 PRegionSize,
4805 HighestAddress,
4808 if (!NT_SUCCESS(Status))
4809 {
4810 DPRINT1("Failed to insert the VAD!\n");
4811 ExFreePoolWithTag(Vad, 'SdaV');
4812 goto FailPathNoLock;
4813 }
4814
4815 //
4816 // Detach and dereference the target process if
4817 // it was different from the current process
4818 //
4821
4822 //
4823 // Use SEH to write back the base address and the region size. In the case
4824 // of an exception, we do not return back the exception code, as the memory
4825 // *has* been allocated. The caller would now have to call VirtualQuery
4826 // or do some other similar trick to actually find out where its memory
4827 // allocation ended up
4828 //
4829 _SEH2_TRY
4830 {
4831 *URegionSize = PRegionSize;
4832 *UBaseAddress = (PVOID)StartingAddress;
4833 }
4835 {
4836 //
4837 // Ignore exception!
4838 //
4839 }
4840 _SEH2_END;
4841 DPRINT("Reserved %x bytes at %p.\n", PRegionSize, StartingAddress);
4842 return STATUS_SUCCESS;
4843 }
4844
4845 //
4846 // This is a MEM_COMMIT on top of an existing address which must have been
4847 // MEM_RESERVED already. Compute the start and ending base addresses based
4848 // on the user input, and then compute the actual region size once all the
4849 // alignments have been done.
4850 //
4851 EndingAddress = (((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1));
4852 StartingAddress = (ULONG_PTR)PAGE_ALIGN(PBaseAddress);
4853 PRegionSize = EndingAddress - StartingAddress + 1;
4854
4855 //
4856 // Lock the address space and make sure the process isn't already dead
4857 //
4860 if (Process->VmDeleted)
4861 {
4862 DPRINT1("Process is dying\n");
4864 goto FailPath;
4865 }
4866
4867 //
4868 // Get the VAD for this address range, and make sure it exists
4869 //
4870 Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
4871 EndingAddress >> PAGE_SHIFT,
4872 &Process->VadRoot,
4873 (PMMADDRESS_NODE*)&FoundVad);
4874 if (Result != TableFoundNode)
4875 {
4876 DPRINT1("Could not find a VAD for this allocation\n");
4878 goto FailPath;
4879 }
4880
4882 {
4884 DPRINT("MEM_RESET not supported\n");
4886 goto FailPath;
4887 }
4888
4889 //
4890 // These kinds of VADs are illegal for this Windows function when trying to
4891 // commit an existing range
4892 //
4893 if ((FoundVad->u.VadFlags.VadType == VadAwe) ||
4894 (FoundVad->u.VadFlags.VadType == VadDevicePhysicalMemory) ||
4895 (FoundVad->u.VadFlags.VadType == VadLargePages))
4896 {
4897 DPRINT1("Illegal VAD for attempting a MEM_COMMIT\n");
4899 goto FailPath;
4900 }
4901
4902 //
4903 // Make sure that this address range actually fits within the VAD for it
4904 //
4905 if (((StartingAddress >> PAGE_SHIFT) < FoundVad->StartingVpn) ||
4906 ((EndingAddress >> PAGE_SHIFT) > FoundVad->EndingVpn))
4907 {
4908 DPRINT1("Address range does not fit into the VAD\n");
4910 goto FailPath;
4911 }
4912
4913 //
4914 // Make sure this is an ARM3 section
4915 //
4919 {
4920 DPRINT1("Illegal commit of non-ARM3 section!\n");
4922 goto FailPath;
4923 }
4924
4925 // Is this a previously reserved section being committed? If so, enter the
4926 // special section path
4927 //
4928 if (FoundVad->u.VadFlags.PrivateMemory == FALSE)
4929 {
4930 //
4931 // You cannot commit large page sections through this API
4932 //
4933 if (FoundVad->u.VadFlags.VadType == VadLargePageSection)
4934 {
4935 DPRINT1("Large page sections cannot be VirtualAlloc'd\n");
4937 goto FailPath;
4938 }
4939
4940 //
4941 // You can only use caching flags on a rotate VAD
4942 //
4944 (FoundVad->u.VadFlags.VadType != VadRotatePhysical))
4