ReactOS  0.4.15-dev-5109-g2469ce2
virtual.c
Go to the documentation of this file.
1 /*
2  * PROJECT: ReactOS Kernel
3  * LICENSE: BSD - See COPYING.ARM in the top level directory
4  * FILE: ntoskrnl/mm/ARM3/virtual.c
5  * PURPOSE: ARM Memory Manager Virtual Memory Management
6  * PROGRAMMERS: ReactOS Portable Systems Group
7  */
8 
9 /* INCLUDES *******************************************************************/
10 
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14 
15 #define MODULE_INVOLVED_IN_ARM3
16 #include <mm/ARM3/miarm.h>
17 
18 #define MI_MAPPED_COPY_PAGES 14
19 #define MI_POOL_COPY_BYTES 512
20 #define MI_MAX_TRANSFER_SIZE 64 * 1024
21 
25  IN OUT PSIZE_T NumberOfBytesToProtect,
26  IN ULONG NewAccessProtection,
27  OUT PULONG OldAccessProtection OPTIONAL);
28 
29 VOID
30 NTAPI
32  IN PMMPTE PointerPte,
33  IN ULONG ProtectionMask,
34  IN PMMPFN Pfn1,
35  IN BOOLEAN CaptureDirtyBit);
36 
37 
38 /* PRIVATE FUNCTIONS **********************************************************/
39 
40 ULONG
41 NTAPI
43  IN ULONG_PTR EndingAddress,
44  IN PMMVAD Vad,
46 {
47  PMMPTE PointerPte, LastPte;
48  PMMPDE PointerPde;
49  BOOLEAN OnPdeBoundary = TRUE;
50 #if _MI_PAGING_LEVELS >= 3
51  PMMPPE PointerPpe;
52  BOOLEAN OnPpeBoundary = TRUE;
53 #if _MI_PAGING_LEVELS == 4
54  PMMPXE PointerPxe;
55  BOOLEAN OnPxeBoundary = TRUE;
56 #endif
57 #endif
58 
59  /* Make sure this all makes sense */
60  ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
61  ASSERT(EndingAddress >= StartingAddress);
62  PointerPte = MiAddressToPte(StartingAddress);
63  LastPte = MiAddressToPte(EndingAddress);
64 
65  /*
66  * In case this is a committed VAD, assume the whole range is committed
67  * and count the individually decommitted pages.
68  * In case it is not, assume the range is not committed and count the individually committed pages.
69  */
70  ULONG_PTR CommittedPages = Vad->u.VadFlags.MemCommit ? BYTES_TO_PAGES(EndingAddress - StartingAddress) : 0;
71 
72  while (PointerPte <= LastPte)
73  {
74 #if _MI_PAGING_LEVELS == 4
75  /* Check if PXE was ever paged in. */
76  if (OnPxeBoundary)
77  {
78  PointerPxe = MiPteToPxe(PointerPte);
79 
80  /* Check that this loop is sane */
81  ASSERT(OnPpeBoundary);
82  ASSERT(OnPdeBoundary);
83 
84  if (PointerPxe->u.Long == 0)
85  {
86  PointerPxe++;
87  PointerPte = MiPxeToPte(PointerPde);
88  continue;
89  }
90 
91  if (PointerPxe->u.Hard.Valid == 0)
93  }
94  ASSERT(PointerPxe->u.Hard.Valid == 1);
95 #endif
96 
97 #if _MI_PAGING_LEVELS >= 3
98  /* Now PPE */
99  if (OnPpeBoundary)
100  {
101  PointerPpe = MiPteToPpe(PointerPte);
102 
103  /* Sanity again */
104  ASSERT(OnPdeBoundary);
105 
106  if (PointerPpe->u.Long == 0)
107  {
108  PointerPpe++;
109  PointerPte = MiPpeToPte(PointerPpe);
110 #if _MI_PAGING_LEVELS == 4
111  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
112 #endif
113  continue;
114  }
115 
116  if (PointerPpe->u.Hard.Valid == 0)
118  }
119  ASSERT(PointerPpe->u.Hard.Valid == 1);
120 #endif
121 
122  /* Last level is the PDE */
123  if (OnPdeBoundary)
124  {
125  PointerPde = MiPteToPde(PointerPte);
126  if (PointerPde->u.Long == 0)
127  {
128  PointerPde++;
129  PointerPte = MiPdeToPte(PointerPde);
130 #if _MI_PAGING_LEVELS >= 3
131  OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
132 #if _MI_PAGING_LEVELS == 4
133  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
134 #endif
135 #endif
136  continue;
137  }
138 
139  if (PointerPde->u.Hard.Valid == 0)
140  MiMakeSystemAddressValid(PointerPte, Process);
141  }
142  ASSERT(PointerPde->u.Hard.Valid == 1);
143 
144  /* Is this PTE demand zero? */
145  if (PointerPte->u.Long != 0)
146  {
147  /* It isn't -- is it a decommited, invalid, or faulted PTE? */
148  if ((PointerPte->u.Hard.Valid == 0) &&
149  (PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
150  ((PointerPte->u.Soft.Prototype == 0) ||
151  (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
152  {
153  /* It is, so remove it from the count of committed pages if we have to */
154  if (Vad->u.VadFlags.MemCommit)
155  CommittedPages--;
156  }
157  else if (!Vad->u.VadFlags.MemCommit)
158  {
159  /* It is a valid, non-decommited, non-paged out PTE. Count it in. */
160  CommittedPages++;
161  }
162  }
163 
164  /* Move to the next PTE */
165  PointerPte++;
166  /* Manage page tables */
167  OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
168 #if _MI_PAGING_LEVELS >= 3
169  OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
170 #if _MI_PAGING_LEVELS == 4
171  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
172 #endif
173 #endif
174  }
175 
176  /* Make sure we didn't mess this up */
177  ASSERT(CommittedPages <= BYTES_TO_PAGES(EndingAddress - StartingAddress));
178  return CommittedPages;
179 }
180 
181 ULONG
182 NTAPI
183 MiMakeSystemAddressValid(IN PVOID PageTableVirtualAddress,
185 {
187  BOOLEAN WsShared = FALSE, WsSafe = FALSE, LockChange = FALSE;
188  PETHREAD CurrentThread = PsGetCurrentThread();
189 
190  /* Must be a non-pool page table, since those are double-mapped already */
191  ASSERT(PageTableVirtualAddress > MM_HIGHEST_USER_ADDRESS);
192  ASSERT((PageTableVirtualAddress < MmPagedPoolStart) ||
193  (PageTableVirtualAddress > MmPagedPoolEnd));
194 
195  /* Working set lock or PFN lock should be held */
197 
198  /* Check if the page table is valid */
199  while (!MmIsAddressValid(PageTableVirtualAddress))
200  {
201  /* Release the working set lock */
203  CurrentThread,
204  &WsSafe,
205  &WsShared);
206 
207  /* Fault it in */
208  Status = MmAccessFault(FALSE, PageTableVirtualAddress, KernelMode, NULL);
209  if (!NT_SUCCESS(Status))
210  {
211  /* This should not fail */
212  KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
213  1,
214  Status,
216  (ULONG_PTR)PageTableVirtualAddress);
217  }
218 
219  /* Lock the working set again */
221  CurrentThread,
222  WsSafe,
223  WsShared);
224 
225  /* This flag will be useful later when we do better locking */
226  LockChange = TRUE;
227  }
228 
229  /* Let caller know what the lock state is */
230  return LockChange;
231 }
232 
233 ULONG
234 NTAPI
236  IN KIRQL OldIrql)
237 {
239  BOOLEAN LockChange = FALSE;
240 
241  /* Must be e kernel address */
243 
244  /* Check if the page is valid */
246  {
247  /* Release the PFN database */
248  MiReleasePfnLock(OldIrql);
249 
250  /* Fault it in */
252  if (!NT_SUCCESS(Status))
253  {
254  /* This should not fail */
255  KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
256  3,
257  Status,
258  0,
260  }
261 
262  /* This flag will be useful later when we do better locking */
263  LockChange = TRUE;
264 
265  /* Lock the PFN database */
266  OldIrql = MiAcquirePfnLock();
267  }
268 
269  /* Let caller know what the lock state is */
270  return LockChange;
271 }
272 
273 PFN_COUNT
274 NTAPI
276  IN PFN_NUMBER PageCount,
277  IN ULONG Flags,
278  OUT PPFN_NUMBER ValidPages)
279 {
280  PFN_COUNT ActualPages = 0;
281  PETHREAD CurrentThread = PsGetCurrentThread();
282  PMMPFN Pfn1, Pfn2;
283  PFN_NUMBER PageFrameIndex, PageTableIndex;
284  KIRQL OldIrql;
286 
287  /* Lock the system working set */
288  MiLockWorkingSet(CurrentThread, &MmSystemCacheWs);
289 
290  /* Loop all pages */
291  while (PageCount)
292  {
293  /* Make sure there's some data about the page */
294  if (PointerPte->u.Long)
295  {
296  /* Normally this is one possibility -- freeing a valid page */
297  if (PointerPte->u.Hard.Valid)
298  {
299  /* Get the page PFN */
300  PageFrameIndex = PFN_FROM_PTE(PointerPte);
301  Pfn1 = MiGetPfnEntry(PageFrameIndex);
302 
303  /* Should not have any working set data yet */
304  ASSERT(Pfn1->u1.WsIndex == 0);
305 
306  /* Actual valid, legitimate, pages */
307  if (ValidPages) (*ValidPages)++;
308 
309  /* Get the page table entry */
310  PageTableIndex = Pfn1->u4.PteFrame;
311  Pfn2 = MiGetPfnEntry(PageTableIndex);
312 
313  /* Lock the PFN database */
314  OldIrql = MiAcquirePfnLock();
315 
316  /* Delete it the page */
317  MI_SET_PFN_DELETED(Pfn1);
318  MiDecrementShareCount(Pfn1, PageFrameIndex);
319 
320  /* Decrement the page table too */
321  MiDecrementShareCount(Pfn2, PageTableIndex);
322 
323  /* Release the PFN database */
324  MiReleasePfnLock(OldIrql);
325 
326  /* Destroy the PTE */
327  MI_ERASE_PTE(PointerPte);
328  }
329  else
330  {
331  /* As always, only handle current ARM3 scenarios */
332  ASSERT(PointerPte->u.Soft.Prototype == 0);
333  ASSERT(PointerPte->u.Soft.Transition == 0);
334 
335  /*
336  * The only other ARM3 possibility is a demand zero page, which would
337  * mean freeing some of the paged pool pages that haven't even been
338  * touched yet, as part of a larger allocation.
339  *
340  * Right now, we shouldn't expect any page file information in the PTE
341  */
342  ASSERT(PointerPte->u.Soft.PageFileHigh == 0);
343 
344  /* Destroy the PTE */
345  MI_ERASE_PTE(PointerPte);
346  }
347 
348  /* Actual legitimate pages */
349  ActualPages++;
350  }
351 
352  /* Keep going */
353  PointerPte++;
354  PageCount--;
355  }
356 
357  /* Release the working set */
358  MiUnlockWorkingSet(CurrentThread, &MmSystemCacheWs);
359 
360  /* Flush the entire TLB */
362 
363  /* Done */
364  return ActualPages;
365 }
366 
367 VOID
368 NTAPI
369 MiDeletePte(IN PMMPTE PointerPte,
373 {
374  PMMPFN Pfn1;
375  MMPTE TempPte;
376  PFN_NUMBER PageFrameIndex;
377  PMMPDE PointerPde;
378 
379  /* PFN lock must be held */
381 
382  /* WorkingSet must be exclusively locked */
384 
385  /* This must be current process. */
387 
388  /* Capture the PTE */
389  TempPte = *PointerPte;
390 
391  /* See if the PTE is valid */
392  if (TempPte.u.Hard.Valid == 0)
393  {
394  /* Prototype and paged out PTEs not supported yet */
395  ASSERT(TempPte.u.Soft.Prototype == 0);
396  ASSERT((TempPte.u.Soft.PageFileHigh == 0) || (TempPte.u.Soft.Transition == 1));
397 
398  if (TempPte.u.Soft.Transition)
399  {
400  /* Get the PFN entry */
401  PageFrameIndex = PFN_FROM_PTE(&TempPte);
402  Pfn1 = MiGetPfnEntry(PageFrameIndex);
403 
404  DPRINT("Pte %p is transitional!\n", PointerPte);
405 
406  /* Make sure the saved PTE address is valid */
407  ASSERT((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) == PointerPte);
408 
409  /* Destroy the PTE */
410  MI_ERASE_PTE(PointerPte);
411 
412  /* Drop the reference on the page table. */
414 
415  /* In case of shared page, the prototype PTE must be in transition, not the process one */
416  ASSERT(Pfn1->u3.e1.PrototypePte == 0);
417 
418  /* Delete the PFN */
419  MI_SET_PFN_DELETED(Pfn1);
420 
421  /* It must be either free (refcount == 0) or being written (refcount == 1) */
422  ASSERT(Pfn1->u3.e2.ReferenceCount == Pfn1->u3.e1.WriteInProgress);
423 
424  /* See if we must free it ourselves, or if it will be freed once I/O is over */
425  if (Pfn1->u3.e2.ReferenceCount == 0)
426  {
427  /* And it should be in standby or modified list */
429 
430  /* Unlink it and set its reference count to one */
431  MiUnlinkPageFromList(Pfn1);
432  Pfn1->u3.e2.ReferenceCount++;
433 
434  /* This will put it back in free list and clean properly up */
435  MiDecrementReferenceCount(Pfn1, PageFrameIndex);
436  }
437  return;
438  }
439  }
440 
441  /* Get the PFN entry */
442  PageFrameIndex = PFN_FROM_PTE(&TempPte);
443  Pfn1 = MiGetPfnEntry(PageFrameIndex);
444 
445  /* Check if this is a valid, prototype PTE */
446  if (Pfn1->u3.e1.PrototypePte == 1)
447  {
448  /* Get the PDE and make sure it's faulted in */
449  PointerPde = MiPteToPde(PointerPte);
450  if (PointerPde->u.Hard.Valid == 0)
451  {
452 #if (_MI_PAGING_LEVELS == 2)
453  /* Could be paged pool access from a new process -- synchronize the page directories */
455  {
456 #endif
457  /* The PDE must be valid at this point */
458  KeBugCheckEx(MEMORY_MANAGEMENT,
459  0x61940,
460  (ULONG_PTR)PointerPte,
461  PointerPte->u.Long,
463  }
464 #if (_MI_PAGING_LEVELS == 2)
465  }
466 #endif
467  /* Drop the share count on the page table */
468  PointerPde = MiPteToPde(PointerPte);
470  PointerPde->u.Hard.PageFrameNumber);
471 
472  /* Drop the share count */
473  MiDecrementShareCount(Pfn1, PageFrameIndex);
474 
475  /* Either a fork, or this is the shared user data page */
476  if ((PointerPte <= MiHighestUserPte) && (PrototypePte != Pfn1->PteAddress))
477  {
478  /* If it's not the shared user page, then crash, since there's no fork() yet */
481  {
482  /* Must be some sort of memory corruption */
483  KeBugCheckEx(MEMORY_MANAGEMENT,
484  0x400,
485  (ULONG_PTR)PointerPte,
487  (ULONG_PTR)Pfn1->PteAddress);
488  }
489  }
490 
491  /* Erase it */
492  MI_ERASE_PTE(PointerPte);
493  }
494  else
495  {
496  /* Make sure the saved PTE address is valid */
497  if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte)
498  {
499  /* The PFN entry is illegal, or invalid */
500  KeBugCheckEx(MEMORY_MANAGEMENT,
501  0x401,
502  (ULONG_PTR)PointerPte,
503  PointerPte->u.Long,
504  (ULONG_PTR)Pfn1->PteAddress);
505  }
506 
507  /* Erase the PTE */
508  MI_ERASE_PTE(PointerPte);
509 
510  /* There should only be 1 shared reference count */
511  ASSERT(Pfn1->u2.ShareCount == 1);
512 
513  /* Drop the reference on the page table. */
515 
516  /* Mark the PFN for deletion and dereference what should be the last ref */
517  MI_SET_PFN_DELETED(Pfn1);
518  MiDecrementShareCount(Pfn1, PageFrameIndex);
519 
520  /* We should eventually do this */
521  //CurrentProcess->NumberOfPrivatePages--;
522  }
523 
524  /* Flush the TLB */
526 }
527 
528 VOID
529 NTAPI
531  IN ULONG_PTR EndingAddress,
532  IN PMMVAD Vad)
533 {
534  PMMPTE PointerPte, PrototypePte, LastPrototypePte;
535  PMMPDE PointerPde;
536 #if (_MI_PAGING_LEVELS >= 3)
537  PMMPPE PointerPpe;
538 #endif
539 #if (_MI_PAGING_LEVELS >= 4)
540  PMMPPE PointerPxe;
541 #endif
542  MMPTE TempPte;
544  KIRQL OldIrql;
545  BOOLEAN AddressGap = FALSE;
546  PSUBSECTION Subsection;
547 
548  /* Get out if this is a fake VAD, RosMm will free the marea pages */
549  if ((Vad) && (Vad->u.VadFlags.Spare == 1)) return;
550 
551  /* Get the current process */
553 
554  /* Check if this is a section VAD or a VM VAD */
555  if (!(Vad) || (Vad->u.VadFlags.PrivateMemory) || !(Vad->FirstPrototypePte))
556  {
557  /* Don't worry about prototypes */
558  PrototypePte = LastPrototypePte = NULL;
559  }
560  else
561  {
562  /* Get the prototype PTE */
563  PrototypePte = Vad->FirstPrototypePte;
564  LastPrototypePte = Vad->FirstPrototypePte + 1;
565  }
566 
567  /* In all cases, we don't support fork() yet */
568  ASSERT(CurrentProcess->CloneRoot == NULL);
569 
570  /* Loop the PTE for each VA (EndingAddress is inclusive!) */
571  while (Va <= EndingAddress)
572  {
573 #if (_MI_PAGING_LEVELS >= 4)
574  /* Get the PXE and check if it's valid */
575  PointerPxe = MiAddressToPxe((PVOID)Va);
576  if (!PointerPxe->u.Hard.Valid)
577  {
578  /* Check for unmapped range and skip it */
579  if (!PointerPxe->u.Long)
580  {
581  /* There are gaps in the address space */
582  AddressGap = TRUE;
583 
584  /* Update Va and continue looping */
585  Va = (ULONG_PTR)MiPxeToAddress(PointerPxe + 1);
586  continue;
587  }
588 
589  /* Make the PXE valid */
591  }
592 #endif
593 #if (_MI_PAGING_LEVELS >= 3)
594  /* Get the PPE and check if it's valid */
595  PointerPpe = MiAddressToPpe((PVOID)Va);
596  if (!PointerPpe->u.Hard.Valid)
597  {
598  /* Check for unmapped range and skip it */
599  if (!PointerPpe->u.Long)
600  {
601  /* There are gaps in the address space */
602  AddressGap = TRUE;
603 
604  /* Update Va and continue looping */
605  Va = (ULONG_PTR)MiPpeToAddress(PointerPpe + 1);
606  continue;
607  }
608 
609  /* Make the PPE valid */
611  }
612 #endif
613  /* Skip invalid PDEs */
614  PointerPde = MiAddressToPde((PVOID)Va);
615  if (!PointerPde->u.Long)
616  {
617  /* There are gaps in the address space */
618  AddressGap = TRUE;
619 
620  /* Check if all the PDEs are invalid, so there's nothing to free */
621  Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
622  continue;
623  }
624 
625  /* Now check if the PDE is mapped in */
626  if (!PointerPde->u.Hard.Valid)
627  {
628  /* It isn't, so map it in */
629  PointerPte = MiPteToAddress(PointerPde);
631  }
632 
633  /* Now we should have a valid PDE, mapped in, and still have some VA */
634  ASSERT(PointerPde->u.Hard.Valid == 1);
635  ASSERT(Va <= EndingAddress);
636 
637  /* Check if this is a section VAD with gaps in it */
638  if ((AddressGap) && (LastPrototypePte))
639  {
640  /* We need to skip to the next correct prototype PTE */
642 
643  /* And we need the subsection to skip to the next last prototype PTE */
644  Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
645  if (Subsection)
646  {
647  /* Found it! */
648  LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
649  }
650  else
651  {
652  /* No more subsections, we are done with prototype PTEs */
653  PrototypePte = NULL;
654  }
655  }
656 
657  /* Lock the PFN Database while we delete the PTEs */
658  OldIrql = MiAcquirePfnLock();
659  PointerPte = MiAddressToPte(Va);
660  do
661  {
662  /* Making sure the PDE is still valid */
663  ASSERT(PointerPde->u.Hard.Valid == 1);
664 
665  /* Capture the PDE and make sure it exists */
666  TempPte = *PointerPte;
667  if (TempPte.u.Long)
668  {
669  /* Check if the PTE is actually mapped in */
671  {
672  /* Are we dealing with section VAD? */
673  if ((LastPrototypePte) && (PrototypePte > LastPrototypePte))
674  {
675  /* We need to skip to the next correct prototype PTE */
677 
678  /* And we need the subsection to skip to the next last prototype PTE */
679  Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
680  if (Subsection)
681  {
682  /* Found it! */
683  LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
684  }
685  else
686  {
687  /* No more subsections, we are done with prototype PTEs */
688  PrototypePte = NULL;
689  }
690  }
691 
692  /* Check for prototype PTE */
693  if ((TempPte.u.Hard.Valid == 0) &&
694  (TempPte.u.Soft.Prototype == 1))
695  {
696  /* Just nuke it */
697  MI_ERASE_PTE(PointerPte);
698  }
699  else
700  {
701  /* Delete the PTE proper */
702  MiDeletePte(PointerPte,
703  (PVOID)Va,
705  PrototypePte);
706  }
707  }
708  else
709  {
710  /* The PTE was never mapped, just nuke it here */
711  MI_ERASE_PTE(PointerPte);
712  }
713 
715  {
716  ASSERT(PointerPde->u.Long != 0);
717 
718  /* Delete the PDE proper */
719  MiDeletePde(PointerPde, CurrentProcess);
720 
721  /* Continue with the next PDE */
722  Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
723 
724  /* Use this to detect address gaps */
725  PointerPte++;
726  break;
727  }
728  }
729 
730  /* Update the address and PTE for it */
731  Va += PAGE_SIZE;
732  PointerPte++;
733  PrototypePte++;
734  } while ((Va & (PDE_MAPPED_VA - 1)) && (Va <= EndingAddress));
735 
736  /* Release the lock */
737  MiReleasePfnLock(OldIrql);
738 
739  if (Va > EndingAddress) return;
740 
741  /* Check if we exited the loop regularly */
742  AddressGap = (PointerPte != MiAddressToPte(Va));
743  }
744 }
745 
746 LONG
748  OUT PBOOLEAN HaveBadAddress,
749  OUT PULONG_PTR BadAddress)
750 {
751  PEXCEPTION_RECORD ExceptionRecord;
752  PAGED_CODE();
753 
754  //
755  // Assume default
756  //
757  *HaveBadAddress = FALSE;
758 
759  //
760  // Get the exception record
761  //
762  ExceptionRecord = ExceptionInfo->ExceptionRecord;
763 
764  //
765  // Look at the exception code
766  //
767  if ((ExceptionRecord->ExceptionCode == STATUS_ACCESS_VIOLATION) ||
768  (ExceptionRecord->ExceptionCode == STATUS_GUARD_PAGE_VIOLATION) ||
769  (ExceptionRecord->ExceptionCode == STATUS_IN_PAGE_ERROR))
770  {
771  //
772  // We can tell the address if we have more than one parameter
773  //
774  if (ExceptionRecord->NumberParameters > 1)
775  {
776  //
777  // Return the address
778  //
779  *HaveBadAddress = TRUE;
780  *BadAddress = ExceptionRecord->ExceptionInformation[1];
781  }
782  }
783 
784  //
785  // Continue executing the next handler
786  //
788 }
789 
790 NTSTATUS
791 NTAPI
794  IN PEPROCESS TargetProcess,
798  OUT PSIZE_T ReturnSize)
799 {
800  PFN_NUMBER MdlBuffer[(sizeof(MDL) / sizeof(PFN_NUMBER)) + MI_MAPPED_COPY_PAGES + 1];
801  PMDL Mdl = (PMDL)MdlBuffer;
802  SIZE_T TotalSize, CurrentSize, RemainingSize;
803  volatile BOOLEAN FailedInProbe = FALSE;
804  volatile BOOLEAN PagesLocked = FALSE;
805  PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
806  volatile PVOID MdlAddress = NULL;
808  BOOLEAN HaveBadAddress;
809  ULONG_PTR BadAddress;
811  PAGED_CODE();
812 
813  //
814  // Calculate the maximum amount of data to move
815  //
816  TotalSize = MI_MAPPED_COPY_PAGES * PAGE_SIZE;
817  if (BufferSize <= TotalSize) TotalSize = BufferSize;
818  CurrentSize = TotalSize;
819  RemainingSize = BufferSize;
820 
821  //
822  // Loop as long as there is still data
823  //
824  while (RemainingSize > 0)
825  {
826  //
827  // Check if this transfer will finish everything off
828  //
829  if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
830 
831  //
832  // Attach to the source address space
833  //
834  KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
835 
836  //
837  // Check state for this pass
838  //
839  ASSERT(MdlAddress == NULL);
840  ASSERT(PagesLocked == FALSE);
841  ASSERT(FailedInProbe == FALSE);
842 
843  //
844  // Protect user-mode copy
845  //
846  _SEH2_TRY
847  {
848  //
849  // If this is our first time, probe the buffer
850  //
851  if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
852  {
853  //
854  // Catch a failure here
855  //
856  FailedInProbe = TRUE;
857 
858  //
859  // Do the probe
860  //
862 
863  //
864  // Passed
865  //
866  FailedInProbe = FALSE;
867  }
868 
869  //
870  // Initialize and probe and lock the MDL
871  //
872  MmInitializeMdl(Mdl, CurrentAddress, CurrentSize);
874  PagesLocked = TRUE;
875  }
877  {
879  }
880  _SEH2_END
881 
882  /* Detach from source process */
884 
885  if (Status != STATUS_SUCCESS)
886  {
887  goto Exit;
888  }
889 
890  //
891  // Now map the pages
892  //
893  MdlAddress = MmMapLockedPagesSpecifyCache(Mdl,
894  KernelMode,
895  MmCached,
896  NULL,
897  FALSE,
899  if (!MdlAddress)
900  {
902  goto Exit;
903  }
904 
905  //
906  // Grab to the target process
907  //
908  KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
909 
910  _SEH2_TRY
911  {
912  //
913  // Check if this is our first time through
914  //
915  if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
916  {
917  //
918  // Catch a failure here
919  //
920  FailedInProbe = TRUE;
921 
922  //
923  // Do the probe
924  //
926 
927  //
928  // Passed
929  //
930  FailedInProbe = FALSE;
931  }
932 
933  //
934  // Now do the actual move
935  //
936  RtlCopyMemory(CurrentTargetAddress, MdlAddress, CurrentSize);
937  }
939  &HaveBadAddress,
940  &BadAddress))
941  {
942  *ReturnSize = BufferSize - RemainingSize;
943  //
944  // Check if we failed during the probe
945  //
946  if (FailedInProbe)
947  {
948  //
949  // Exit
950  //
952  }
953  else
954  {
955  //
956  // Othewise we failed during the move.
957  // Check if we know exactly where we stopped copying
958  //
959  if (HaveBadAddress)
960  {
961  //
962  // Return the exact number of bytes copied
963  //
964  *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
965  }
966  //
967  // Return partial copy
968  //
970  }
971  }
972  _SEH2_END;
973 
974  /* Detach from target process */
976 
977  //
978  // Check for SEH status
979  //
980  if (Status != STATUS_SUCCESS)
981  {
982  goto Exit;
983  }
984 
985  //
986  // Unmap and unlock
987  //
988  MmUnmapLockedPages(MdlAddress, Mdl);
989  MdlAddress = NULL;
991  PagesLocked = FALSE;
992 
993  //
994  // Update location and size
995  //
996  RemainingSize -= CurrentSize;
997  CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
998  CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress + CurrentSize);
999  }
1000 
1001 Exit:
1002  if (MdlAddress != NULL)
1003  MmUnmapLockedPages(MdlAddress, Mdl);
1004  if (PagesLocked)
1005  MmUnlockPages(Mdl);
1006 
1007  //
1008  // All bytes read
1009  //
1010  if (Status == STATUS_SUCCESS)
1011  *ReturnSize = BufferSize;
1012  return Status;
1013 }
1014 
1015 NTSTATUS
1016 NTAPI
1017 MiDoPoolCopy(IN PEPROCESS SourceProcess,
1019  IN PEPROCESS TargetProcess,
1023  OUT PSIZE_T ReturnSize)
1024 {
1025  UCHAR StackBuffer[MI_POOL_COPY_BYTES];
1026  SIZE_T TotalSize, CurrentSize, RemainingSize;
1027  volatile BOOLEAN FailedInProbe = FALSE, HavePoolAddress = FALSE;
1028  PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
1029  PVOID PoolAddress;
1031  BOOLEAN HaveBadAddress;
1032  ULONG_PTR BadAddress;
1034  PAGED_CODE();
1035 
1036  DPRINT("Copying %Iu bytes from process %p (address %p) to process %p (Address %p)\n",
1037  BufferSize, SourceProcess, SourceAddress, TargetProcess, TargetAddress);
1038 
1039  //
1040  // Calculate the maximum amount of data to move
1041  //
1042  TotalSize = MI_MAX_TRANSFER_SIZE;
1043  if (BufferSize <= MI_MAX_TRANSFER_SIZE) TotalSize = BufferSize;
1044  CurrentSize = TotalSize;
1045  RemainingSize = BufferSize;
1046 
1047  //
1048  // Check if we can use the stack
1049  //
1051  {
1052  //
1053  // Use it
1054  //
1055  PoolAddress = (PVOID)StackBuffer;
1056  }
1057  else
1058  {
1059  //
1060  // Allocate pool
1061  //
1062  PoolAddress = ExAllocatePoolWithTag(NonPagedPool, TotalSize, 'VmRw');
1063  if (!PoolAddress) ASSERT(FALSE);
1064  HavePoolAddress = TRUE;
1065  }
1066 
1067  //
1068  // Loop as long as there is still data
1069  //
1070  while (RemainingSize > 0)
1071  {
1072  //
1073  // Check if this transfer will finish everything off
1074  //
1075  if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
1076 
1077  //
1078  // Attach to the source address space
1079  //
1080  KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
1081 
1082  /* Check that state is sane */
1083  ASSERT(FailedInProbe == FALSE);
1085 
1086  //
1087  // Protect user-mode copy
1088  //
1089  _SEH2_TRY
1090  {
1091  //
1092  // If this is our first time, probe the buffer
1093  //
1094  if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
1095  {
1096  //
1097  // Catch a failure here
1098  //
1099  FailedInProbe = TRUE;
1100 
1101  //
1102  // Do the probe
1103  //
1105 
1106  //
1107  // Passed
1108  //
1109  FailedInProbe = FALSE;
1110  }
1111 
1112  //
1113  // Do the copy
1114  //
1115  RtlCopyMemory(PoolAddress, CurrentAddress, CurrentSize);
1116  }
1118  &HaveBadAddress,
1119  &BadAddress))
1120  {
1121  *ReturnSize = BufferSize - RemainingSize;
1122 
1123  //
1124  // Check if we failed during the probe
1125  //
1126  if (FailedInProbe)
1127  {
1128  //
1129  // Exit
1130  //
1132  }
1133  else
1134  {
1135  //
1136  // We failed during the move.
1137  // Check if we know exactly where we stopped copying
1138  //
1139  if (HaveBadAddress)
1140  {
1141  //
1142  // Return the exact number of bytes copied
1143  //
1144  *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1145  }
1146  //
1147  // Return partial copy
1148  //
1150  }
1151  }
1152  _SEH2_END
1153 
1154  /* Let go of the source */
1156 
1157  if (Status != STATUS_SUCCESS)
1158  {
1159  goto Exit;
1160  }
1161 
1162  /* Grab the target process */
1163  KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1164 
1165  _SEH2_TRY
1166  {
1167  //
1168  // Check if this is our first time through
1169  //
1170  if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
1171  {
1172  //
1173  // Catch a failure here
1174  //
1175  FailedInProbe = TRUE;
1176 
1177  //
1178  // Do the probe
1179  //
1181 
1182  //
1183  // Passed
1184  //
1185  FailedInProbe = FALSE;
1186  }
1187 
1188  //
1189  // Now do the actual move
1190  //
1191  RtlCopyMemory(CurrentTargetAddress, PoolAddress, CurrentSize);
1192  }
1194  &HaveBadAddress,
1195  &BadAddress))
1196  {
1197  *ReturnSize = BufferSize - RemainingSize;
1198  //
1199  // Check if we failed during the probe
1200  //
1201  if (FailedInProbe)
1202  {
1203  //
1204  // Exit
1205  //
1207  }
1208  else
1209  {
1210  //
1211  // Otherwise we failed during the move.
1212  // Check if we know exactly where we stopped copying
1213  //
1214  if (HaveBadAddress)
1215  {
1216  //
1217  // Return the exact number of bytes copied
1218  //
1219  *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1220  }
1221  //
1222  // Return partial copy
1223  //
1225  }
1226  }
1227  _SEH2_END;
1228 
1229  //
1230  // Detach from target
1231  //
1233 
1234  //
1235  // Check for SEH status
1236  //
1237  if (Status != STATUS_SUCCESS)
1238  {
1239  goto Exit;
1240  }
1241 
1242  //
1243  // Update location and size
1244  //
1245  RemainingSize -= CurrentSize;
1246  CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
1247  CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress +
1248  CurrentSize);
1249  }
1250 
1251 Exit:
1252  //
1253  // Check if we had allocated pool
1254  //
1255  if (HavePoolAddress)
1256  ExFreePoolWithTag(PoolAddress, 'VmRw');
1257 
1258  //
1259  // All bytes read
1260  //
1261  if (Status == STATUS_SUCCESS)
1262  *ReturnSize = BufferSize;
1263  return Status;
1264 }
1265 
1266 NTSTATUS
1267 NTAPI
1270  IN PEPROCESS TargetProcess,
1274  OUT PSIZE_T ReturnSize)
1275 {
1276  NTSTATUS Status;
1277  PEPROCESS Process = SourceProcess;
1278 
1279  //
1280  // Don't accept zero-sized buffers
1281  //
1282  if (!BufferSize) return STATUS_SUCCESS;
1283 
1284  //
1285  // If we are copying from ourselves, lock the target instead
1286  //
1287  if (SourceProcess == PsGetCurrentProcess()) Process = TargetProcess;
1288 
1289  //
1290  // Acquire rundown protection
1291  //
1292  if (!ExAcquireRundownProtection(&Process->RundownProtect))
1293  {
1294  //
1295  // Fail
1296  //
1298  }
1299 
1300  //
1301  // See if we should use the pool copy
1302  //
1304  {
1305  //
1306  // Use MDL-copy
1307  //
1308  Status = MiDoMappedCopy(SourceProcess,
1309  SourceAddress,
1310  TargetProcess,
1311  TargetAddress,
1312  BufferSize,
1313  PreviousMode,
1314  ReturnSize);
1315  }
1316  else
1317  {
1318  //
1319  // Do pool copy
1320  //
1321  Status = MiDoPoolCopy(SourceProcess,
1322  SourceAddress,
1323  TargetProcess,
1324  TargetAddress,
1325  BufferSize,
1326  PreviousMode,
1327  ReturnSize);
1328  }
1329 
1330  //
1331  // Release the lock
1332  //
1333  ExReleaseRundownProtection(&Process->RundownProtect);
1334  return Status;
1335 }
1336 
1337 NTSTATUS
1338 NTAPI
1343 {
1344  PAGED_CODE();
1345 
1346  UNIMPLEMENTED;
1347 
1348  return STATUS_NOT_IMPLEMENTED;
1349 }
1350 
1351 ULONG
1352 NTAPI
1354 {
1355  MMPTE TempPte;
1356  PMMPFN Pfn;
1358  PETHREAD CurrentThread;
1359  BOOLEAN WsSafe, WsShared;
1360  ULONG Protect;
1361  KIRQL OldIrql;
1362  PAGED_CODE();
1363 
1364  /* Copy this PTE's contents */
1365  TempPte = *PointerPte;
1366 
1367  /* Assure it's not totally zero */
1368  ASSERT(TempPte.u.Long);
1369 
1370  /* Check for a special prototype format */
1371  if ((TempPte.u.Soft.Valid == 0) &&
1372  (TempPte.u.Soft.Prototype == 1))
1373  {
1374  /* Check if the prototype PTE is not yet pointing to a PTE */
1375  if (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)
1376  {
1377  /* The prototype PTE contains the protection */
1378  return MmProtectToValue[TempPte.u.Soft.Protection];
1379  }
1380 
1381  /* Get a pointer to the underlying shared PTE */
1382  PointerPte = MiProtoPteToPte(&TempPte);
1383 
1384  /* Since the PTE we want to read can be paged out at any time, we need
1385  to release the working set lock first, so that it can be paged in */
1386  CurrentThread = PsGetCurrentThread();
1389  CurrentThread,
1390  &WsSafe,
1391  &WsShared);
1392 
1393  /* Now read the PTE value */
1394  TempPte = *PointerPte;
1395 
1396  /* Check if that one is invalid */
1397  if (!TempPte.u.Hard.Valid)
1398  {
1399  /* We get the protection directly from this PTE */
1400  Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1401  }
1402  else
1403  {
1404  /* The PTE is valid, so we might need to get the protection from
1405  the PFN. Lock the PFN database */
1406  OldIrql = MiAcquirePfnLock();
1407 
1408  /* Check if the PDE is still valid */
1409  if (MiAddressToPte(PointerPte)->u.Hard.Valid == 0)
1410  {
1411  /* It's not, make it valid */
1412  MiMakeSystemAddressValidPfn(PointerPte, OldIrql);
1413  }
1414 
1415  /* Now it's safe to read the PTE value again */
1416  TempPte = *PointerPte;
1417  ASSERT(TempPte.u.Long != 0);
1418 
1419  /* Check again if the PTE is invalid */
1420  if (!TempPte.u.Hard.Valid)
1421  {
1422  /* The PTE is not valid, so we can use it's protection field */
1423  Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1424  }
1425  else
1426  {
1427  /* The PTE is valid, so we can find the protection in the
1428  OriginalPte field of the PFN */
1429  Pfn = MI_PFN_ELEMENT(TempPte.u.Hard.PageFrameNumber);
1431  }
1432 
1433  /* Release the PFN database */
1434  MiReleasePfnLock(OldIrql);
1435  }
1436 
1437  /* Lock the working set again */
1439  CurrentThread,
1440  WsSafe,
1441  WsShared);
1442 
1443  return Protect;
1444  }
1445 
1446  /* In the easy case of transition or demand zero PTE just return its protection */
1447  if (!TempPte.u.Hard.Valid) return MmProtectToValue[TempPte.u.Soft.Protection];
1448 
1449  /* If we get here, the PTE is valid, so look up the page in PFN database */
1450  Pfn = MiGetPfnEntry(TempPte.u.Hard.PageFrameNumber);
1451  if (!Pfn->u3.e1.PrototypePte)
1452  {
1453  /* Return protection of the original pte */
1454  ASSERT(Pfn->u4.AweAllocation == 0);
1456  }
1457 
1458  /* This is software PTE */
1459  DPRINT("Prototype PTE: %lx %p\n", TempPte.u.Hard.PageFrameNumber, Pfn);
1460  DPRINT("VA: %p\n", MiPteToAddress(&TempPte));
1461  DPRINT("Mask: %lx\n", TempPte.u.Soft.Protection);
1462  DPRINT("Mask2: %lx\n", Pfn->OriginalPte.u.Soft.Protection);
1463  return MmProtectToValue[TempPte.u.Soft.Protection];
1464 }
1465 
1466 ULONG
1467 NTAPI
1469  IN PMMVAD Vad,
1470  IN PEPROCESS TargetProcess,
1471  OUT PULONG ReturnedProtect,
1472  OUT PVOID *NextVa)
1473 {
1474 
1475  PMMPTE PointerPte, ProtoPte;
1476  PMMPDE PointerPde;
1477 #if (_MI_PAGING_LEVELS >= 3)
1478  PMMPPE PointerPpe;
1479 #endif
1480 #if (_MI_PAGING_LEVELS >= 4)
1481  PMMPXE PointerPxe;
1482 #endif
1483  MMPTE TempPte, TempProtoPte;
1484  BOOLEAN DemandZeroPte = TRUE, ValidPte = FALSE;
1485  ULONG State = MEM_RESERVE, Protect = 0;
1486  ASSERT((Vad->StartingVpn <= ((ULONG_PTR)Va >> PAGE_SHIFT)) &&
1487  (Vad->EndingVpn >= ((ULONG_PTR)Va >> PAGE_SHIFT)));
1488 
1489  /* Only normal VADs supported */
1490  ASSERT(Vad->u.VadFlags.VadType == VadNone);
1491 
1492  /* Get the PDE and PTE for the address */
1493  PointerPde = MiAddressToPde(Va);
1494  PointerPte = MiAddressToPte(Va);
1495 #if (_MI_PAGING_LEVELS >= 3)
1496  PointerPpe = MiAddressToPpe(Va);
1497 #endif
1498 #if (_MI_PAGING_LEVELS >= 4)
1499  PointerPxe = MiAddressToPxe(Va);
1500 #endif
1501 
1502  /* Return the next range */
1503  *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1504 
1505  do
1506  {
1507 #if (_MI_PAGING_LEVELS >= 4)
1508  /* Does the PXE exist? */
1509  if (PointerPxe->u.Long == 0)
1510  {
1511  /* It does not, next range starts at the next PXE */
1512  *NextVa = MiPxeToAddress(PointerPxe + 1);
1513  break;
1514  }
1515 
1516  /* Is the PXE valid? */
1517  if (PointerPxe->u.Hard.Valid == 0)
1518  {
1519  /* Is isn't, fault it in (make the PPE accessible) */
1520  MiMakeSystemAddressValid(PointerPpe, TargetProcess);
1521  }
1522 #endif
1523 #if (_MI_PAGING_LEVELS >= 3)
1524  /* Does the PPE exist? */
1525  if (PointerPpe->u.Long == 0)
1526  {
1527  /* It does not, next range starts at the next PPE */
1528  *NextVa = MiPpeToAddress(PointerPpe + 1);
1529  break;
1530  }
1531 
1532  /* Is the PPE valid? */
1533  if (PointerPpe->u.Hard.Valid == 0)
1534  {
1535  /* Is isn't, fault it in (make the PDE accessible) */
1536  MiMakeSystemAddressValid(PointerPde, TargetProcess);
1537  }
1538 #endif
1539 
1540  /* Does the PDE exist? */
1541  if (PointerPde->u.Long == 0)
1542  {
1543  /* It does not, next range starts at the next PDE */
1544  *NextVa = MiPdeToAddress(PointerPde + 1);
1545  break;
1546  }
1547 
1548  /* Is the PDE valid? */
1549  if (PointerPde->u.Hard.Valid == 0)
1550  {
1551  /* Is isn't, fault it in (make the PTE accessible) */
1552  MiMakeSystemAddressValid(PointerPte, TargetProcess);
1553  }
1554 
1555  /* We have a PTE that we can access now! */
1556  ValidPte = TRUE;
1557 
1558  } while (FALSE);
1559 
1560  /* Is it safe to try reading the PTE? */
1561  if (ValidPte)
1562  {
1563  /* FIXME: watch out for large pages */
1564  ASSERT(PointerPde->u.Hard.LargePage == FALSE);
1565 
1566  /* Capture the PTE */
1567  TempPte = *PointerPte;
1568  if (TempPte.u.Long != 0)
1569  {
1570  /* The PTE is valid, so it's not zeroed out */
1571  DemandZeroPte = FALSE;
1572 
1573  /* Is it a decommited, invalid, or faulted PTE? */
1574  if ((TempPte.u.Soft.Protection == MM_DECOMMIT) &&
1575  (TempPte.u.Hard.Valid == 0) &&
1576  ((TempPte.u.Soft.Prototype == 0) ||
1577  (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
1578  {
1579  /* Otherwise our defaults should hold */
1580  ASSERT(Protect == 0);
1581  ASSERT(State == MEM_RESERVE);
1582  }
1583  else
1584  {
1585  /* This means it's committed */
1586  State = MEM_COMMIT;
1587 
1588  /* We don't support these */
1589  ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1590  ASSERT(Vad->u.VadFlags.VadType != VadRotatePhysical);
1591  ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1592 
1593  /* Get protection state of this page */
1594  Protect = MiGetPageProtection(PointerPte);
1595 
1596  /* Check if this is an image-backed VAD */
1597  if ((TempPte.u.Soft.Valid == 0) &&
1598  (TempPte.u.Soft.Prototype == 1) &&
1599  (Vad->u.VadFlags.PrivateMemory == 0) &&
1600  (Vad->ControlArea))
1601  {
1602  DPRINT1("Not supported\n");
1603  ASSERT(FALSE);
1604  }
1605  }
1606  }
1607  }
1608 
1609  /* Check if this was a demand-zero PTE, since we need to find the state */
1610  if (DemandZeroPte)
1611  {
1612  /* Not yet handled */
1613  ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1614  ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1615 
1616  /* Check if this is private commited memory, or an section-backed VAD */
1617  if ((Vad->u.VadFlags.PrivateMemory == 0) && (Vad->ControlArea))
1618  {
1619  /* Tell caller about the next range */
1620  *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1621 
1622  /* Get the prototype PTE for this VAD */
1623  ProtoPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(Vad,
1624  (ULONG_PTR)Va >> PAGE_SHIFT);
1625  if (ProtoPte)
1626  {
1627  /* We should unlock the working set, but it's not being held! */
1628 
1629  /* Is the prototype PTE actually valid (committed)? */
1630  TempProtoPte = *ProtoPte;
1631  if (TempProtoPte.u.Long)
1632  {
1633  /* Unless this is a memory-mapped file, handle it like private VAD */
1634  State = MEM_COMMIT;
1635  ASSERT(Vad->u.VadFlags.VadType != VadImageMap);
1636  Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1637  }
1638 
1639  /* We should re-lock the working set */
1640  }
1641  }
1642  else if (Vad->u.VadFlags.MemCommit)
1643  {
1644  /* This is committed memory */
1645  State = MEM_COMMIT;
1646 
1647  /* Convert the protection */
1648  Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1649  }
1650  }
1651 
1652  /* Return the protection code */
1653  *ReturnedProtect = Protect;
1654  return State;
1655 }
1656 
1657 NTSTATUS
1658 NTAPI
1661  OUT PVOID MemoryInformation,
1662  IN SIZE_T MemoryInformationLength,
1664 {
1665  PEPROCESS TargetProcess;
1667  PMMVAD Vad = NULL;
1668  PVOID Address, NextAddress;
1669  BOOLEAN Found = FALSE;
1670  ULONG NewProtect, NewState;
1671  ULONG_PTR BaseVpn;
1672  MEMORY_BASIC_INFORMATION MemoryInfo;
1677 
1678  /* Check for illegal addresses in user-space, or the shared memory area */
1681  {
1683 
1684  /* Make up an info structure describing this range */
1685  MemoryInfo.BaseAddress = Address;
1686  MemoryInfo.AllocationProtect = PAGE_READONLY;
1687  MemoryInfo.Type = MEM_PRIVATE;
1688 
1689  /* Special case for shared data */
1691  {
1693  MemoryInfo.State = MEM_COMMIT;
1694  MemoryInfo.Protect = PAGE_READONLY;
1695  MemoryInfo.RegionSize = PAGE_SIZE;
1696  }
1697  else
1698  {
1699  MemoryInfo.AllocationBase = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1;
1700  MemoryInfo.State = MEM_RESERVE;
1701  MemoryInfo.Protect = PAGE_NOACCESS;
1703  }
1704 
1705  /* Return the data, NtQueryInformation already probed it*/
1706  if (PreviousMode != KernelMode)
1707  {
1708  _SEH2_TRY
1709  {
1710  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1712  }
1714  {
1716  }
1717  _SEH2_END;
1718  }
1719  else
1720  {
1721  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1723  }
1724 
1725  return Status;
1726  }
1727 
1728  /* Check if this is for a local or remote process */
1730  {
1731  TargetProcess = PsGetCurrentProcess();
1732  }
1733  else
1734  {
1735  /* Reference the target process */
1738  PsProcessType,
1740  (PVOID*)&TargetProcess,
1741  NULL);
1742  if (!NT_SUCCESS(Status)) return Status;
1743 
1744  /* Attach to it now */
1745  KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1746  }
1747 
1748  /* Lock the address space and make sure the process isn't already dead */
1749  MmLockAddressSpace(&TargetProcess->Vm);
1750  if (TargetProcess->VmDeleted)
1751  {
1752  /* Unlock the address space of the process */
1753  MmUnlockAddressSpace(&TargetProcess->Vm);
1754 
1755  /* Check if we were attached */
1757  {
1758  /* Detach and dereference the process */
1760  ObDereferenceObject(TargetProcess);
1761  }
1762 
1763  /* Bail out */
1764  DPRINT1("Process is dying\n");
1766  }
1767 
1768  /* Loop the VADs */
1769  ASSERT(TargetProcess->VadRoot.NumberGenericTableElements);
1770  if (TargetProcess->VadRoot.NumberGenericTableElements)
1771  {
1772  /* Scan on the right */
1773  Vad = (PMMVAD)TargetProcess->VadRoot.BalancedRoot.RightChild;
1774  BaseVpn = (ULONG_PTR)BaseAddress >> PAGE_SHIFT;
1775  while (Vad)
1776  {
1777  /* Check if this VAD covers the allocation range */
1778  if ((BaseVpn >= Vad->StartingVpn) &&
1779  (BaseVpn <= Vad->EndingVpn))
1780  {
1781  /* We're done */
1782  Found = TRUE;
1783  break;
1784  }
1785 
1786  /* Check if this VAD is too high */
1787  if (BaseVpn < Vad->StartingVpn)
1788  {
1789  /* Stop if there is no left child */
1790  if (!Vad->LeftChild) break;
1791 
1792  /* Search on the left next */
1793  Vad = Vad->LeftChild;
1794  }
1795  else
1796  {
1797  /* Then this VAD is too low, keep searching on the right */
1798  ASSERT(BaseVpn > Vad->EndingVpn);
1799 
1800  /* Stop if there is no right child */
1801  if (!Vad->RightChild) break;
1802 
1803  /* Search on the right next */
1804  Vad = Vad->RightChild;
1805  }
1806  }
1807  }
1808 
1809  /* Was a VAD found? */
1810  if (!Found)
1811  {
1813 
1814  /* Calculate region size */
1815  if (Vad)
1816  {
1817  if (Vad->StartingVpn >= BaseVpn)
1818  {
1819  /* Region size is the free space till the start of that VAD */
1820  MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1821  }
1822  else
1823  {
1824  /* Get the next VAD */
1825  Vad = (PMMVAD)MiGetNextNode((PMMADDRESS_NODE)Vad);
1826  if (Vad)
1827  {
1828  /* Region size is the free space till the start of that VAD */
1829  MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1830  }
1831  else
1832  {
1833  /* Maximum possible region size with that base address */
1834  MemoryInfo.RegionSize = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1 - (PCHAR)Address;
1835  }
1836  }
1837  }
1838  else
1839  {
1840  /* Maximum possible region size with that base address */
1841  MemoryInfo.RegionSize = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1 - (PCHAR)Address;
1842  }
1843 
1844  /* Unlock the address space of the process */
1845  MmUnlockAddressSpace(&TargetProcess->Vm);
1846 
1847  /* Check if we were attached */
1849  {
1850  /* Detach and dereference the process */
1852  ObDereferenceObject(TargetProcess);
1853  }
1854 
1855  /* Build the rest of the initial information block */
1856  MemoryInfo.BaseAddress = Address;
1857  MemoryInfo.AllocationBase = NULL;
1858  MemoryInfo.AllocationProtect = 0;
1859  MemoryInfo.State = MEM_FREE;
1860  MemoryInfo.Protect = PAGE_NOACCESS;
1861  MemoryInfo.Type = 0;
1862 
1863  /* Return the data, NtQueryInformation already probed it*/
1864  if (PreviousMode != KernelMode)
1865  {
1866  _SEH2_TRY
1867  {
1868  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1870  }
1872  {
1874  }
1875  _SEH2_END;
1876  }
1877  else
1878  {
1879  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1881  }
1882 
1883  return Status;
1884  }
1885 
1886  /* Set the correct memory type based on what kind of VAD this is */
1887  if ((Vad->u.VadFlags.PrivateMemory) ||
1888  (Vad->u.VadFlags.VadType == VadRotatePhysical))
1889  {
1890  MemoryInfo.Type = MEM_PRIVATE;
1891  }
1892  else if (Vad->u.VadFlags.VadType == VadImageMap)
1893  {
1894  MemoryInfo.Type = MEM_IMAGE;
1895  }
1896  else
1897  {
1898  MemoryInfo.Type = MEM_MAPPED;
1899  }
1900 
1901  /* Find the memory area the specified address belongs to */
1903  ASSERT(MemoryArea != NULL);
1904 
1905  /* Determine information dependent on the memory area type */
1907  {
1909  if (!NT_SUCCESS(Status))
1910  {
1911  DPRINT1("MmQuerySectionView failed. MemoryArea=%p (%p-%p), BaseAddress=%p\n",
1914  }
1915  }
1916  else
1917  {
1918  /* Build the initial information block */
1920  MemoryInfo.BaseAddress = Address;
1921  MemoryInfo.AllocationBase = (PVOID)(Vad->StartingVpn << PAGE_SHIFT);
1923  MemoryInfo.Type = MEM_PRIVATE;
1924 
1925  /* Acquire the working set lock (shared is enough) */
1927 
1928  /* Find the largest chunk of memory which has the same state and protection mask */
1929  MemoryInfo.State = MiQueryAddressState(Address,
1930  Vad,
1931  TargetProcess,
1932  &MemoryInfo.Protect,
1933  &NextAddress);
1934  Address = NextAddress;
1935  while (((ULONG_PTR)Address >> PAGE_SHIFT) <= Vad->EndingVpn)
1936  {
1937  /* Keep going unless the state or protection mask changed */
1938  NewState = MiQueryAddressState(Address, Vad, TargetProcess, &NewProtect, &NextAddress);
1939  if ((NewState != MemoryInfo.State) || (NewProtect != MemoryInfo.Protect)) break;
1940  Address = NextAddress;
1941  }
1942 
1943  /* Release the working set lock */
1945 
1946  /* Check if we went outside of the VAD */
1947  if (((ULONG_PTR)Address >> PAGE_SHIFT) > Vad->EndingVpn)
1948  {
1949  /* Set the end of the VAD as the end address */
1950  Address = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
1951  }
1952 
1953  /* Now that we know the last VA address, calculate the region size */
1954  MemoryInfo.RegionSize = ((ULONG_PTR)Address - (ULONG_PTR)MemoryInfo.BaseAddress);
1955  }
1956 
1957  /* Unlock the address space of the process */
1958  MmUnlockAddressSpace(&TargetProcess->Vm);
1959 
1960  /* Check if we were attached */
1962  {
1963  /* Detach and dereference the process */
1965  ObDereferenceObject(TargetProcess);
1966  }
1967 
1968  /* Return the data, NtQueryInformation already probed it */
1969  if (PreviousMode != KernelMode)
1970  {
1971  _SEH2_TRY
1972  {
1973  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1975  }
1977  {
1979  }
1980  _SEH2_END;
1981  }
1982  else
1983  {
1984  *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1986  }
1987 
1988  /* All went well */
1989  DPRINT("Base: %p AllocBase: %p AllocProtect: %lx Protect: %lx "
1990  "State: %lx Type: %lx Size: %lx\n",
1991  MemoryInfo.BaseAddress, MemoryInfo.AllocationBase,
1992  MemoryInfo.AllocationProtect, MemoryInfo.Protect,
1993  MemoryInfo.State, MemoryInfo.Type, MemoryInfo.RegionSize);
1994 
1995  return Status;
1996 }
1997 
1998 BOOLEAN
1999 NTAPI
2001  IN ULONG_PTR EndingAddress,
2002  IN PMMVAD Vad,
2004 {
2005  PMMPTE PointerPte, LastPte;
2006  PMMPDE PointerPde;
2007  BOOLEAN OnPdeBoundary = TRUE;
2008 #if _MI_PAGING_LEVELS >= 3
2009  PMMPPE PointerPpe;
2010  BOOLEAN OnPpeBoundary = TRUE;
2011 #if _MI_PAGING_LEVELS == 4
2012  PMMPXE PointerPxe;
2013  BOOLEAN OnPxeBoundary = TRUE;
2014 #endif
2015 #endif
2016 
2017  PAGED_CODE();
2018 
2019  /* Check that we hols the right locks */
2020  ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
2021 
2022  /* Get the PTE addresses */
2023  PointerPte = MiAddressToPte(StartingAddress);
2024  LastPte = MiAddressToPte(EndingAddress);
2025 
2026  /* Loop all the PTEs */
2027  while (PointerPte <= LastPte)
2028  {
2029 #if _MI_PAGING_LEVELS == 4
2030  /* Check for new PXE boundary */
2031  if (OnPxeBoundary)
2032  {
2033  PointerPxe = MiPteToPxe(PointerPte);
2034 
2035  /* Check that this loop is sane */
2036  ASSERT(OnPpeBoundary);
2037  ASSERT(OnPdeBoundary);
2038 
2039  if (PointerPxe->u.Long != 0)
2040  {
2041  /* Make it valid if needed */
2042  if (PointerPxe->u.Hard.Valid == 0)
2044  }
2045  else
2046  {
2047  /* Is the entire VAD committed? If not, fail */
2048  if (!Vad->u.VadFlags.MemCommit) return FALSE;
2049 
2050  PointerPxe++;
2051  PointerPte = MiPxeToPte(PointerPte);
2052  continue;
2053  }
2054  }
2055 #endif
2056 
2057 #if _MI_PAGING_LEVELS >= 3
2058  /* Check for new PPE boundary */
2059  if (OnPpeBoundary)
2060  {
2061  PointerPpe = MiPteToPpe(PointerPte);
2062 
2063  /* Check that this loop is sane */
2064  ASSERT(OnPdeBoundary);
2065 
2066  if (PointerPpe->u.Long != 0)
2067  {
2068  /* Make it valid if needed */
2069  if (PointerPpe->u.Hard.Valid == 0)
2071  }
2072  else
2073  {
2074  /* Is the entire VAD committed? If not, fail */
2075  if (!Vad->u.VadFlags.MemCommit) return FALSE;
2076 
2077  PointerPpe++;
2078  PointerPte = MiPpeToPte(PointerPpe);
2079 #if _MI_PAGING_LEVELS == 4
2080  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2081 #endif
2082  continue;
2083  }
2084  }
2085 #endif
2086  /* Check if we've hit a new PDE boundary */
2087  if (OnPdeBoundary)
2088  {
2089  /* Is this PDE demand zero? */
2090  PointerPde = MiPteToPde(PointerPte);
2091  if (PointerPde->u.Long != 0)
2092  {
2093  /* It isn't -- is it valid? */
2094  if (PointerPde->u.Hard.Valid == 0)
2095  {
2096  /* Nope, fault it in */
2097  MiMakeSystemAddressValid(PointerPte, Process);
2098  }
2099  }
2100  else
2101  {
2102  /* Is the entire VAD committed? If not, fail */
2103  if (!Vad->u.VadFlags.MemCommit) return FALSE;
2104 
2105  /* The PTE was already valid, so move to the next one */
2106  PointerPde++;
2107  PointerPte = MiPdeToPte(PointerPde);
2108 #if _MI_PAGING_LEVELS >= 3
2109  OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2110 #if _MI_PAGING_LEVELS == 4
2111  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2112 #endif
2113 #endif
2114 
2115  /* New loop iteration with our new, on-boundary PTE. */
2116  continue;
2117  }
2118  }
2119 
2120  /* Is the PTE demand zero? */
2121  if (PointerPte->u.Long == 0)
2122  {
2123  /* Is the entire VAD committed? If not, fail */
2124  if (!Vad->u.VadFlags.MemCommit) return FALSE;
2125  }
2126  else
2127  {
2128  /* It isn't -- is it a decommited, invalid, or faulted PTE? */
2129  if ((PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
2130  (PointerPte->u.Hard.Valid == 0) &&
2131  ((PointerPte->u.Soft.Prototype == 0) ||
2132  (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
2133  {
2134  /* Then part of the range is decommitted, so fail */
2135  return FALSE;
2136  }
2137  }
2138 
2139  /* Move to the next PTE */
2140  PointerPte++;
2141  OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
2142 #if _MI_PAGING_LEVELS >= 3
2143  OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2144 #if _MI_PAGING_LEVELS == 4
2145  OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2146 #endif
2147 #endif
2148  }
2149 
2150  /* All PTEs seem valid, and no VAD checks failed, the range is okay */
2151  return TRUE;
2152 }
2153 
2154 NTSTATUS
2155 NTAPI
2158  IN OUT PSIZE_T NumberOfBytesToProtect,
2159  IN ULONG NewAccessProtection,
2160  OUT PULONG OldAccessProtection OPTIONAL)
2161 {
2164  ULONG OldAccessProtection_;
2165  NTSTATUS Status;
2166 
2167  *NumberOfBytesToProtect = PAGE_ROUND_UP((ULONG_PTR)(*BaseAddress) + (*NumberOfBytesToProtect)) - PAGE_ROUND_DOWN(*BaseAddress);
2169 
2170  AddressSpace = &Process->Vm;
2174  {
2176  return STATUS_UNSUCCESSFUL;
2177  }
2178 
2179  if (OldAccessProtection == NULL) OldAccessProtection = &OldAccessProtection_;
2180 
2183  MemoryArea,
2184  *BaseAddress,
2185  *NumberOfBytesToProtect,
2186  NewAccessProtection,
2187  OldAccessProtection);
2188 
2190 
2191  return Status;
2192 }
2193 
2194 NTSTATUS
2195 NTAPI
2198  IN OUT PSIZE_T NumberOfBytesToProtect,
2199  IN ULONG NewAccessProtection,
2200  OUT PULONG OldAccessProtection OPTIONAL)
2201 {
2203  PMMVAD Vad;
2205  ULONG_PTR StartingAddress, EndingAddress;
2206  PMMPTE PointerPte, LastPte;
2207  PMMPDE PointerPde;
2208  MMPTE PteContents;
2209  PMMPFN Pfn1;
2210  ULONG ProtectionMask, OldProtect;
2211  BOOLEAN Committed;
2215 
2216  /* Calculate base address for the VAD */
2217  StartingAddress = (ULONG_PTR)PAGE_ALIGN((*BaseAddress));
2218  EndingAddress = (((ULONG_PTR)*BaseAddress + *NumberOfBytesToProtect - 1) | (PAGE_SIZE - 1));
2219 
2220  /* Calculate the protection mask and make sure it's valid */
2221  ProtectionMask = MiMakeProtectionMask(NewAccessProtection);
2222  if (ProtectionMask == MM_INVALID_PROTECTION)
2223  {
2224  DPRINT1("Invalid protection mask\n");
2226  }
2227 
2228  /* Check for ROS specific memory area */
2231  {
2232  /* Evil hack */
2234  BaseAddress,
2235  NumberOfBytesToProtect,
2236  NewAccessProtection,
2237  OldAccessProtection);
2238  }
2239 
2240  /* Lock the address space and make sure the process isn't already dead */
2243  if (Process->VmDeleted)
2244  {
2245  DPRINT1("Process is dying\n");
2247  goto FailPath;
2248  }
2249 
2250  /* Get the VAD for this address range, and make sure it exists */
2251  Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
2252  EndingAddress >> PAGE_SHIFT,
2253  &Process->VadRoot,
2254  (PMMADDRESS_NODE*)&Vad);
2255  if (Result != TableFoundNode)
2256  {
2257  DPRINT("Could not find a VAD for this allocation\n");
2259  goto FailPath;
2260  }
2261 
2262  /* Make sure the address is within this VAD's boundaries */
2263  if ((((ULONG_PTR)StartingAddress >> PAGE_SHIFT) < Vad->StartingVpn) ||
2264  (((ULONG_PTR)EndingAddress >> PAGE_SHIFT) > Vad->EndingVpn))
2265  {
2267  goto FailPath;
2268  }
2269 
2270  /* These kinds of VADs are not supported atm */
2271  if ((Vad->u.VadFlags.VadType == VadAwe) ||
2272  (Vad->u.VadFlags.VadType == VadDevicePhysicalMemory) ||
2273  (Vad->u.VadFlags.VadType == VadLargePages))
2274  {
2275  DPRINT1("Illegal VAD for attempting to set protection\n");
2277  goto FailPath;
2278  }
2279 
2280  /* Check for a VAD whose protection can't be changed */
2281  if (Vad->u.VadFlags.NoChange == 1)
2282  {
2283  DPRINT1("Trying to change protection of a NoChange VAD\n");
2285  goto FailPath;
2286  }
2287 
2288  /* Is this section, or private memory? */
2289  if (Vad->u.VadFlags.PrivateMemory == 0)
2290  {
2291  /* Not yet supported */
2292  if (Vad->u.VadFlags.VadType == VadLargePageSection)
2293  {
2294  DPRINT1("Illegal VAD for attempting to set protection\n");
2296  goto FailPath;
2297  }
2298 
2299  /* Rotate VADs are not yet supported */
2300  if (Vad->u.VadFlags.VadType == VadRotatePhysical)
2301  {
2302  DPRINT1("Illegal VAD for attempting to set protection\n");
2304  goto FailPath;
2305  }
2306 
2307  /* Not valid on section files */
2308  if (NewAccessProtection & (PAGE_NOCACHE | PAGE_WRITECOMBINE))
2309  {
2310  /* Fail */
2311  DPRINT1("Invalid protection flags for section\n");
2313  goto FailPath;
2314  }
2315 
2316  /* Check if data or page file mapping protection PTE is compatible */
2317  if (!Vad->ControlArea->u.Flags.Image)
2318  {
2319  /* Not yet */
2320  DPRINT1("Fixme: Not checking for valid protection\n");
2321  }
2322 
2323  /* This is a section, and this is not yet supported */
2324  DPRINT1("Section protection not yet supported\n");
2325  OldProtect = 0;
2326  }
2327  else
2328  {
2329  /* Private memory, check protection flags */
2330  if ((NewAccessProtection & PAGE_WRITECOPY) ||
2331  (NewAccessProtection & PAGE_EXECUTE_WRITECOPY))
2332  {
2333  DPRINT1("Invalid protection flags for private memory\n");
2335  goto FailPath;
2336  }
2337 
2338  /* Lock the working set */
2340 
2341  /* Check if all pages in this range are committed */
2342  Committed = MiIsEntireRangeCommitted(StartingAddress,
2343  EndingAddress,
2344  Vad,
2345  Process);
2346  if (!Committed)
2347  {
2348  /* Fail */
2349  DPRINT1("The entire range is not committed\n");
2352  goto FailPath;
2353  }
2354 
2355  /* Compute starting and ending PTE and PDE addresses */
2356  PointerPde = MiAddressToPde(StartingAddress);
2357  PointerPte = MiAddressToPte(StartingAddress);
2358  LastPte = MiAddressToPte(EndingAddress);
2359 
2360  /* Make this PDE valid */
2362 
2363  /* Save protection of the first page */
2364  if (PointerPte->u.Long != 0)
2365  {
2366  /* Capture the page protection and make the PDE valid */
2367  OldProtect = MiGetPageProtection(PointerPte);
2369  }
2370  else
2371  {
2372  /* Grab the old protection from the VAD itself */
2373  OldProtect = MmProtectToValue[Vad->u.VadFlags.Protection];
2374  }
2375 
2376  /* Loop all the PTEs now */
2377  while (PointerPte <= LastPte)
2378  {
2379  /* Check if we've crossed a PDE boundary and make the new PDE valid too */
2380  if (MiIsPteOnPdeBoundary(PointerPte))
2381  {
2382  PointerPde = MiPteToPde(PointerPte);
2384  }
2385 
2386  /* Capture the PTE and check if it was empty */
2387  PteContents = *PointerPte;
2388  if (PteContents.u.Long == 0)
2389  {
2390  /* This used to be a zero PTE and it no longer is, so we must add a
2391  reference to the pagetable. */
2393  }
2394 
2395  /* Check what kind of PTE we are dealing with */
2396  if (PteContents.u.Hard.Valid == 1)
2397  {
2398  /* Get the PFN entry */
2399  Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(&PteContents));
2400 
2401  /* We don't support this yet */
2402  ASSERT(Pfn1->u3.e1.PrototypePte == 0);
2403 
2404  /* Check if the page should not be accessible at all */
2405  if ((NewAccessProtection & PAGE_NOACCESS) ||
2406  (NewAccessProtection & PAGE_GUARD))
2407  {
2408  KIRQL OldIrql = MiAcquirePfnLock();
2409 
2410  /* Mark the PTE as transition and change its protection */
2411  PteContents.u.Hard.Valid = 0;
2412  PteContents.u.Soft.Transition = 1;
2413  PteContents.u.Trans.Protection = ProtectionMask;
2414  /* Decrease PFN share count and write the PTE */
2415  MiDecrementShareCount(Pfn1, PFN_FROM_PTE(&PteContents));
2416  // FIXME: remove the page from the WS
2417  MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2418 #ifdef CONFIG_SMP
2419  // FIXME: Should invalidate entry in every CPU TLB
2420  ASSERT(KeNumberProcessors == 1);
2421 #endif
2422  KeInvalidateTlbEntry(MiPteToAddress(PointerPte));
2423 
2424  /* We are done for this PTE */
2425  MiReleasePfnLock(OldIrql);
2426  }
2427  else
2428  {
2429  /* Write the protection mask and write it with a TLB flush */
2430  Pfn1->OriginalPte.u.Soft.Protection = ProtectionMask;
2431  MiFlushTbAndCapture(Vad,
2432  PointerPte,
2433  ProtectionMask,
2434  Pfn1,
2435  TRUE);
2436  }
2437  }
2438  else
2439  {
2440  /* We don't support these cases yet */
2441  ASSERT(PteContents.u.Soft.Prototype == 0);
2442  //ASSERT(PteContents.u.Soft.Transition == 0);
2443 
2444  /* The PTE is already demand-zero, just update the protection mask */
2445  PteContents.u.Soft.Protection = ProtectionMask;
2446  MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2447  ASSERT(PointerPte->u.Long != 0);
2448  }
2449 
2450  /* Move to the next PTE */
2451  PointerPte++;
2452  }
2453 
2454  /* Unlock the working set */
2456  }
2457 
2458  /* Unlock the address space */
2460 
2461  /* Return parameters and success */
2462  *NumberOfBytesToProtect = EndingAddress - StartingAddress + 1;
2463  *BaseAddress = (PVOID)StartingAddress;
2464  *OldAccessProtection = OldProtect;
2465  return STATUS_SUCCESS;
2466 
2467 FailPath:
2468  /* Unlock the address space and return the failure code */
2470  return Status;
2471 }
2472 
2473 VOID
2474 NTAPI
2476  IN PEPROCESS TargetProcess,
2477  IN KIRQL OldIrql)
2478 {
2479  PMMPTE PointerPte;
2480 #if _MI_PAGING_LEVELS >= 3
2481  PMMPPE PointerPpe = MiPdeToPpe(PointerPde);
2482 #if _MI_PAGING_LEVELS == 4
2483  PMMPXE PointerPxe = MiPdeToPxe(PointerPde);
2484 #endif
2485 #endif
2486 
2487  //
2488  // Sanity checks. The latter is because we only use this function with the
2489  // PFN lock not held, so it may go away in the future.
2490  //
2492  ASSERT(OldIrql == MM_NOIRQL);
2493 
2494  //
2495  // If everything is already valid, there is nothing to do.
2496  //
2497  if (
2498 #if _MI_PAGING_LEVELS == 4
2499  (PointerPxe->u.Hard.Valid) &&
2500 #endif
2501 #if _MI_PAGING_LEVELS >= 3
2502  (PointerPpe->u.Hard.Valid) &&
2503 #endif
2504  (PointerPde->u.Hard.Valid))
2505  {
2506  return;
2507  }
2508 
2509  //
2510  // At least something is invalid, so begin by getting the PTE for the PDE itself
2511  // and then lookup each additional level. We must do it in this precise order
2512  // because the pagfault.c code (as well as in Windows) depends that the next
2513  // level up (higher) must be valid when faulting a lower level
2514  //
2515  PointerPte = MiPteToAddress(PointerPde);
2516  do
2517  {
2518  //
2519  // Make sure APCs continued to be disabled
2520  //
2522 
2523 #if _MI_PAGING_LEVELS == 4
2524  //
2525  // First, make the PXE valid if needed
2526  //
2527  if (!PointerPxe->u.Hard.Valid)
2528  {
2529  MiMakeSystemAddressValid(PointerPpe, TargetProcess);
2530  ASSERT(PointerPxe->u.Hard.Valid == 1);
2531  }
2532 #endif
2533 
2534 #if _MI_PAGING_LEVELS >= 3
2535  //
2536  // Next, the PPE
2537  //
2538  if (!PointerPpe->u.Hard.Valid)
2539  {
2540  MiMakeSystemAddressValid(PointerPde, TargetProcess);
2541  ASSERT(PointerPpe->u.Hard.Valid == 1);
2542  }
2543 #endif
2544 
2545  //
2546  // And finally, make the PDE itself valid.
2547  //
2548  MiMakeSystemAddressValid(PointerPte, TargetProcess);
2549 
2550  /* Do not increment Page table refcount here for the PDE, this must be managed by caller */
2551 
2552  //
2553  // This should've worked the first time so the loop is really just for
2554  // show -- ASSERT that we're actually NOT going to be looping.
2555  //
2556  ASSERT(PointerPde->u.Hard.Valid == 1);
2557  } while (
2558 #if _MI_PAGING_LEVELS == 4
2559  !PointerPxe->u.Hard.Valid ||
2560 #endif
2561 #if _MI_PAGING_LEVELS >= 3
2562  !PointerPpe->u.Hard.Valid ||
2563 #endif
2564  !PointerPde->u.Hard.Valid);
2565 }
2566 
2567 VOID
2568 NTAPI
2570  IN ULONG Count)
2571 {
2572  KIRQL OldIrql;
2573  ULONG i;
2574  MMPTE TempPte;
2575  PFN_NUMBER PageFrameIndex;
2576  PMMPFN Pfn1, Pfn2;
2577 
2578  //
2579  // Acquire the PFN lock and loop all the PTEs in the list
2580  //
2581  OldIrql = MiAcquirePfnLock();
2582  for (i = 0; i != Count; i++)
2583  {
2584  //
2585  // The PTE must currently be valid
2586  //
2587  TempPte = *ValidPteList[i];
2588  ASSERT(TempPte.u.Hard.Valid == 1);
2589 
2590  //
2591  // Get the PFN entry for the page itself, and then for its page table
2592  //
2593  PageFrameIndex = PFN_FROM_PTE(&TempPte);
2594  Pfn1 = MiGetPfnEntry(PageFrameIndex);
2595  Pfn2 = MiGetPfnEntry(Pfn1->u4.PteFrame);
2596 
2597  //
2598  // Decrement the share count on the page table, and then on the page
2599  // itself
2600  //
2601  MiDecrementShareCount(Pfn2, Pfn1->u4.PteFrame);
2602  MI_SET_PFN_DELETED(Pfn1);
2603  MiDecrementShareCount(Pfn1, PageFrameIndex);
2604 
2605  //
2606  // Make the page decommitted
2607  //
2608  MI_WRITE_INVALID_PTE(ValidPteList[i], MmDecommittedPte);
2609  }
2610 
2611  //
2612  // All the PTEs have been dereferenced and made invalid, flush the TLB now
2613  // and then release the PFN lock
2614  //
2615  KeFlushCurrentTb();
2616  MiReleasePfnLock(OldIrql);
2617 }
2618 
2619 ULONG
2620 NTAPI
2621 MiDecommitPages(IN PVOID StartingAddress,
2622  IN PMMPTE EndingPte,
2624  IN PMMVAD Vad)
2625 {
2626  PMMPTE PointerPte, CommitPte = NULL;
2627  PMMPDE PointerPde;
2628  ULONG CommitReduction = 0;
2629  PMMPTE ValidPteList[256];
2630  ULONG PteCount = 0;
2631  PMMPFN Pfn1;
2632  MMPTE PteContents;
2633  PETHREAD CurrentThread = PsGetCurrentThread();
2634 
2635  //
2636  // Get the PTE and PTE for the address, and lock the working set
2637  // If this was a VAD for a MEM_COMMIT allocation, also figure out where the
2638  // commited range ends so that we can do the right accounting.
2639  //
2640  PointerPde = MiAddressToPde(StartingAddress);
2641  PointerPte = MiAddressToPte(StartingAddress);
2642  if (Vad->u.VadFlags.MemCommit) CommitPte = MiAddressToPte(Vad->EndingVpn << PAGE_SHIFT);
2643  MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
2644 
2645  //
2646  // Make the PDE valid, and now loop through each page's worth of data
2647  //
2649  while (PointerPte <= EndingPte)
2650  {
2651  //
2652  // Check if we've crossed a PDE boundary
2653  //
2654  if (MiIsPteOnPdeBoundary(PointerPte))
2655  {
2656  //
2657  // Get the new PDE and flush the valid PTEs we had built up until
2658  // now. This helps reduce the amount of TLB flushing we have to do.
2659  // Note that Windows does a much better job using timestamps and
2660  // such, and does not flush the entire TLB all the time, but right
2661  // now we have bigger problems to worry about than TLB flushing.
2662  //
2663  PointerPde = MiAddressToPde(StartingAddress);
2664  if (PteCount)
2665  {
2666  MiProcessValidPteList(ValidPteList, PteCount);
2667  PteCount = 0;
2668  }
2669 
2670  //
2671  // Make this PDE valid
2672  //
2674  }
2675 
2676  //
2677  // Read this PTE. It might be active or still demand-zero.
2678  //
2679  PteContents = *PointerPte;
2680  if (PteContents.u.Long)
2681  {
2682  //
2683  // The PTE is active. It might be valid and in a working set, or
2684  // it might be a prototype PTE or paged out or even in transition.
2685  //
2686  if (PointerPte->u.Long == MmDecommittedPte.u.Long)
2687  {
2688  //
2689  // It's already decommited, so there's nothing for us to do here
2690  //
2691  CommitReduction++;
2692  }
2693  else
2694  {
2695  //
2696  // Remove it from the counters, and check if it was valid or not
2697  //
2698  //Process->NumberOfPrivatePages--;
2699  if (PteContents.u.Hard.Valid)
2700  {
2701  //
2702  // It's valid. At this point make sure that it is not a ROS
2703  // PFN. Also, we don't support ProtoPTEs in this code path.
2704  //
2705  Pfn1 = MiGetPfnEntry(PteContents.u.Hard.PageFrameNumber);
2706  ASSERT(MI_IS_ROS_PFN(Pfn1) == FALSE);
2707  ASSERT(Pfn1->u3.e1.PrototypePte == FALSE);
2708 
2709  //
2710  // Flush any pending PTEs that we had not yet flushed, if our
2711  // list has gotten too big, then add this PTE to the flush list.
2712  //
2713  if (PteCount == 256)
2714  {
2715  MiProcessValidPteList(ValidPteList, PteCount);
2716  PteCount = 0;
2717  }
2718  ValidPteList[PteCount++] = PointerPte;
2719  }
2720  else
2721  {
2722  //
2723  // We do not support any of these other scenarios at the moment
2724  //
2725  ASSERT(PteContents.u.Soft.Prototype == 0);
2726  ASSERT(PteContents.u.Soft.Transition == 0);
2727  ASSERT(PteContents.u.Soft.PageFileHigh == 0);
2728 
2729  //
2730  // So the only other possibility is that it is still a demand
2731  // zero PTE, in which case we undo the accounting we did
2732  // earlier and simply make the page decommitted.
2733  //
2734  //Process->NumberOfPrivatePages++;
2736  }
2737  }
2738  }
2739  else
2740  {
2741  //
2742  // This used to be a zero PTE and it no longer is, so we must add a
2743  // reference to the pagetable.
2744  //
2745  MiIncrementPageTableReferences(StartingAddress);
2746 
2747  //
2748  // Next, we account for decommitted PTEs and make the PTE as such
2749  //
2750  if (PointerPte > CommitPte) CommitReduction++;
2752  }
2753 
2754  //
2755  // Move to the next PTE and the next address
2756  //
2757  PointerPte++;
2758  StartingAddress = (PVOID)((ULONG_PTR)StartingAddress + PAGE_SIZE);
2759  }
2760 
2761  //
2762  // Flush any dangling PTEs from the loop in the last page table, and then
2763  // release the working set and return the commit reduction accounting.
2764  //
2765  if (PteCount) MiProcessValidPteList(ValidPteList, PteCount);
2766  MiUnlockProcessWorkingSetUnsafe(Process, CurrentThread);
2767  return CommitReduction;
2768 }
2769 
2770 /* PUBLIC FUNCTIONS ***********************************************************/
2771 
2772 /*
2773  * @unimplemented
2774  */
2775 PVOID
2776 NTAPI
2778 {
2779  UNIMPLEMENTED;
2780  return 0;
2781 }
2782 
2783 /*
2784  * @unimplemented
2785  */
2786 PVOID
2787 NTAPI
2789  IN SIZE_T Length,
2790  IN ULONG Mode)
2791 {
2792  static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2793  return Address;
2794 }
2795 
2796 /*
2797  * @unimplemented
2798  */
2799 VOID
2800 NTAPI
2802 {
2803  static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2804 }
2805 
2806 /* SYSTEM CALLS ***************************************************************/
2807 
2808 NTSTATUS
2809 NTAPI
2812  OUT PVOID Buffer,
2813  IN SIZE_T NumberOfBytesToRead,
2814  OUT PSIZE_T NumberOfBytesRead OPTIONAL)
2815 {
2819  SIZE_T BytesRead = 0;
2820  PAGED_CODE();
2821 
2822  //
2823  // Check if we came from user mode
2824  //
2825  if (PreviousMode != KernelMode)
2826  {
2827  //
2828  // Validate the read addresses
2829  //
2830  if ((((ULONG_PTR)BaseAddress + NumberOfBytesToRead) < (ULONG_PTR)BaseAddress) ||
2831  (((ULONG_PTR)Buffer + NumberOfBytesToRead) < (ULONG_PTR)Buffer) ||
2832  (((ULONG_PTR)BaseAddress + NumberOfBytesToRead) > MmUserProbeAddress) ||
2833  (((ULONG_PTR)Buffer + NumberOfBytesToRead) > MmUserProbeAddress))
2834  {
2835  //
2836  // Don't allow to write into kernel space
2837  //
2838  return STATUS_ACCESS_VIOLATION;
2839  }
2840 
2841  //
2842  // Enter SEH for probe
2843  //
2844  _SEH2_TRY
2845  {
2846  //
2847  // Probe the output value
2848  //
2849  if (NumberOfBytesRead) ProbeForWriteSize_t(NumberOfBytesRead);
2850  }
2852  {
2853  //
2854  // Get exception code
2855  //
2857  }
2858  _SEH2_END;
2859  }
2860 
2861  //
2862  // Don't do zero-byte transfers
2863  //
2864  if (NumberOfBytesToRead)
2865  {
2866  //
2867  // Reference the process
2868  //
2871  PsProcessType,
2872  PreviousMode,
2873  (PVOID*)(&Process),
2874  NULL);
2875  if (NT_SUCCESS(Status))
2876  {
2877  //
2878  // Do the copy
2879  //
2881  BaseAddress,
2883  Buffer,
2884  NumberOfBytesToRead,
2885  PreviousMode,
2886  &BytesRead);
2887 
2888  //
2889  // Dereference the process
2890  //
2892  }
2893  }
2894 
2895  //
2896  // Check if the caller sent this parameter
2897  //
2898  if (NumberOfBytesRead)
2899  {
2900  //
2901  // Enter SEH to guard write
2902  //
2903  _SEH2_TRY
2904  {
2905  //
2906  // Return the number of bytes read
2907  //
2908  *NumberOfBytesRead = BytesRead;
2909  }
2911  {
2912  }
2913  _SEH2_END;
2914  }
2915 
2916  //
2917  // Return status
2918  //
2919  return Status;
2920 }
2921 
2922 NTSTATUS
2923 NTAPI
2926  IN PVOID Buffer,
2927  IN SIZE_T NumberOfBytesToWrite,
2928  OUT PSIZE_T NumberOfBytesWritten OPTIONAL)
2929 {
2933  SIZE_T BytesWritten = 0;
2934  PAGED_CODE();
2935 
2936  //
2937  // Check if we came from user mode
2938  //
2939  if (PreviousMode != KernelMode)
2940  {
2941  //
2942  // Validate the read addresses
2943  //
2944  if ((((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) < (ULONG_PTR)BaseAddress) ||
2945  (((ULONG_PTR)Buffer + NumberOfBytesToWrite) < (ULONG_PTR)Buffer) ||
2946  (((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) > MmUserProbeAddress) ||
2947  (((ULONG_PTR)Buffer + NumberOfBytesToWrite) > MmUserProbeAddress))
2948  {
2949  //
2950  // Don't allow to write into kernel space
2951  //
2952  return STATUS_ACCESS_VIOLATION;
2953  }
2954 
2955  //
2956  // Enter SEH for probe
2957  //
2958  _SEH2_TRY
2959  {
2960  //
2961  // Probe the output value
2962  //
2963  if (NumberOfBytesWritten) ProbeForWriteSize_t(NumberOfBytesWritten);
2964  }
2966  {
2967  //
2968  // Get exception code
2969  //
2971  }
2972  _SEH2_END;
2973  }
2974 
2975  //
2976  // Don't do zero-byte transfers
2977  //
2978  if (NumberOfBytesToWrite)
2979  {
2980  //
2981  // Reference the process
2982  //
2985  PsProcessType,
2986  PreviousMode,
2987  (PVOID*)&Process,
2988  NULL);
2989  if (NT_SUCCESS(Status))
2990  {
2991  //
2992  // Do the copy
2993  //
2995  Buffer,
2996  Process,
2997  BaseAddress,
2998  NumberOfBytesToWrite,
2999  PreviousMode,
3000  &BytesWritten);
3001 
3002  //
3003  // Dereference the process
3004  //
3006  }
3007  }
3008 
3009  //
3010  // Check if the caller sent this parameter
3011  //
3012  if (NumberOfBytesWritten)
3013  {
3014  //
3015  // Enter SEH to guard write
3016  //
3017  _SEH2_TRY
3018  {
3019  //
3020  // Return the number of bytes written
3021  //
3022  *NumberOfBytesWritten = BytesWritten;
3023  }
3025  {
3026  }
3027  _SEH2_END;
3028  }
3029 
3030  //
3031  // Return status
3032  //
3033  return Status;
3034 }
3035 
3036 NTSTATUS
3037 NTAPI
3040  _In_ SIZE_T FlushSize)
3041 {
3044  NTSTATUS Status;
3045  PAGED_CODE();
3046 
3047  /* Is a base address given? */
3048  if (BaseAddress != NULL)
3049  {
3050  /* If the requested size is 0, there is nothing to do */
3051  if (FlushSize == 0)
3052  {
3053  return STATUS_SUCCESS;
3054  }
3055 
3056  /* Is this a user mode call? */
3057  if (ExGetPreviousMode() != KernelMode)
3058  {
3059  /* Make sure the base address is in user space */
3061  {
3062  DPRINT1("Invalid BaseAddress 0x%p\n", BaseAddress);
3063  return STATUS_ACCESS_VIOLATION;
3064  }
3065  }
3066  }
3067 
3068  /* Is another process requested? */
3070  {
3071  /* Reference the process */
3074  PsProcessType,
3076  (PVOID*)&Process,
3077  NULL);
3078  if (!NT_SUCCESS(Status))
3079  {
3080  DPRINT1("Failed to reference the process %p\n", ProcessHandle);
3081  return Status;
3082  }
3083 
3084  /* Attach to the process */
3086  }
3087 
3088  /* Forward to Ke */
3089  KeSweepICache(BaseAddress, FlushSize);
3090 
3091  /* Check if we attached */
3093  {
3094  /* Detach from the process and dereference it */
3097  }
3098 
3099  /* All done, return to caller */
3100  return STATUS_SUCCESS;
3101 }
3102 
3103 NTSTATUS
3104 NTAPI
3106  IN OUT PVOID *UnsafeBaseAddress,
3107  IN OUT SIZE_T *UnsafeNumberOfBytesToProtect,
3108  IN ULONG NewAccessProtection,
3109  OUT PULONG UnsafeOldAccessProtection)
3110 {
3112  ULONG OldAccessProtection;
3113  ULONG Protection;
3116  SIZE_T NumberOfBytesToProtect = 0;
3118  NTSTATUS Status;
3121  PAGED_CODE();
3122 
3123  //
3124  // Check for valid protection flags
3125  //
3126  Protection = NewAccessProtection & ~(PAGE_GUARD|PAGE_NOCACHE);
3127  if (Protection != PAGE_NOACCESS &&
3128  Protection != PAGE_READONLY &&
3129  Protection != PAGE_READWRITE &&
3130  Protection != PAGE_WRITECOPY &&
3131  Protection != PAGE_EXECUTE &&
3132  Protection != PAGE_EXECUTE_READ &&
3133  Protection != PAGE_EXECUTE_READWRITE &&
3134  Protection != PAGE_EXECUTE_WRITECOPY)
3135  {
3136  //
3137  // Fail
3138  //
3140  }
3141 
3142  //
3143  // Check if we came from user mode
3144  //
3145  if (PreviousMode != KernelMode)
3146  {
3147  //
3148  // Enter SEH for probing
3149  //
3150  _SEH2_TRY
3151  {
3152  //
3153  // Validate all outputs
3154  //
3155  ProbeForWritePointer(UnsafeBaseAddress);
3156  ProbeForWriteSize_t(UnsafeNumberOfBytesToProtect);
3157  ProbeForWriteUlong(UnsafeOldAccessProtection);
3158 
3159  //
3160  // Capture them
3161  //
3162  BaseAddress = *UnsafeBaseAddress;
3163  NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3164  }
3166  {
3167  //
3168  // Get exception code
3169  //
3171  }
3172  _SEH2_END;
3173  }
3174  else
3175  {
3176  //
3177  // Capture directly
3178  //
3179  BaseAddress = *UnsafeBaseAddress;
3180  NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3181  }
3182 
3183  //
3184  // Catch illegal base address
3185  //
3187 
3188  //
3189  // Catch illegal region size
3190  //
3191  if ((MmUserProbeAddress - (ULONG_PTR)BaseAddress) < NumberOfBytesToProtect)
3192  {
3193  //
3194  // Fail
3195  //
3197  }
3198 
3199  //
3200  // 0 is also illegal
3201  //
3202  if (!NumberOfBytesToProtect) return STATUS_INVALID_PARAMETER_3;
3203 
3204  //
3205  // Get a reference to the process
3206  //
3209  PsProcessType,
3210  PreviousMode,
3211  (PVOID*)(&Process),
3212  NULL);
3213  if (!NT_SUCCESS(Status)) return Status;
3214 
3215  //
3216  // Check if we should attach
3217  //
3218  if (CurrentProcess != Process)
3219  {
3220  //
3221  // Do it
3222  //
3224  Attached = TRUE;
3225  }
3226 
3227  //
3228  // Do the actual work
3229  //
3231  &BaseAddress,
3232  &NumberOfBytesToProtect,
3233  NewAccessProtection,
3234  &OldAccessProtection);
3235 
3236  //
3237  // Detach if needed
3238  //
3240 
3241  //
3242  // Release reference
3243  //
3245 
3246  //
3247  // Enter SEH to return data
3248  //
3249  _SEH2_TRY
3250  {
3251  //
3252  // Return data to user
3253  //
3254  *UnsafeOldAccessProtection = OldAccessProtection;
3255  *UnsafeBaseAddress = BaseAddress;
3256  *UnsafeNumberOfBytesToProtect = NumberOfBytesToProtect;
3257  }
3259  {
3260  }
3261  _SEH2_END;
3262 
3263  //
3264  // Return status
3265  //
3266  return Status;
3267 }
3268 
3270 BOOLEAN
3272  PMMPFN Pfn1,
3273  ULONG LockType)
3274 {
3275  // HACK until we have proper WSLIST support
3276  PMMWSLE Wsle = &Pfn1->Wsle;
3277 
3278  if ((LockType & MAP_PROCESS) && (Wsle->u1.e1.LockedInWs))
3279  return TRUE;
3280  if ((LockType & MAP_SYSTEM) && (Wsle->u1.e1.LockedInMemory))
3281  return TRUE;
3282 
3283  return FALSE;
3284 }
3285 
3287 VOID
3289  PMMPFN Pfn1,
3290  ULONG LockType)
3291 {
3292  // HACK until we have proper WSLIST support
3293  PMMWSLE Wsle = &Pfn1->Wsle;
3294 
3295  if (!Wsle->u1.e1.LockedInWs &&
3296  !Wsle->u1.e1.LockedInMemory)
3297  {
3299  }
3300 
3301  if (LockType & MAP_PROCESS)
3302  Wsle->u1.e1.LockedInWs = 1;
3303  if (LockType & MAP_SYSTEM)
3304  Wsle->u1.e1.LockedInMemory = 1;
3305 }
3306 
3308 VOID
3310  PMMPFN Pfn1,
3311  ULONG LockType)
3312 {
3313  // HACK until we have proper WSLIST support
3314  PMMWSLE Wsle = &Pfn1->Wsle;
3315 
3316  if (LockType & MAP_PROCESS)
3317  Wsle->u1.e1.LockedInWs = 0;
3318  if (LockType & MAP_SYSTEM)
3319  Wsle->u1.e1.LockedInMemory = 0;
3320 
3321  if (!Wsle->u1.e1.LockedInWs &&
3322  !Wsle->u1.e1.LockedInMemory)
3323  {
3325  }
3326 }
3327 
3328 static
3329 NTSTATUS
3333  _Inout_ PVOID *EndAddress)
3334 
3335 {
3336  PMMVAD Vad;
3337  PVOID CurrentVa;
3338 
3339  /* Get the base address and align the start address */
3340  *EndAddress = (PUCHAR)*BaseAddress + *RegionSize;
3341  *EndAddress = ALIGN_UP_POINTER_BY(*EndAddress, PAGE_SIZE);
3343 
3344  /* First loop and check all VADs */
3345  CurrentVa = *BaseAddress;
3346  while (CurrentVa < *EndAddress)
3347  {
3348  /* Get VAD */
3349  Vad = MiLocateAddress(CurrentVa);
3350  if (Vad == NULL)
3351  {
3353  return STATUS_ACCESS_VIOLATION;
3354  }
3355 
3356  /* Check VAD type */
3357  if ((Vad->u.VadFlags.VadType != VadNone) &&
3358  (Vad->u.VadFlags.VadType != VadImageMap) &&
3359  (Vad->u.VadFlags.VadType != VadWriteWatch))
3360  {
3361  *EndAddress = CurrentVa;
3362  *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3364  }
3365 
3366  CurrentVa = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
3367  }
3368 
3369  *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3370  return STATUS_SUCCESS;
3371 }
3372 
3373 static
3374 NTSTATUS
3378  IN ULONG MapType)
3379 {
3382  PVOID CurrentVa, EndAddress;
3383  PMMPTE PointerPte, LastPte;
3384  PMMPDE PointerPde;
3385 #if (_MI_PAGING_LEVELS >= 3)
3386  PMMPDE PointerPpe;
3387 #endif
3388 #if (_MI_PAGING_LEVELS == 4)
3389  PMMPDE PointerPxe;
3390 #endif
3391  PMMPFN Pfn1;
3392  NTSTATUS Status, TempStatus;
3393 
3394  /* Lock the address space */
3397 
3398  /* Make sure we still have an address space */
3400  if (CurrentProcess->VmDeleted)
3401  {
3403  goto Cleanup;
3404  }
3405 
3406  /* Check the VADs in the requested range */
3408  if (!NT_SUCCESS(Status))
3409  {
3410  goto Cleanup;
3411  }
3412 
3413  /* Enter SEH for probing */
3414  _SEH2_TRY
3415  {
3416  /* Loop all pages and probe them */
3417  CurrentVa = *BaseAddress;
3418  while (CurrentVa < EndAddress)
3419  {
3420  (void)(*(volatile CHAR*)CurrentVa);
3421  CurrentVa = (PUCHAR)CurrentVa + PAGE_SIZE;
3422  }
3423  }
3425  {
3427  goto Cleanup;
3428  }
3429  _SEH2_END;
3430 
3431  /* All pages were accessible, since we hold the address space lock, nothing
3432  can be de-committed. Assume success for now. */
3434 
3435  /* Get the PTE and PDE */
3436  PointerPte = MiAddressToPte(*BaseAddress);
3437  PointerPde = MiAddressToPde(*BaseAddress);
3438 #if (_MI_PAGING_LEVELS >= 3)
3439  PointerPpe = MiAddressToPpe(*BaseAddress);
3440 #endif
3441 #if (_MI_PAGING_LEVELS == 4)
3442  PointerPxe = MiAddressToPxe(*BaseAddress);
3443 #endif
3444 
3445  /* Get the last PTE */
3446  LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3447 
3448  /* Lock the process working set */
3450 
3451  /* Loop the pages */
3452  do
3453  {
3454  /* Check for a page that is not accessible */
3455  while (
3456 #if (_MI_PAGING_LEVELS == 4)
3457  (PointerPxe->u.Hard.Valid == 0) ||
3458 #endif
3459 #if (_MI_PAGING_LEVELS >= 3)
3460  (PointerPpe->u.Hard.Valid == 0) ||
3461 #endif
3462  (PointerPde->u.Hard.Valid == 0) ||
3463  (PointerPte->u.Hard.Valid == 0))
3464  {
3465  /* Release process working set */
3467 
3468  /* Access the page */
3469  CurrentVa = MiPteToAddress(PointerPte);
3470 
3471  //HACK: Pass a placeholder TrapInformation so the fault handler knows we're unlocked
3472  TempStatus = MmAccessFault(TRUE, CurrentVa, KernelMode, (PVOID)(ULONG_PTR)0xBADBADA3BADBADA3ULL);
3473  if (!NT_SUCCESS(TempStatus))
3474  {
3475  // This should only happen, when remote backing storage is not accessible
3476  ASSERT(FALSE);
3477  Status = TempStatus;
3478  goto Cleanup;
3479  }
3480 
3481  /* Lock the process working set */
3483  }
3484 
3485  /* Get the PFN */
3486  Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3487  ASSERT(Pfn1 != NULL);
3488 
3489  /* Check the previous lock status */
3490  if (MI_IS_LOCKED_VA(Pfn1, MapType))
3491  {
3493  }
3494 
3495  /* Lock it */
3496  MI_LOCK_VA(Pfn1, MapType);
3497 
3498  /* Go to the next PTE */
3499  PointerPte++;
3500 
3501  /* Check if we're on a PDE boundary */
3502  if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3503 #if (_MI_PAGING_LEVELS >= 3)
3504  if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3505 #endif
3506 #if (_MI_PAGING_LEVELS == 4)
3507  if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3508 #endif
3509  } while (PointerPte <= LastPte);
3510 
3511  /* Release process working set */
3513 
3514 Cleanup:
3515  /* Unlock address space */
3517 
3518  return Status;
3519 }
3520 
3521 NTSTATUS
3522 NTAPI
3525  IN OUT PSIZE_T NumberOfBytesToLock,
3526  IN ULONG MapType)
3527 {
3530  NTSTATUS Status;
3534  PVOID CapturedBaseAddress;
3535  SIZE_T CapturedBytesToLock;
3536  PAGED_CODE();
3537 
3538  //
3539  // Validate flags
3540  //
3541  if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3542  {
3543  //
3544  // Invalid set of flags
3545  //
3546  return STATUS_INVALID_PARAMETER;
3547  }
3548 
3549  //
3550  // At least one flag must be specified
3551  //
3552  if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3553  {
3554  //
3555  // No flag given
3556  //
3557  return STATUS_INVALID_PARAMETER;
3558  }
3559 
3560  //
3561  // Enter SEH for probing
3562  //
3563  _SEH2_TRY
3564  {
3565  //
3566  // Validate output data
3567  //
3569  ProbeForWriteSize_t(NumberOfBytesToLock);
3570 
3571  //
3572  // Capture it
3573  //
3574  CapturedBaseAddress = *BaseAddress;
3575  CapturedBytesToLock = *NumberOfBytesToLock;
3576  }
3578  {
3579  //
3580  // Get exception code
3581  //
3583  }
3584  _SEH2_END;
3585 
3586  //
3587  // Catch illegal base address
3588  //
3589  if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3590 
3591  //
3592  // Catch illegal region size
3593  //
3594  if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToLock)
3595  {
3596  //
3597  // Fail
3598  //
3599  return STATUS_INVALID_PARAMETER;
3600  }
3601 
3602  //
3603  // 0 is also illegal
3604  //
3605  if (!CapturedBytesToLock) return STATUS_INVALID_PARAMETER;
3606 
3607  //
3608  // Get a reference to the process
3609  //
3612  PsProcessType,
3613  PreviousMode,
3614  (PVOID*)(&Process),
3615  NULL);
3616  if (!NT_SUCCESS(Status)) return Status;
3617 
3618  //
3619  // Check if this is is system-mapped
3620  //
3621  if (MapType & MAP_SYSTEM)
3622  {
3623  //
3624  // Check for required privilege
3625  //
3627  {
3628  //
3629  // Fail: Don't have it
3630  //
3633  }
3634  }
3635 
3636  //
3637  // Check if we should attach
3638  //
3639  if (CurrentProcess != Process)
3640  {
3641  //
3642  // Do it
3643  //
3645  Attached = TRUE;
3646  }
3647 
3648  //
3649  // Call the internal function
3650  //
3651  Status = MiLockVirtualMemory(&CapturedBaseAddress,
3652  &CapturedBytesToLock,
3653  MapType);
3654 
3655  //
3656  // Detach if needed
3657  //
3659 
3660  //
3661  // Release reference
3662  //
3664 
3665  //
3666  // Enter SEH to return data
3667  //
3668  _SEH2_TRY
3669  {
3670  //
3671  // Return data to user
3672  //
3673  *BaseAddress = CapturedBaseAddress;
3674  *NumberOfBytesToLock = CapturedBytesToLock;
3675  }
3677  {
3678  //
3679  // Get exception code
3680  //
3682  }
3683  _SEH2_END;
3684 
3685  //
3686  // Return status
3687  //
3688  return Status;
3689 }
3690 
3691 
3692 static
3693 NTSTATUS
3697  IN ULONG MapType)
3698 {
3701  PVOID EndAddress;
3702  PMMPTE PointerPte, LastPte;
3703  PMMPDE PointerPde;
3704 #if (_MI_PAGING_LEVELS >= 3)
3705  PMMPDE PointerPpe;
3706 #endif
3707 #if (_MI_PAGING_LEVELS == 4)
3708  PMMPDE PointerPxe;
3709 #endif
3710  PMMPFN Pfn1;
3711  NTSTATUS Status;
3712 
3713  /* Lock the address space */
3716 
3717  /* Make sure we still have an address space */
3719  if (CurrentProcess->VmDeleted)
3720  {
3722  goto Cleanup;
3723  }
3724 
3725  /* Check the VADs in the requested range */
3727 
3728  /* Note: only bail out, if we hit an area without a VAD. If we hit an
3729  incompatible VAD we continue, like Windows does */
3731  {
3733  goto Cleanup;
3734  }
3735 
3736  /* Get the PTE and PDE */
3737  PointerPte = MiAddressToPte(*BaseAddress);
3738  PointerPde = MiAddressToPde(*BaseAddress);
3739 #if (_MI_PAGING_LEVELS >= 3)
3740  PointerPpe = MiAddressToPpe(*BaseAddress);
3741 #endif
3742 #if (_MI_PAGING_LEVELS == 4)
3743  PointerPxe = MiAddressToPxe(*BaseAddress);
3744 #endif
3745 
3746  /* Get the last PTE */
3747  LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3748 
3749  /* Lock the process working set */
3751 
3752  /* Loop the pages */
3753  do
3754  {
3755  /* Check for a page that is not present */
3756  if (
3757 #if (_MI_PAGING_LEVELS == 4)
3758  (PointerPxe->u.Hard.Valid == 0) ||
3759 #endif
3760 #if (_MI_PAGING_LEVELS >= 3)
3761  (PointerPpe->u.Hard.Valid == 0) ||
3762 #endif
3763  (PointerPde->u.Hard.Valid == 0) ||
3764  (PointerPte->u.Hard.Valid == 0))
3765  {
3766  /* Remember it, but keep going */
3768  }
3769  else
3770  {
3771  /* Get the PFN */
3772  Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3773  ASSERT(Pfn1 != NULL);
3774 
3775  /* Check if all of the requested locks are present */
3776  if (((MapType & MAP_SYSTEM) && !MI_IS_LOCKED_VA(Pfn1, MAP_SYSTEM)) ||
3777  ((MapType & MAP_PROCESS) && !MI_IS_LOCKED_VA(Pfn1, MAP_PROCESS)))
3778  {
3779  /* Remember it, but keep going */
3781 
3782  /* Check if no lock is present */
3783  if (!MI_IS_LOCKED_VA(Pfn1, MAP_PROCESS | MAP_SYSTEM))
3784  {
3785  DPRINT1("FIXME: Should remove the page from WS\n");
3786  }
3787  }
3788  }
3789 
3790  /* Go to the next PTE */
3791  PointerPte++;
3792 
3793  /* Check if we're on a PDE boundary */
3794  if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3795 #if (_MI_PAGING_LEVELS >= 3)
3796  if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3797 #endif
3798 #if (_MI_PAGING_LEVELS == 4)
3799  if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3800 #endif
3801  } while (PointerPte <= LastPte);
3802 
3803  /* Check if we hit a page that was not locked */
3804  if (Status == STATUS_NOT_LOCKED)
3805  {
3806  goto CleanupWithWsLock;
3807  }
3808 
3809  /* All pages in the region were locked, so unlock them all */
3810 
3811  /* Get the PTE and PDE */
3812  PointerPte = MiAddressToPte(*BaseAddress);
3813  PointerPde = MiAddressToPde(*BaseAddress);
3814 #if (_MI_PAGING_LEVELS >= 3)
3815  PointerPpe = MiAddressToPpe(*BaseAddress);
3816 #endif
3817 #if (_MI_PAGING_LEVELS == 4)
3818  PointerPxe = MiAddressToPxe(*BaseAddress);
3819 #endif
3820 
3821  /* Loop the pages */
3822  do
3823  {
3824  /* Unlock it */
3825  Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3826  MI_UNLOCK_VA(Pfn1, MapType);
3827 
3828  /* Go to the next PTE */
3829  PointerPte++;
3830 
3831  /* Check if we're on a PDE boundary */
3832  if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3833 #if (_MI_PAGING_LEVELS >= 3)
3834  if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3835 #endif
3836 #if (_MI_PAGING_LEVELS == 4)
3837  if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3838 #endif
3839  } while (PointerPte <= LastPte);
3840 
3841  /* Everything is done */
3843 
3844 CleanupWithWsLock:
3845 
3846  /* Release process working set */
3848 
3849 Cleanup:
3850  /* Unlock address space */
3852 
3853  return Status;
3854 }
3855 
3856 
3857 NTSTATUS
3858 NTAPI
3861  IN OUT PSIZE_T NumberOfBytesToUnlock,
3862  IN ULONG MapType)
3863 {
3866  NTSTATUS Status;
3870  PVOID CapturedBaseAddress;
3871  SIZE_T CapturedBytesToUnlock;
3872  PAGED_CODE();
3873 
3874  //
3875  // Validate flags
3876  //
3877  if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3878  {
3879  //
3880  // Invalid set of flags
3881  //
3882  return STATUS_INVALID_PARAMETER;
3883  }
3884 
3885  //
3886  // At least one flag must be specified
3887  //
3888  if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3889  {
3890  //
3891  // No flag given
3892  //
3893  return STATUS_INVALID_PARAMETER;
3894  }
3895 
3896  //
3897  // Enter SEH for probing
3898  //
3899  _SEH2_TRY
3900  {
3901  //
3902  // Validate output data
3903  //
3905  ProbeForWriteSize_t(NumberOfBytesToUnlock);
3906 
3907  //
3908  // Capture it
3909  //
3910  CapturedBaseAddress = *BaseAddress;
3911  CapturedBytesToUnlock = *NumberOfBytesToUnlock;
3912  }
3914  {
3915  //
3916  // Get exception code
3917  //
3919  }
3920  _SEH2_END;
3921 
3922  //
3923  // Catch illegal base address
3924  //
3925  if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3926 
3927  //
3928  // Catch illegal region size
3929  //
3930  if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToUnlock)
3931  {
3932  //
3933  // Fail
3934  //
3935  return STATUS_INVALID_PARAMETER;
3936  }
3937 
3938  //
3939  // 0 is also illegal
3940  //
3941  if (!CapturedBytesToUnlock) return STATUS_INVALID_PARAMETER;
3942 
3943  //
3944  // Get a reference to the process
3945  //
3948  PsProcessType,
3949  PreviousMode,
3950  (PVOID*)(&Process),
3951  NULL);
3952  if (!NT_SUCCESS(Status)) return Status;
3953 
3954  //
3955  // Check if this is is system-mapped
3956  //
3957  if (MapType & MAP_SYSTEM)
3958  {
3959  //
3960  // Check for required privilege
3961  //
3963  {
3964  //
3965  // Fail: Don't have it
3966  //
3969  }
3970  }
3971 
3972  //
3973  // Check if we should attach
3974  //
3975  if (CurrentProcess != Process)
3976  {
3977  //
3978  // Do it
3979  //
3981  Attached = TRUE;
3982  }
3983 
3984  //
3985  // Call the internal function
3986  //
3987  Status = MiUnlockVirtualMemory(&CapturedBaseAddress,
3988  &CapturedBytesToUnlock,
3989  MapType);
3990 
3991  //
3992  // Detach if needed
3993  //
3995 
3996  //
3997  // Release reference
3998  //
4000 
4001  //
4002  // Enter SEH to return data
4003  //
4004  _SEH2_TRY
4005  {
4006  //
4007  // Return data to user
4008  //
4009  *BaseAddress = CapturedBaseAddress;
4010  *NumberOfBytesToUnlock = CapturedBytesToUnlock;
4011  }
4013  {
4014  //
4015  // Get exception code
4016  //
4018  }
4019  _SEH2_END;
4020 
4021  //
4022  // Return status
4023  //
4024  return STATUS_SUCCESS;
4025 }
4026 
4027 NTSTATUS
4028 NTAPI
4031  IN OUT PSIZE_T NumberOfBytesToFlush,
4033 {
4035  NTSTATUS Status;
4037  PVOID CapturedBaseAddress;
4038  SIZE_T CapturedBytesToFlush;
4039  IO_STATUS_BLOCK LocalStatusBlock;
4040  PAGED_CODE();
4041 
4042  //
4043  // Check if we came from user mode
4044  //
4045  if (PreviousMode != KernelMode)
4046  {
4047  //
4048  // Enter SEH for probing
4049  //
4050  _SEH2_TRY
4051  {
4052  //
4053  // Validate all outputs
4054  //
4056  ProbeForWriteSize_t(NumberOfBytesToFlush);
4058 
4059  //
4060  // Capture them
4061  //
4062  CapturedBaseAddress = *BaseAddress;
4063  CapturedBytesToFlush = *NumberOfBytesToFlush;
4064  }
4066  {
4067  //
4068  // Get exception code
4069  //
4071  }
4072  _SEH2_END;
4073  }
4074  else
4075  {
4076  //
4077  // Capture directly
4078  //
4079  CapturedBaseAddress = *BaseAddress;
4080  CapturedBytesToFlush = *NumberOfBytesToFlush;
4081  }
4082 
4083  //
4084  // Catch illegal base address
4085  //
4086  if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
4087 
4088  //
4089  // Catch illegal region size
4090  //
4091  if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToFlush)
4092  {
4093  //
4094  // Fail
4095  //
4096  return STATUS_INVALID_PARAMETER;
4097  }
4098 
4099  //
4100  // Get a reference to the process
4101  //
4104  PsProcessType,
4105  PreviousMode,
4106  (PVOID*)(&Process),
4107  NULL);
4108  if (!NT_SUCCESS(Status)) return Status;
4109 
4110  //
4111  // Do it
4112  //
4114  &CapturedBaseAddress,
4115  &CapturedBytesToFlush,
4116  &LocalStatusBlock);
4117 
4118  //
4119  // Release reference
4120  //
4122 
4123  //
4124  // Enter SEH to return data
4125  //
4126  _SEH2_TRY
4127  {
4128  //
4129  // Return data to user
4130  //
4131  *BaseAddress = PAGE_ALIGN(CapturedBaseAddress);
4132  *NumberOfBytesToFlush = 0;
4133  *IoStatusBlock = LocalStatusBlock;
4134  }
4136  {
4137  }
4138  _SEH2_END;
4139 
4140  //
4141  // Return status
4142  //
4143  return Status;
4144 }
4145 
4146 /*
4147  * @unimplemented
4148  */
4149 NTSTATUS
4150 NTAPI
4152  IN ULONG Flags,
4155  IN PVOID *UserAddressArray,
4156  OUT PULONG_PTR EntriesInUserAddressArray,
4157  OUT PULONG Granularity)
4158 {
4160  NTSTATUS Status;
4161  PVOID EndAddress;
4163  ULONG_PTR CapturedEntryCount;
4164  PAGED_CODE();
4165 
4166  //
4167  // Check if we came from user mode
4168  //
4169  if (PreviousMode != KernelMode)
4170  {
4171  //
4172  // Enter SEH for probing
4173  //
4174  _SEH2_TRY
4175  {
4176  //
4177  // Catch illegal base address
4178  //
4180 
4181  //
4182  // Catch illegal region size
4183  //
4185  {
4186  //
4187  // Fail
4188  //
4190  }
4191 
4192  //
4193  // Validate all data
4194  //
4195  ProbeForWriteSize_t(EntriesInUserAddressArray);
4196  ProbeForWriteUlong(Granularity);
4197 
4198  //
4199  // Capture them
4200  //
4201  CapturedEntryCount = *EntriesInUserAddressArray;
4202 
4203  //
4204  // Must have a count
4205  //
4206  if (CapturedEntryCount == 0) _SEH2_YIELD(return STATUS_INVALID_PARAMETER_5);
4207 
4208  //
4209  // Can't be larger than the maximum
4210  //
4211  if (CapturedEntryCount > (MAXULONG_PTR / sizeof(ULONG_PTR)))
4212  {
4213  //
4214  // Fail
4215  //
4217  }
4218 
4219  //
4220  // Probe the actual array
4221  //
4222  ProbeForWrite(UserAddressArray,
4223  CapturedEntryCount * sizeof(PVOID),
4224  sizeof(PVOID));
4225  }
4227  {
4228  //
4229  // Get exception code
4230  //
4232  }
4233  _SEH2_END;
4234  }
4235  else
4236  {
4237  //
4238  // Capture directly
4239  //
4240  CapturedEntryCount = *EntriesInUserAddressArray;
4241  ASSERT(CapturedEntryCount != 0);
4242  }
4243 
4244  //
4245  // Check if this is a local request
4246  //
4248  {
4249  //
4250  // No need to reference the process
4251  //
4253  }
4254  else
4255  {
4256  //
4257  // Reference the target
4258  //
4261  PsProcessType,
4262  PreviousMode,
4263  (PVOID *)&Process,
4264  NULL);
4265  if (!NT_SUCCESS(Status)) return Status;
4266  }
4267 
4268  //
4269  // Compute the last address and validate it
4270  //
4271  EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4272  if (BaseAddress > EndAddress)
4273  {
4274  //
4275  // Fail
4276  //
4279  }
4280 
4281  //
4282  // Oops :(
4283  //
4284  UNIMPLEMENTED;
4285 
4286  //
4287  // Dereference if needed
4288  //
4290 
4291  //
4292  // Enter SEH to return data
4293  //
4294  _SEH2_TRY
4295  {
4296  //
4297  // Return data to user
4298  //
4299  *EntriesInUserAddressArray = 0;
4300  *Granularity = PAGE_SIZE;
4301  }
4303  {
4304  //
4305  // Get exception code
4306  //
4308  }
4309  _SEH2_END;
4310 
4311  //
4312  // Return success
4313  //
4314  return STATUS_SUCCESS;
4315 }
4316 
4317 /*
4318  * @unimplemented
4319  */
4320 NTSTATUS
4321 NTAPI
4325 {
4326  PVOID EndAddress;
4328  NTSTATUS Status;
4331 
4332  //
4333  // Catch illegal base address
4334  //
4336 
4337  //
4338  // Catch illegal region size
4339  //
4341  {
4342  //
4343  // Fail
4344  //
4346  }
4347 
4348  //
4349  // Check if this is a local request
4350  //
4352  {
4353  //
4354  // No need to reference the process
4355  //
4357  }
4358  else
4359  {
4360  //
4361  // Reference the target
4362  //
4365  PsProcessType,
4366  PreviousMode,
4367  (PVOID *)&Process,
4368  NULL);
4369  if (!NT_SUCCESS(Status)) return Status;
4370  }
4371 
4372  //
4373  // Compute the last address and validate it
4374  //
4375  EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4376  if (BaseAddress > EndAddress)
4377  {
4378  //
4379  // Fail
4380  //
4383  }
4384 
4385  //
4386  // Oops :(
4387  //
4388  UNIMPLEMENTED;
4389 
4390  //
4391  // Dereference if needed
4392  //
4394 
4395  //
4396  // Return success
4397  //
4398  return STATUS_SUCCESS;
4399 }
4400 
4401 NTSTATUS
4402 NTAPI
4405  IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
4406  OUT PVOID MemoryInformation,
4407  IN SIZE_T MemoryInformationLength,
4409 {
4412 
4413  DPRINT("Querying class %d about address: %p\n", MemoryInformationClass, BaseAddress);
4414 
4415  /* Bail out if the address is invalid */
4417 
4418  /* Probe return buffer */
4420  if (PreviousMode != KernelMode)
4421  {
4422  _SEH2_TRY
4423  {
4424  ProbeForWrite(MemoryInformation,
4425  MemoryInformationLength,
4426  sizeof(ULONG_PTR));
4427 
4429  }
4431  {
4433  }
4434  _SEH2_END;
4435 
4436  if (!NT_SUCCESS(Status))
4437  {
4438  return Status;
4439  }
4440  }
4441 
4442  switch(MemoryInformationClass)
4443  {
4445  /* Validate the size information of the class */
4446  if (MemoryInformationLength < sizeof(MEMORY_BASIC_INFORMATION))
4447  {
4448  /* The size is invalid */
4450  }
4452  BaseAddress,
4453  MemoryInformation,
4454  MemoryInformationLength,
4455  ReturnLength);
4456  break;
4457 
4458  case MemorySectionName:
4459  /* Validate the size information of the class */
4460  if (MemoryInformationLength < sizeof(MEMORY_SECTION_NAME))
4461  {
4462  /* The size is invalid */
4464  }
4466  BaseAddress,
4467  MemoryInformation,
4468  MemoryInformationLength,
4469  ReturnLength);
4470  break;
4471  case MemoryWorkingSetList:
4473  default:
4474  DPRINT1("Unhandled memory information class %d\n", MemoryInformationClass);
4475  break;
4476  }
4477 
4478  return Status;
4479 }
4480 
4481 /*
4482  * @implemented
4483  */
4484 NTSTATUS
4485 NTAPI
4487  IN OUT PVOID* UBaseAddress,
4489  IN OUT PSIZE_T URegionSize,
4491  IN ULONG Protect)
4492 {
4495  PMMVAD Vad = NULL, FoundVad;
4496  NTSTATUS Status;
4498  PVOID PBaseAddress;
4499  ULONG_PTR PRegionSize, StartingAddress, EndingAddress;
4500  ULONG_PTR HighestAddress = (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS;
4503  PETHREAD CurrentThread = PsGetCurrentThread();
4505  ULONG ProtectionMask, QuotaCharge = 0, QuotaFree = 0;
4506  BOOLEAN Attached = FALSE, ChangeProtection = FALSE, QuotaCharged = FALSE;
4507  MMPTE TempPte;
4508  PMMPTE PointerPte, LastPte;
4509  PMMPDE PointerPde;
4511  PAGED_CODE();
4512 
4513  /* Check for valid Zero bits */
4514  if (ZeroBits > MI_MAX_ZERO_BITS)
4515  {
4516  DPRINT1("Too many zero bits\n");
4518  }
4519 
4520  /* Check for valid Allocation Types */
4523  {
4524  DPRINT1("Invalid Allocation Type\n");
4526  }
4527 
4528  /* Check for at least one of these Allocation Types to be set */
4530  {
4531  DPRINT1("No memory allocation base type\n");
4533  }
4534 
4535  /* MEM_RESET is an exclusive flag, make sure that is valid too */
4537  {
4538  DPRINT1("Invalid use of MEM_RESET\n");
4540  }
4541 
4542  /* Check if large pages are being used */
4544  {
4545  /* Large page allocations MUST be committed */
4546  if (!(AllocationType & MEM_COMMIT))
4547  {
4548  DPRINT1("Must supply MEM_COMMIT with MEM_LARGE_PAGES\n");
4550  }
4551 
4552  /* These flags are not allowed with large page allocations */
4554  {
4555  DPRINT1("Using illegal flags with MEM_LARGE_PAGES\n");
4557  }
4558  }
4559 
4560  /* MEM_WRITE_WATCH can only be used if MEM_RESERVE is also used */
4562  {
4563  DPRINT1("MEM_WRITE_WATCH used without MEM_RESERVE\n");
4565  }
4566 
4567  /* Check for valid MEM_PHYSICAL usage */
4569  {
4570  /* MEM_PHYSICAL can only be used if MEM_RESERVE is also used */
4571  if (!(AllocationType & MEM_RESERVE))
4572  {
4573  DPRINT1("MEM_PHYSICAL used without MEM_RESERVE\n");
4575  }
4576 
4577  /* Only these flags are allowed with MEM_PHYSIAL */
4579  {
4580  DPRINT1("Using illegal flags with MEM_PHYSICAL\n");
4582  }
4583 
4584  /* Then make sure PAGE_READWRITE is used */
4585  if (Protect != PAGE_READWRITE)
4586  {
4587  DPRINT1("MEM_PHYSICAL used without PAGE_READWRITE\n");
4589  }
4590  }
4591 
4592  /* Calculate the protection mask and make sure it's valid */
4593  ProtectionMask = MiMakeProtectionMask(Protect);
4594  if (ProtectionMask == MM_INVALID_PROTECTION)
4595  {
4596  DPRINT1("Invalid protection mask\n");
4598  }
4599 
4600  /* Enter SEH */
4601  _SEH2_TRY
4602  {
4603  /* Check for user-mode parameters */
4604  if (PreviousMode != KernelMode)
4605  {
4606  /* Make sure they are writable */
4607  ProbeForWritePointer(UBaseAddress);
4608  ProbeForWriteSize_t(URegionSize);
4609  }
4610 
4611  /* Capture their values */
4612  PBaseAddress = *UBaseAddress;
4613  PRegionSize = *URegionSize;
4614  }
4616  {
4617  /* Return the exception code */
4619  }
4620  _SEH2_END;
4621 
4622  /* Make sure the allocation isn't past the VAD area */
4623  if (PBaseAddress > MM_HIGHEST_VAD_ADDRESS)
4624  {
4625  DPRINT1("Virtual allocation base above User Space\n");
4627  }
4628 
4629  /* Make sure the allocation wouldn't overflow past the VAD area */
4630  if ((((ULONG_PTR)MM_HIGHEST_VAD_ADDRESS + 1) - (ULONG_PTR)PBaseAddress) < PRegionSize)
4631  {
4632  DPRINT1("Region size would overflow into kernel-memory\n");
4634  }
4635 
4636  /* Make sure there's a size specified */
4637  if (!PRegionSize)
4638  {
4639  DPRINT1("Region size is invalid (zero)\n");
4641  }
4642 
4643  //
4644  // If this is for the current process, just use PsGetCurrentProcess
4645  //
4647  {
4649  }
4650  else
4651  {
4652  //
4653  // Otherwise, reference the process with VM rights and attach to it if
4654  // this isn't the current process. We must attach because we'll be touching
4655  // PTEs and PDEs that belong to user-mode memory, and also touching the
4656  // Working Set which is stored in Hyperspace.
4657  //
4660  PsProcessType,
4661  PreviousMode,
4662  (PVOID*)&Process,
4663  NULL);
4664  if (!NT_SUCCESS(Status)) return Status;
4665  if (CurrentProcess != Process)
4666  {
4668  Attached = TRUE;
4669  }
4670  }
4671 
4672  DPRINT("NtAllocateVirtualMemory: Process 0x%p, Address 0x%p, Zerobits %lu , RegionSize 0x%x, Allocation type 0x%x, Protect 0x%x.\n",
4673  Process, PBaseAddress, ZeroBits, PRegionSize, AllocationType, Protect);
4674 
4675  //
4676  // Check for large page allocations and make sure that the required privilege
4677  // is being held, before attempting to handle them.
4678  //
4679  if ((AllocationType & MEM_LARGE_PAGES) &&
4681  {
4682  /* Fail without it */
4683  DPRINT1("Privilege not held for MEM_LARGE_PAGES\n");
4685  goto FailPathNoLock;
4686  }
4687 
4688  //
4689  // Fail on the things we don't yet support
4690  //
4692  {
4693  DPRINT1("MEM_LARGE_PAGES not supported\n");
4695  goto FailPathNoLock;
4696  }
4698  {
4699  DPRINT1("MEM_PHYSICAL not supported\n");
4701  goto FailPathNoLock;
4702  }
4704  {
4705  DPRINT1("MEM_WRITE_WATCH not supported\n");
4707  goto FailPathNoLock;
4708  }
4709 
4710  //
4711  // Check if the caller is reserving memory, or committing memory and letting
4712  // us pick the base address
4713  //
4714  if (!(PBaseAddress) || (AllocationType & MEM_RESERVE))
4715  {
4716  //
4717  // Do not allow COPY_ON_WRITE through this API
4718  //
4720  {
4721  DPRINT1("Copy on write not allowed through this path\n");
4723  goto FailPathNoLock;
4724  }
4725 
4726  //
4727  // Does the caller have an address in mind, or is this a blind commit?
4728  //
4729  if (!PBaseAddress)
4730  {
4731  //
4732  // This is a blind commit, all we need is the region size
4733  //
4734  PRegionSize = ROUND_TO_PAGES(PRegionSize);
4735  EndingAddress = 0;
4736  StartingAddress = 0;
4737 
4738  //
4739  // Check if ZeroBits were specified
4740  //
4741  if (ZeroBits != 0)
4742  {
4743  //
4744  // Calculate the highest address and check if it's valid
4745  //
4746  HighestAddress = MAXULONG_PTR >> ZeroBits;
4747  if (HighestAddress > (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS)
4748  {
4750  goto FailPathNoLock;
4751  }
4752  }
4753  }
4754  else
4755  {
4756  //
4757  // This is a reservation, so compute the starting address on the
4758  // expected 64KB granularity, and see where the ending address will
4759  // fall based on the aligned address and the passed in region size
4760  //
4761  EndingAddress = ((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1);
4762  PRegionSize = EndingAddress + 1 - ROUND_DOWN((ULONG_PTR)PBaseAddress, _64K);
4763  StartingAddress = (ULONG_PTR)PBaseAddress;
4764  }
4765 
4766  // Charge quotas for the VAD
4768  if (!NT_SUCCESS(Status))
4769  {
4770  DPRINT1("Quota exceeded.\n");
4771  goto FailPathNoLock;
4772  }
4773 
4774  QuotaCharged = TRUE;
4775 
4776  //
4777  // Allocate and initialize the VAD
4778  //
4779  Vad = ExAllocatePoolWithTag(NonPagedPool, sizeof(MMVAD_LONG), 'SdaV');
4780  if (Vad == NULL)
4781  {
4782  DPRINT1("Failed to allocate a VAD!\n");
4784  goto FailPathNoLock;
4785  }
4786 
4787  RtlZeroMemory(Vad, sizeof(MMVAD_LONG));
4788  if (AllocationType & MEM_COMMIT) Vad->u.VadFlags.MemCommit = 1;
4789  Vad->u.VadFlags.Protection = ProtectionMask;
4790  Vad->u.VadFlags.PrivateMemory = 1;
4791  Vad->ControlArea = NULL; // For Memory-Area hack
4792 
4793  //
4794  // Insert the VAD
4795  //
4796  Status = MiInsertVadEx(Vad,
4797  &StartingAddress,
4798  PRegionSize,
4799  HighestAddress,
4801  AllocationType);
4802  if (!NT_SUCCESS(Status))
4803  {
4804  DPRINT1("Failed to insert the VAD!\n");
4805  ExFreePoolWithTag(Vad, 'SdaV');
4806  goto FailPathNoLock;
4807  }
4808 
4809  //
4810  // Detach and dereference the target process if
4811  // it was different from the current process
4812  //
4815 
4816  //
4817  // Use SEH to write back the base address and the region size. In the case
4818  // of an exception, we do not return back the exception code, as the memory
4819  // *has* been allocated. The caller would now have to call VirtualQuery
4820  // or do some other similar trick to actually find out where its memory
4821  // allocation ended up
4822  //
4823  _SEH2_TRY
4824  {
4825  *URegionSize = PRegionSize;
4826  *UBaseAddress = (PVOID)StartingAddress;
4827  }
4829  {
4830  //
4831  // Ignore exception!
4832  //
4833  }
4834  _SEH2_END;
4835  DPRINT("Reserved %x bytes at %p.\n", PRegionSize, StartingAddress);
4836  return STATUS_SUCCESS;
4837  }
4838 
4839  //
4840  // This is a MEM_COMMIT on top of an existing address which must have been
4841  // MEM_RESERVED already. Compute the start and ending base addresses based
4842  // on the user input, and then compute the actual region size once all the
4843  // alignments have been done.
4844  //
4845  EndingAddress = (((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1));
4846  StartingAddress = (ULONG_PTR)PAGE_ALIGN(PBaseAddress);
4847  PRegionSize = EndingAddress - StartingAddress + 1;
4848 
4849  //
4850  // Lock the address space and make sure the process isn't already dead
4851  //
4854  if (Process->VmDeleted)
4855  {
4856  DPRINT1("Process is dying\n");
4858  goto FailPath;
4859  }
4860 
4861  //
4862  // Get the VAD for this address range, and make sure it exists
4863  //
4864  Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
4865  EndingAddress >> PAGE_SHIFT,
4866  &Process->VadRoot,
4867  (PMMADDRESS_NODE*)&FoundVad);
4868  if (Result != TableFoundNode)
4869  {
4870  DPRINT1("Could not find a VAD for this allocation\n");
4872  goto FailPath;
4873  }
4874 
4875  if ((AllocationType & MEM_RESET) == MEM_RESET)
4876  {
4878  DPRINT("MEM_RESET not supported\n");
4880  goto FailPath;
4881  }
4882 
4883  //
4884  // These kinds of VADs are illegal for this Windows function when trying to
4885  // commit an existing range
4886  //
4887  if ((FoundVad->u.VadFlags.VadType == VadAwe) ||
4888  (FoundVad->u.VadFlags.VadType == VadDevicePhysicalMemory) ||
4889  (FoundVad->u.VadFlags.VadType == VadLargePages))
4890  {
4891  DPRINT1("Illegal VAD for attempting a MEM_COMMIT\n");
4893  goto FailPath;
4894  }
4895 
4896  //
4897  // Make sure that this address range actually fits within the VAD for it
4898  //
4899  if (((StartingAddress >> PAGE_SHIFT) < FoundVad->StartingVpn) ||
4900  ((EndingAddress >> PAGE_SHIFT) > FoundVad->EndingVpn))
4901  {
4902  DPRINT1("Address range does not fit into the VAD\n");
4904  goto FailPath;
4905  }
4906 
4907  //
4908  // Make sure this is an ARM3 section
4909  //
4911  ASSERT(MemoryArea != NULL);
4913  {
4914  DPRINT1("Illegal commit of non-ARM3 section!\n");
4916  goto FailPath;
4917  }
4918 
4919  // Is this a previously reserved section being committed? If so, enter the
4920  // special section path
4921  //
4922  if (FoundVad->u.VadFlags.PrivateMemory == FALSE)
4923  {
4924  //
4925  // You cannot commit large page sections through this API
4926  //
4927  if (FoundVad->u.VadFlags.VadType == VadLargePageSection)
4928  {
4929  DPRINT1("Large page sections cannot be VirtualAlloc'd\n");
4931  goto FailPath;
4932  }
4933 
4934  //
4935  // You can only use caching flags on a rotate VAD
4936  //
4937  if ((Protect & (PAGE_NOCACHE | PAGE_WRITECOMBINE)) &&
4938  (FoundVad->u.VadFlags.VadType != VadRotatePhysical))
4939  {
4940  DPRINT1("Cannot use caching flags with anything but rotate VADs\n");
4942  goto FailPath;
4943  }
4944 
4945  //
4946  // We should make sure that the section's permissions aren't being
4947  // messed with
4948  //
4949  if (FoundVad->u.VadFlags.NoChange)
4950  {
4951  //
4952  // Make sure it's okay to touch it
4953  // Note: The Windows 2003 kernel has a bug here, passing the
4954  // unaligned base address together with the aligned size,
4955  // potentially covering a region larger than the actual allocation.
4956  // Might be exposed through NtGdiCreateDIBSection w/ section handle
4957  // For now we keep this behavior.
4958  // TODO: analyze possible implications, create test case
4959  //
4960  Status = MiCheckSecuredVad(FoundVad,
4961  PBaseAddress,
4962  PRegionSize,
4963  ProtectionMask);
4964  if (!NT_SUCCESS(Status))
4965  {
4966  DPRINT1("Secured VAD being messed around with\n");
4967  goto FailPath;
4968  }
4969  }
4970 
4971  //
4972  // ARM3 does not support file-backed sections, only shared memory
4973  //
4974  ASSERT(FoundVad->ControlArea->FilePointer == NULL);
4975 
4976  //
4977  // Rotate VADs cannot be guard pages or inaccessible, nor copy on write
4978  //
4979  if ((FoundVad->u.VadFlags.VadType == VadRotatePhysical) &&
4981  {
4982  DPRINT1("Invalid page protection for rotate VAD\n");
4984  goto FailPath;
4985  }
4986 
4987  //
4988  // Compute PTE addresses and the quota charge, then grab the commit lock
4989  //
4990  PointerPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(FoundVad, StartingAddress >> PAGE_SHIFT);
4991  LastPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(FoundVad, EndingAddress >> PAGE_SHIFT);
4992  QuotaCharge = (ULONG)(LastPte - PointerPte + 1);
4994 
4995  //
4996  // Get the segment template PTE and start looping each page
4997  //
4998  TempPte = FoundVad->ControlArea->Segment->SegmentPteTemplate;
4999  ASSERT(TempPte.u.Long != 0);
5000  while (PointerPte <= LastPte)
5001  {
5002  //
5003  // For each non-already-committed page, write the invalid template PTE
5004  //
5005  if (PointerPte->u.Long == 0)
5006  {
5007  MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5008  }
5009  else
5010  {
5011  QuotaFree++;
5012  }
5013  PointerPte++;
5014  }
5015 
5016  //
5017  // Now do the commit accounting and release the lock
5018  //
5019  ASSERT(QuotaCharge >= QuotaFree);
5020  QuotaCharge -= QuotaFree;
5021  FoundVad->ControlArea->Segment->NumberOfCommittedPages += QuotaCharge;
5023 
5024  //
5025  // We are done with committing the section pages
5026  //
5028  goto FailPath;
5029  }
5030 
5031  //
5032  // This is a specific ReactOS check because we only use normal VADs
5033  //
5034  ASSERT(FoundVad->u.VadFlags.VadType == VadNone);
5035 
5036  //
5037  // While this is an actual Windows check
5038  //
5039  ASSERT(FoundVad->u.VadFlags.VadType != VadRotatePhysical);
5040 
5041  //
5042  // Throw out attempts to use copy-on-write through this API path
5043  //
5045  {
5046  DPRINT1("Write copy attempted when not allowed\n");
5048  goto FailPath;
5049  }
5050 
5051  //
5052  // Initialize a demand-zero PTE
5053  //
5054  TempPte.u.Long = 0;
5055  TempPte.u.Soft.Protection = ProtectionMask;
5056  ASSERT(TempPte.u.Long != 0);
5057 
5058  //
5059  // Get the PTE, PDE and the last PTE for this address range
5060  //
5061  PointerPde = MiAddressToPde(StartingAddress);
5062  PointerPte = MiAddressToPte(StartingAddress);
5063  LastPte = MiAddressToPte(EndingAddress);
5064 
5065  //
5066  // Update the commit charge in the VAD as well as in the process, and check
5067  // if this commit charge was now higher than the last recorded peak, in which
5068  // case we also update the peak
5069  //
5070  FoundVad->u.VadFlags.CommitCharge += (1 + LastPte - PointerPte);
5071  Process->CommitCharge += (1 + LastPte - PointerPte);
5072  if (Process->CommitCharge > Process->CommitChargePeak)
5073  {
5074  Process->CommitChargePeak = Process->CommitCharge;
5075  }
5076 
5077  //
5078  // Lock the working set while we play with user pages and page tables
5079  //
5080  MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5081 
5082  //
5083  // Make the current page table valid, and then loop each page within it
5084  //
5086  while (PointerPte <= LastPte)
5087  {
5088  //
5089  // Have we crossed into a new page table?
5090  //
5091  if (MiIsPteOnPdeBoundary(PointerPte))
5092  {
5093  //
5094  // Get the PDE and now make it valid too
5095  //
5096  PointerPde = MiPteToPde(PointerPte);
5098  }
5099 
5100  //
5101  // Is this a zero PTE as expected?
5102  //
5103  if (PointerPte->u.Long == 0)
5104  {
5105  //
5106  // First increment the count of pages in the page table for this
5107  // process
5108  //
5110 
5111  //
5112  // And now write the invalid demand-zero PTE as requested
5113  //
5114  MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5115  }
5116  else if (PointerPte->u.Long == MmDecommittedPte.u.Long)
5117  {
5118  //
5119  // If the PTE was already decommitted, there is nothing else to do
5120  // but to write the new demand-zero PTE
5121  //
5122  MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5123  }
5124  else if (!(ChangeProtection) && (Protect != MiGetPageProtection(PointerPte)))
5125  {
5126  //
5127  // We don't handle these scenarios yet
5128  //
5129  if (PointerPte->u.Soft.Valid == 0)
5130  {
5131  ASSERT(PointerPte->u.Soft.Prototype == 0);
5132  ASSERT((PointerPte->u.Soft.PageFileHigh == 0) || (PointerPte->u.Soft.Transition == 1));
5133  }
5134 
5135  //
5136  // There's a change in protection, remember this for later, but do
5137  // not yet handle it.
5138  //
5139  ChangeProtection = TRUE;
5140  }
5141 
5142  //
5143  // Move to the next PTE
5144  //
5145  PointerPte++;
5146  }
5147 
5148  //
5149  // Release the working set lock, unlock the address space, and detach from
5150  // the target process if it was not the current process. Also dereference the
5151  // target process if this wasn't the case.
5152  //
5153  MiUnlockProcessWorkingSetUnsafe(Process, CurrentThread);
5155 FailPath:
5157 
5158  if (!NT_SUCCESS(Status))
5159  {
5160  if (Vad != NULL)
5161  {
5162  ExFreePoolWithTag(Vad, 'SdaV');
5163  }
5164  }
5165 
5166  //
5167  // Check if we need to update the protection
5168  //
5169  if (ChangeProtection)
5170  {
5171  PVOID ProtectBaseAddress = (PVOID)StartingAddress;
5172  SIZE_T ProtectSize = PRegionSize;
5173  ULONG OldProtection;
5174 
5175  //
5176  // Change the protection of the region
5177  //
5179  &ProtectBaseAddress,
5180  &ProtectSize,
5181  Protect,
5182  &OldProtection);
5183  }
5184 
5185 FailPathNoLock:
5188 
5189  //
5190  // Only write back results on success
5191  //
5192  if (NT_SUCCESS(Status))
5193  {
5194  //
5195  // Use SEH to write back the base address and the region size. In the case
5196  // of an exception, we strangely do return back the exception code, even
5197  // though the memory *has* been allocated. This mimics Windows behavior and
5198  // there is not much we can do about it.
5199  //
5200  _SEH2_TRY
5201  {
5202  *URegionSize = PRegionSize;
5203  *UBaseAddress = (PVOID)StartingAddress;
5204  }
5206  {
5208  }
5209  _SEH2_END;
5210  }
5211  else if (QuotaCharged)
5212  {
5214  }
5215 
5216  return Status;
5217 }
5218 
5219 /*
5220  * @implemented
5221  */
5222 NTSTATUS
5223 NTAPI
5225  IN PVOID* UBaseAddress,
5226  IN PSIZE_T URegionSize,
5227  IN ULONG FreeType)
5228 {
5230  SIZE_T PRegionSize;
5231  PVOID PBaseAddress;
5232  LONG_PTR AlreadyDecommitted, CommitReduction = 0;
5233  LONG_PTR FirstCommit;
5234  ULONG_PTR StartingAddress, EndingAddress;
5235  PMMVAD Vad;
5236  PMMVAD NewVad;
5237  NTSTATUS Status;
5240  PETHREAD CurrentThread = PsGetCurrentThread();
5245  PAGED_CODE();
5246 
5247  //
5248  // Only two flags are supported, exclusively.
5249  //
5251  {
5252  DPRINT1("Invalid FreeType (0x%08lx)\n", FreeType);
5254  }
5255 
5256  //
5257  // Enter SEH for probe and capture. On failure, return back to the caller
5258  // with an exception violation.
5259  //
5260  _SEH2_TRY
5261  {
5262  //
5263  // Check for user-mode parameters and make sure that they are writeable
5264  //
5265  if (PreviousMode != KernelMode)
5266  {
5267  ProbeForWritePointer(UBaseAddress);
5268  ProbeForWriteUlong(URegionSize);
5269  }
5270 
5271  //
5272  // Capture the current values
5273  //
5274  PBaseAddress = *UBaseAddress;
5275  PRegionSize = *URegionSize;
5276  }
5278  {
5280  }
5281  _SEH2_END;
5282 
5283  //
5284  // Make sure the allocation isn't past the user area
5285  //
5286  if (PBaseAddress >= MM_HIGHEST_USER_ADDRESS)
5287  {
5288  DPRINT1("Virtual free base above User Space\n");
5290  }
5291 
5292  //
5293  // Make sure the allocation wouldn't overflow past the user area
5294  //
5295  if (((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (ULONG_PTR)PBaseAddress) < PRegionSize)
5296  {
5297  DPRINT1("Region size would overflow into kernel-memory\n");
5299  }
5300 
5301  //
5302  // If this is for the current process, just use PsGetCurrentProcess
5303  //
5305  {
5307  }
5308  else
5309  {
5310  //
5311  // Otherwise, reference the process with VM rights and attach to it if
5312  // this isn't the current process. We must attach because we'll be touching
5313  // PTEs and PDEs that belong to user-mode memory, and also touching the
5314  // Working Set which is stored in Hyperspace.
5315  //
5317