ReactOS  0.4.13-dev-52-g0efcfec
mingw_math.h File Reference

Go to the source code of this file.

Macros

#define HUGE_VALF   __INFF
 
#define HUGE_VALL   __INFL
 
#define INFINITY   HUGE_VALF
 
#define NAN   __QNAN
 
#define FP_NAN   0x0100
 
#define FP_NORMAL   0x0400
 
#define FP_INFINITE   (FP_NAN | FP_NORMAL)
 
#define FP_ZERO   0x4000
 
#define FP_SUBNORMAL   (FP_NORMAL | FP_ZERO)
 
#define fpclassify(x)
 
#define isfinite(x)   ((fpclassify(x) & FP_NAN) == 0)
 
#define isinf(x)   (fpclassify(x) == FP_INFINITE)
 
#define isnan(x)
 
#define isnormal(x)   (fpclassify(x) == FP_NORMAL)
 
#define signbit(x)
 
#define FP_ILOGB0   ((int)0x80000000)
 
#define FP_ILOGBNAN   ((int)0x80000000)
 
#define _nan()   nan("")
 
#define _nanf()   nanf("")
 
#define _nanl()   nanl("")
 
#define isgreater(x, y)   ((__fp_unordered_compare(x, y) & 0x4500) == 0)
 
#define isless(x, y)   ((__fp_unordered_compare (y, x) & 0x4500) == 0)
 
#define isgreaterequal(x, y)   ((__fp_unordered_compare (x, y) & FP_INFINITE) == 0)
 
#define islessequal(x, y)   ((__fp_unordered_compare(y, x) & FP_INFINITE) == 0)
 
#define islessgreater(x, y)   ((__fp_unordered_compare(x, y) & FP_SUBNORMAL) == 0)
 
#define isunordered(x, y)   ((__fp_unordered_compare(x, y) & 0x4500) == 0x4500)
 

Typedefs

typedef long double float_t
 
typedef long double double_t
 

Functions

int __cdecl __fpclassifyl (long double)
 
int __cdecl __fpclassifyf (float)
 
int __cdecl __fpclassify (double)
 
int __cdecl __isnan (double)
 
int __cdecl __isnanf (float)
 
int __cdecl __isnanl (long double)
 
int __cdecl __signbit (double)
 
int __cdecl __signbitf (float)
 
int __cdecl __signbitl (long double)
 
double __cdecl acosh (double)
 
float __cdecl acoshf (float)
 
long double __cdecl acoshl (long double)
 
double __cdecl asinh (double)
 
float __cdecl asinhf (float)
 
long double __cdecl asinhl (long double)
 
double __cdecl atanh (double)
 
float __cdecl atanhf (float)
 
long double __cdecl atanhl (long double)
 
double __cdecl exp2 (double)
 
float __cdecl exp2f (float)
 
long double __cdecl exp2l (long double)
 
double __cdecl expm1 (double)
 
float __cdecl expm1f (float)
 
long double __cdecl expm1l (long double)
 
int __cdecl ilogb (double)
 
int __cdecl ilogbf (float)
 
int __cdecl ilogbl (long double)
 
double __cdecl log1p (double)
 
float __cdecl log1pf (float)
 
long double __cdecl log1pl (long double)
 
double __cdecl log2 (double)
 
float __cdecl log2f (float)
 
long double __cdecl log2l (long double)
 
double __cdecl logb (double)
 
float __cdecl logbf (float)
 
long double __cdecl logbl (long double)
 
double __cdecl scalbn (double, int)
 
float __cdecl scalbnf (float, int)
 
long double __cdecl scalbnl (long double, int)
 
double __cdecl scalbln (double, long)
 
float __cdecl scalblnf (float, long)
 
long double __cdecl scalblnl (long double, long)
 
double __cdecl cbrt (double)
 
float __cdecl cbrtf (float)
 
long double __cdecl cbrtl (long double)
 
double __cdecl erf (double)
 
float __cdecl erff (float)
 
long double __cdecl erfl (long double)
 
double __cdecl erfc (double)
 
float __cdecl erfcf (float)
 
long double __cdecl erfcl (long double)
 
double __cdecl lgamma (double)
 
float __cdecl lgammaf (float)
 
long double __cdecl lgammal (long double)
 
double __cdecl tgamma (double)
 
float __cdecl tgammaf (float)
 
long double __cdecl tgammal (long double)
 
double __cdecl nearbyint (double)
 
float __cdecl nearbyintf (float)
 
long double __cdecl nearbyintl (long double)
 
double __cdecl rint (double)
 
float __cdecl rintf (float)
 
long double __cdecl rintl (long double)
 
long __cdecl lrint (double)
 
long __cdecl lrintf (float)
 
long __cdecl lrintl (long double)
 
__MINGW_EXTENSION long long __cdecl llrint (double)
 
__MINGW_EXTENSION long long __cdecl llrintf (float)
 
__MINGW_EXTENSION long long __cdecl llrintl (long double)
 
double __cdecl round (double)
 
float __cdecl roundf (float)
 
long double __cdecl roundl (long double)
 
long __cdecl lround (double)
 
long __cdecl lroundf (float)
 
long __cdecl lroundl (long double)
 
__MINGW_EXTENSION long long __cdecl llround (double)
 
__MINGW_EXTENSION long long __cdecl llroundf (float)
 
__MINGW_EXTENSION long long __cdecl llroundl (long double)
 
double __cdecl trunc (double)
 
float __cdecl truncf (float)
 
long double __cdecl truncl (long double)
 
double __cdecl remainder (double, double)
 
float __cdecl remainderf (float, float)
 
long double __cdecl remainderl (long double, long double)
 
double __cdecl remquo (double, double, int *)
 
float __cdecl remquof (float, float, int *)
 
long double __cdecl remquol (long double, long double, int *)
 
double __cdecl copysign (double, double)
 
float __cdecl copysignf (float, float)
 
long double __cdecl copysignl (long double, long double)
 
double __cdecl nan (const char *tagp)
 
float __cdecl nanf (const char *tagp)
 
long double __cdecl nanl (const char *tagp)
 
double __cdecl nextafter (double, double)
 
float __cdecl nextafterf (float, float)
 
long double __cdecl nextafterl (long double, long double)
 
double __cdecl nexttoward (double, long double)
 
float __cdecl nexttowardf (float, long double)
 
long double __cdecl nexttowardl (long double, long double)
 
double __cdecl fdim (double x, double y)
 
float __cdecl fdimf (float x, float y)
 
long double __cdecl fdiml (long double x, long double y)
 
double __cdecl fmax (double, double)
 
float __cdecl fmaxf (float, float)
 
long double __cdecl fmaxl (long double, long double)
 
double __cdecl fmin (double, double)
 
float __cdecl fminf (float, float)
 
long double __cdecl fminl (long double, long double)
 
double __cdecl fma (double, double, double)
 
float __cdecl fmaf (float, float, float)
 
long double __cdecl fmal (long double, long double, long double)
 
__CRT_INLINE int __cdecl __fp_unordered_compare (long double x, long double y)
 

Variables

const float __INFF
 
const long double __INFL
 
const double __QNAN
 

Macro Definition Documentation

◆ _nan

#define _nan ( )    nan("")

Definition at line 465 of file mingw_math.h.

◆ _nanf

#define _nanf ( )    nanf("")

Definition at line 466 of file mingw_math.h.

◆ _nanl

#define _nanl ( )    nanl("")

Definition at line 467 of file mingw_math.h.

◆ FP_ILOGB0

#define FP_ILOGB0   ((int)0x80000000)

Definition at line 209 of file mingw_math.h.

◆ FP_ILOGBNAN

#define FP_ILOGBNAN   ((int)0x80000000)

Definition at line 210 of file mingw_math.h.

◆ FP_INFINITE

#define FP_INFINITE   (FP_NAN | FP_NORMAL)

Definition at line 52 of file mingw_math.h.

◆ FP_NAN

#define FP_NAN   0x0100

Definition at line 50 of file mingw_math.h.

◆ FP_NORMAL

#define FP_NORMAL   0x0400

Definition at line 51 of file mingw_math.h.

◆ FP_SUBNORMAL

#define FP_SUBNORMAL   (FP_NORMAL | FP_ZERO)

Definition at line 54 of file mingw_math.h.

◆ FP_ZERO

#define FP_ZERO   0x4000

Definition at line 53 of file mingw_math.h.

◆ fpclassify

#define fpclassify (   x)
Value:
(sizeof (x) == sizeof (float) ? __fpclassifyf (x) \
: sizeof (x) == sizeof (double) ? __fpclassify (x) \
int __cdecl __fpclassifyf(float)
Definition: mingw_math.h:79
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
int __cdecl __fpclassify(double)
Definition: mingw_math.h:74
int __cdecl __fpclassifyl(long double)
Definition: mingw_math.h:69

Definition at line 86 of file mingw_math.h.

◆ HUGE_VALF

#define HUGE_VALF   __INFF

Definition at line 17 of file mingw_math.h.

◆ HUGE_VALL

#define HUGE_VALL   __INFL

Definition at line 19 of file mingw_math.h.

◆ INFINITY

#define INFINITY   HUGE_VALF

Definition at line 20 of file mingw_math.h.

◆ isfinite

#define isfinite (   x)    ((fpclassify(x) & FP_NAN) == 0)

Definition at line 91 of file mingw_math.h.

◆ isgreater

#define isgreater (   x,
  y 
)    ((__fp_unordered_compare(x, y) & 0x4500) == 0)

Definition at line 537 of file mingw_math.h.

◆ isgreaterequal

#define isgreaterequal (   x,
  y 
)    ((__fp_unordered_compare (x, y) & FP_INFINITE) == 0)

Definition at line 539 of file mingw_math.h.

◆ isinf

#define isinf (   x)    (fpclassify(x) == FP_INFINITE)

Definition at line 94 of file mingw_math.h.

◆ isless

#define isless (   x,
  y 
)    ((__fp_unordered_compare (y, x) & 0x4500) == 0)

Definition at line 538 of file mingw_math.h.

◆ islessequal

#define islessequal (   x,
  y 
)    ((__fp_unordered_compare(y, x) & FP_INFINITE) == 0)

Definition at line 540 of file mingw_math.h.

◆ islessgreater

#define islessgreater (   x,
  y 
)    ((__fp_unordered_compare(x, y) & FP_SUBNORMAL) == 0)

Definition at line 541 of file mingw_math.h.

◆ isnan

#define isnan (   x)
Value:
(sizeof (x) == sizeof (float) ? __isnanf (x) \
: sizeof (x) == sizeof (double) ? __isnan (x) \
: __isnanl (x))
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
int __cdecl __isnanf(float)
Definition: mingw_math.h:114
int __cdecl __isnan(double)
Definition: mingw_math.h:105
int __cdecl __isnanl(long double)
Definition: mingw_math.h:123

Definition at line 133 of file mingw_math.h.

◆ isnormal

#define isnormal (   x)    (fpclassify(x) == FP_NORMAL)

Definition at line 138 of file mingw_math.h.

◆ isunordered

#define isunordered (   x,
  y 
)    ((__fp_unordered_compare(x, y) & 0x4500) == 0x4500)

Definition at line 542 of file mingw_math.h.

◆ NAN

#define NAN   __QNAN

Definition at line 22 of file mingw_math.h.

◆ signbit

#define signbit (   x)
Value:
(sizeof (x) == sizeof (float) ? __signbitf (x) \
: sizeof (x) == sizeof (double) ? __signbit (x) \
int __cdecl __signbit(double)
Definition: mingw_math.h:145
int __cdecl __signbitf(float)
Definition: mingw_math.h:151
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
int __cdecl __signbitl(long double)
Definition: mingw_math.h:157

Definition at line 164 of file mingw_math.h.

Typedef Documentation

◆ double_t

typedef long double double_t

Definition at line 40 of file mingw_math.h.

◆ float_t

typedef long double float_t

Definition at line 39 of file mingw_math.h.

Function Documentation

◆ __fp_unordered_compare()

__CRT_INLINE int __cdecl __fp_unordered_compare ( long double  x,
long double  y 
)

Definition at line 529 of file mingw_math.h.

529  {
530  unsigned short retval;
531  __asm__ __volatile__ ("fucom %%st(1);"
532  "fnstsw;": "=a" (retval) : "t" (x), "u" (y));
533  return retval;
534  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
GLint GLint GLint GLint GLint GLint y
Definition: gl.h:1548

◆ __fpclassify()

__CRT_INLINE int __cdecl __fpclassify ( double  x)

Definition at line 74 of file mingw_math.h.

74  {
75  unsigned short sw;
76  __asm__ __volatile__ ("fxam; fstsw %%ax;" : "=a" (sw): "t" (x));
77  return sw & (FP_NAN | FP_NORMAL | FP_ZERO );
78  }
#define FP_ZERO
Definition: mingw_math.h:53
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __fpclassifyf()

__CRT_INLINE int __cdecl __fpclassifyf ( float  x)

Definition at line 79 of file mingw_math.h.

79  {
80  unsigned short sw;
81  __asm__ __volatile__ ("fxam; fstsw %%ax;" : "=a" (sw): "t" (x));
82  return sw & (FP_NAN | FP_NORMAL | FP_ZERO );
83  }
#define FP_ZERO
Definition: mingw_math.h:53
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __fpclassifyl()

__CRT_INLINE int __cdecl __fpclassifyl ( long double  x)

Definition at line 69 of file mingw_math.h.

69  {
70  unsigned short sw;
71  __asm__ __volatile__ ("fxam; fstsw %%ax;" : "=a" (sw): "t" (x));
72  return sw & (FP_NAN | FP_NORMAL | FP_ZERO );
73  }
#define FP_ZERO
Definition: mingw_math.h:53
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __isnan()

__CRT_INLINE int __cdecl __isnan ( double  _x)

Definition at line 105 of file mingw_math.h.

106  {
107  unsigned short sw;
108  __asm__ __volatile__ ("fxam;"
109  "fstsw %%ax": "=a" (sw) : "t" (_x));
110  return (sw & (FP_NAN | FP_NORMAL | FP_INFINITE | FP_ZERO | FP_SUBNORMAL))
111  == FP_NAN;
112  }
#define FP_ZERO
Definition: mingw_math.h:53
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_INFINITE
Definition: mingw_math.h:52
#define FP_SUBNORMAL
Definition: mingw_math.h:54
#define _x(oid)
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __isnanf()

__CRT_INLINE int __cdecl __isnanf ( float  _x)

Definition at line 114 of file mingw_math.h.

115  {
116  unsigned short sw;
117  __asm__ __volatile__ ("fxam;"
118  "fstsw %%ax": "=a" (sw) : "t" (_x));
119  return (sw & (FP_NAN | FP_NORMAL | FP_INFINITE | FP_ZERO | FP_SUBNORMAL))
120  == FP_NAN;
121  }
#define FP_ZERO
Definition: mingw_math.h:53
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_INFINITE
Definition: mingw_math.h:52
#define FP_SUBNORMAL
Definition: mingw_math.h:54
#define _x(oid)
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __isnanl()

__CRT_INLINE int __cdecl __isnanl ( long double  _x)

Definition at line 123 of file mingw_math.h.

124  {
125  unsigned short sw;
126  __asm__ __volatile__ ("fxam;"
127  "fstsw %%ax": "=a" (sw) : "t" (_x));
128  return (sw & (FP_NAN | FP_NORMAL | FP_INFINITE | FP_ZERO | FP_SUBNORMAL))
129  == FP_NAN;
130  }
#define FP_ZERO
Definition: mingw_math.h:53
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define FP_INFINITE
Definition: mingw_math.h:52
#define FP_SUBNORMAL
Definition: mingw_math.h:54
#define _x(oid)
#define FP_NAN
Definition: mingw_math.h:50
#define FP_NORMAL
Definition: mingw_math.h:51

◆ __signbit()

__CRT_INLINE int __cdecl __signbit ( double  x)

Definition at line 145 of file mingw_math.h.

145  {
146  unsigned short stw;
147  __asm__ __volatile__ ( "fxam; fstsw %%ax;": "=a" (stw) : "t" (x));
148  return stw & 0x0200;
149  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ __signbitf()

__CRT_INLINE int __cdecl __signbitf ( float  x)

Definition at line 151 of file mingw_math.h.

151  {
152  unsigned short stw;
153  __asm__ __volatile__ ("fxam; fstsw %%ax;": "=a" (stw) : "t" (x));
154  return stw & 0x0200;
155  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ __signbitl()

__CRT_INLINE int __cdecl __signbitl ( long double  x)

Definition at line 157 of file mingw_math.h.

157  {
158  unsigned short stw;
159  __asm__ __volatile__ ("fxam; fstsw %%ax;": "=a" (stw) : "t" (x));
160  return stw & 0x0200;
161  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ acosh()

double __cdecl acosh ( double  )

Definition at line 54 of file fun_ieee.c.

55 {
56  // must be x>=1, if not return Nan (Not a Number)
57  if(!(x>=1.0)) return sqrt(-1.0);
58 
59  // return only the positive result (as sqrt does).
60  return log(x+sqrt(x*x-1.0));
61 }
_STLP_DECLSPEC complex< float > _STLP_CALL sqrt(const complex< float > &)
Definition: complex.cpp:188
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
#define log(outFile, fmt,...)
Definition: util.h:15

Referenced by rpn_acosh().

◆ acoshf()

float __cdecl acoshf ( float  )

◆ acoshl()

long double __cdecl acoshl ( long double  )

◆ asinh()

double __cdecl asinh ( double  )

Definition at line 49 of file fun_ieee.c.

50 {
51  return log(x+sqrt(x*x+1));
52 }
_STLP_DECLSPEC complex< float > _STLP_CALL sqrt(const complex< float > &)
Definition: complex.cpp:188
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
#define log(outFile, fmt,...)
Definition: util.h:15

Referenced by rpn_asinh().

◆ asinhf()

float __cdecl asinhf ( float  )

◆ asinhl()

long double __cdecl asinhl ( long double  )

◆ atanh()

double __cdecl atanh ( double  )

Definition at line 63 of file fun_ieee.c.

64 {
65  // must be x>-1, x<1, if not return Nan (Not a Number)
66  if(!(x>-1.0 && x<1.0)) return sqrt(-1.0);
67 
68  return log((1.0+x)/(1.0-x))/2.0;
69 }
_STLP_DECLSPEC complex< float > _STLP_CALL sqrt(const complex< float > &)
Definition: complex.cpp:188
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
#define log(outFile, fmt,...)
Definition: util.h:15

Referenced by rpn_atanh().

◆ atanhf()

float __cdecl atanhf ( float  )

◆ atanhl()

long double __cdecl atanhl ( long double  )

◆ cbrt()

double __cdecl cbrt ( double  )

Referenced by rpn_cbrt().

◆ cbrtf()

float __cdecl cbrtf ( float  )

◆ cbrtl()

long double __cdecl cbrtl ( long double  )

◆ copysign()

double __cdecl copysign ( double  ,
double   
)

◆ copysignf()

float __cdecl copysignf ( float  ,
float   
)

Referenced by float_32_to_16(), and wined3d_ftoa().

◆ copysignl()

long double __cdecl copysignl ( long double  ,
long double   
)

◆ erf()

◆ erfc()

double __cdecl erfc ( double  )

◆ erfcf()

float __cdecl erfcf ( float  )

◆ erfcl()

long double __cdecl erfcl ( long double  )

◆ erff()

float __cdecl erff ( float  )

◆ erfl()

◆ exp2()

◆ exp2f()

float __cdecl exp2f ( float  )

◆ exp2l()

long double __cdecl exp2l ( long double  )

◆ expm1()

double __cdecl expm1 ( double  )

◆ expm1f()

float __cdecl expm1f ( float  )

◆ expm1l()

long double __cdecl expm1l ( long double  )

◆ fdim()

double __cdecl fdim ( double  x,
double  y 
)

◆ fdimf()

float __cdecl fdimf ( float  x,
float  y 
)

◆ fdiml()

long double __cdecl fdiml ( long double  x,
long double  y 
)

◆ fma()

double __cdecl fma ( double  ,
double  ,
double   
)

◆ fmaf()

float __cdecl fmaf ( float  ,
float  ,
float   
)

◆ fmal()

long double __cdecl fmal ( long double  ,
long double  ,
long double   
)

◆ fmax()

double __cdecl fmax ( double  ,
double   
)

◆ fmaxf()

float __cdecl fmaxf ( float  ,
float   
)

◆ fmaxl()

long double __cdecl fmaxl ( long double  ,
long double   
)

◆ fmin()

double __cdecl fmin ( double  ,
double   
)

Referenced by test_DuplicateHandle().

◆ fminf()

float __cdecl fminf ( float  ,
float   
)

◆ fminl()

long double __cdecl fminl ( long double  ,
long double   
)

◆ ilogb()

int __cdecl ilogb ( double  )

◆ ilogbf()

int __cdecl ilogbf ( float  )

◆ ilogbl()

int __cdecl ilogbl ( long double  )

◆ lgamma()

double __cdecl lgamma ( double  )

◆ lgammaf()

float __cdecl lgammaf ( float  )

◆ lgammal()

long double __cdecl lgammal ( long double  )

◆ llrint()

__MINGW_EXTENSION __CRT_INLINE long long __cdecl llrint ( double  x)

Definition at line 395 of file mingw_math.h.

396  {
397  __MINGW_EXTENSION long long retval = 0ll;
398  __asm__ __volatile__ \
399  ("fistpll %0" : "=m" (retval) : "t" (x) : "st"); \
400  return retval;
401  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define __MINGW_EXTENSION
Definition: _mingw.h:148
w ll
Definition: byte_order.h:166

◆ llrintf()

__MINGW_EXTENSION __CRT_INLINE long long __cdecl llrintf ( float  x)

Definition at line 403 of file mingw_math.h.

404  {
405  __MINGW_EXTENSION long long retval = 0ll;
406  __asm__ __volatile__ \
407  ("fistpll %0" : "=m" (retval) : "t" (x) : "st"); \
408  return retval;
409  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define __MINGW_EXTENSION
Definition: _mingw.h:148
w ll
Definition: byte_order.h:166

◆ llrintl()

__MINGW_EXTENSION __CRT_INLINE long long __cdecl llrintl ( long double  x)

Definition at line 411 of file mingw_math.h.

412  {
413  __MINGW_EXTENSION long long retval = 0ll;
414  __asm__ __volatile__ \
415  ("fistpll %0" : "=m" (retval) : "t" (x) : "st"); \
416  return retval;
417  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
#define __MINGW_EXTENSION
Definition: _mingw.h:148
w ll
Definition: byte_order.h:166

◆ llround()

◆ llroundf()

__MINGW_EXTENSION long long __cdecl llroundf ( float  )

◆ llroundl()

◆ log1p()

double __cdecl log1p ( double  )

◆ log1pf()

float __cdecl log1pf ( float  )

◆ log1pl()

long double __cdecl log1pl ( long double  )

◆ log2()

double __cdecl log2 ( double  )

Referenced by logbase2(), and pres_log().

◆ log2f()

float __cdecl log2f ( float  )

◆ log2l()

long double __cdecl log2l ( long double  )

◆ logb()

__CRT_INLINE double __cdecl logb ( double  x)

Definition at line 243 of file mingw_math.h.

244  {
245  double res = 0.0;
246  __asm__ __volatile__ ("fxtract\n\t"
247  "fstp %%st" : "=t" (res) : "0" (x));
248  return res;
249  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
GLuint res
Definition: glext.h:9613

◆ logbf()

__CRT_INLINE float __cdecl logbf ( float  x)

Definition at line 251 of file mingw_math.h.

252  {
253  float res = 0.0F;
254  __asm__ __volatile__ ("fxtract\n\t"
255  "fstp %%st" : "=t" (res) : "0" (x));
256  return res;
257  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
GLuint res
Definition: glext.h:9613

◆ logbl()

__CRT_INLINE long double __cdecl logbl ( long double  x)

Definition at line 259 of file mingw_math.h.

260  {
261  long double res = 0.0l;
262  __asm__ __volatile__ ("fxtract\n\t"
263  "fstp %%st" : "=t" (res) : "0" (x));
264  return res;
265  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")
GLuint res
Definition: glext.h:9613

◆ lrint()

__CRT_INLINE long __cdecl lrint ( double  x)

Definition at line 371 of file mingw_math.h.

372  {
373  long retval = 0;
374  __asm__ __volatile__ \
375  ("fistpl %0" : "=m" (retval) : "t" (x) : "st"); \
376  return retval;
377  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ lrintf()

__CRT_INLINE long __cdecl lrintf ( float  x)

Definition at line 379 of file mingw_math.h.

380  {
381  long retval = 0;
382  __asm__ __volatile__ \
383  ("fistpl %0" : "=m" (retval) : "t" (x) : "st"); \
384  return retval;
385  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ lrintl()

__CRT_INLINE long __cdecl lrintl ( long double  x)

Definition at line 387 of file mingw_math.h.

388  {
389  long retval = 0;
390  __asm__ __volatile__ \
391  ("fistpl %0" : "=m" (retval) : "t" (x) : "st"); \
392  return retval;
393  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ lround()

long __cdecl lround ( double  )

◆ lroundf()

long __cdecl lroundf ( float  )

◆ lroundl()

long __cdecl lroundl ( long double  )

◆ nan()

double __cdecl nan ( const char tagp)

◆ nanf()

float __cdecl nanf ( const char tagp)

◆ nanl()

long double __cdecl nanl ( const char tagp)

◆ nearbyint()

double __cdecl nearbyint ( double  )

◆ nearbyintf()

float __cdecl nearbyintf ( float  )

◆ nearbyintl()

long double __cdecl nearbyintl ( long double  )

◆ nextafter()

double __cdecl nextafter ( double  ,
double   
)

◆ nextafterf()

float __cdecl nextafterf ( float  ,
float   
)

◆ nextafterl()

long double __cdecl nextafterl ( long double  ,
long double   
)

◆ nexttoward()

double __cdecl nexttoward ( double  ,
long double   
)

◆ nexttowardf()

float __cdecl nexttowardf ( float  ,
long double   
)

◆ nexttowardl()

long double __cdecl nexttowardl ( long double  ,
long double   
)

◆ remainder()

◆ remainderf()

float __cdecl remainderf ( float  ,
float   
)

◆ remainderl()

long double __cdecl remainderl ( long double  ,
long double   
)

◆ remquo()

double __cdecl remquo ( double  ,
double  ,
int  
)

◆ remquof()

float __cdecl remquof ( float  ,
float  ,
int  
)

◆ remquol()

long double __cdecl remquol ( long double  ,
long double  ,
int  
)

◆ rint()

__CRT_INLINE double __cdecl rint ( double  x)

Definition at line 350 of file mingw_math.h.

351  {
352  double retval = 0.0;
353  __asm__ __volatile__ ("frndint;": "=t" (retval) : "0" (x));
354  return retval;
355  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ rintf()

__CRT_INLINE float __cdecl rintf ( float  x)

Definition at line 357 of file mingw_math.h.

358  {
359  float retval = 0.0;
360  __asm__ __volatile__ ("frndint;" : "=t" (retval) : "0" (x) );
361  return retval;
362  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ rintl()

__CRT_INLINE long double __cdecl rintl ( long double  x)

Definition at line 364 of file mingw_math.h.

365  {
366  long double retval = 0.0l;
367  __asm__ __volatile__ ("frndint;" : "=t" (retval) : "0" (x) );
368  return retval;
369  }
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
__asm__("\t.globl GetPhys\n" "GetPhys:\t\n" "mflr 0\n\t" "stwu 0,-16(1)\n\t" "mfmsr 5\n\t" "andi. 6,5,0xffef\n\t" "mtmsr 6\n\t" "isync\n\t" "sync\n\t" "lwz 3,0(3)\n\t" "mtmsr 5\n\t" "isync\n\t" "sync\n\t" "lwz 0,0(1)\n\t" "addi 1,1,16\n\t" "mtlr 0\n\t" "blr")

◆ round()

double __cdecl round ( double  )

◆ roundf()

float __cdecl roundf ( float  )

◆ roundl()

long double __cdecl roundl ( long double  )

◆ scalbln()

double __cdecl scalbln ( double  ,
long   
)

◆ scalblnf()

float __cdecl scalblnf ( float  ,
long   
)

◆ scalblnl()

long double __cdecl scalblnl ( long double  ,
long   
)

◆ scalbn()

double __cdecl scalbn ( double  ,
int   
)

◆ scalbnf()

float __cdecl scalbnf ( float  ,
int   
)

◆ scalbnl()

long double __cdecl scalbnl ( long double  ,
int   
)

◆ tgamma()

double __cdecl tgamma ( double  )

◆ tgammaf()

float __cdecl tgammaf ( float  )

◆ tgammal()

long double __cdecl tgammal ( long double  )

◆ trunc()

◆ truncf()

float __cdecl truncf ( float  )

◆ truncl()

long double __cdecl truncl ( long double  )

Variable Documentation

◆ __INFF

const float __INFF

◆ __INFL

const long double __INFL

◆ __QNAN

const double __QNAN