ReactOS 0.4.15-dev-8614-gbc76250
trionan.c
Go to the documentation of this file.
1/*************************************************************************
2 *
3 * $Id$
4 *
5 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
14 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
15 *
16 ************************************************************************
17 *
18 * Functions to handle special quantities in floating-point numbers
19 * (that is, NaNs and infinity). They provide the capability to detect
20 * and fabricate special quantities.
21 *
22 * Although written to be as portable as possible, it can never be
23 * guaranteed to work on all platforms, as not all hardware supports
24 * special quantities.
25 *
26 * The approach used here (approximately) is to:
27 *
28 * 1. Use C99 functionality when available.
29 * 2. Use IEEE 754 bit-patterns if possible.
30 * 3. Use platform-specific techniques.
31 *
32 ************************************************************************/
33
34/*
35 * TODO:
36 * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
37 * trio_isnan() etc.
38 */
39
40/*************************************************************************
41 * Include files
42 */
43#include "triodef.h"
44#include "trionan.h"
45
46#include <math.h>
47#include <string.h>
48#include <limits.h>
49#include <float.h>
50#if defined(TRIO_PLATFORM_UNIX)
51# include <signal.h>
52#endif
53#if defined(TRIO_COMPILER_DECC)
54# if defined(__linux__)
55# include <cpml.h>
56# else
57# include <fp_class.h>
58# endif
59#endif
60#include <assert.h>
61
62#if defined(TRIO_DOCUMENTATION)
63# include "doc/doc_nan.h"
64#endif
69/*************************************************************************
70 * Definitions
71 */
72
73#define TRIO_TRUE (1 == 1)
74#define TRIO_FALSE (0 == 1)
75
76/*
77 * We must enable IEEE floating-point on Alpha
78 */
79#if defined(__alpha) && !defined(_IEEE_FP)
80# if defined(TRIO_COMPILER_DECC)
81# if defined(TRIO_PLATFORM_VMS)
82# error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
83# else
84# if !defined(_CFE)
85# error "Must be compiled with option -ieee"
86# endif
87# endif
88# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
89# error "Must be compiled with option -mieee"
90# endif
91#endif /* __alpha && ! _IEEE_FP */
92
93/*
94 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
95 * following properties (amongst others)
96 *
97 * o FLT_RADIX == 2: binary encoding
98 * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
99 * to indicate special numbers (e.g. NaN and Infinity), so the
100 * maximum exponent is 10 bits wide (2^10 == 1024).
101 * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
102 * numbers are normalized the initial binary 1 is represented
103 * implicitly (the so-called "hidden bit"), which leaves us with
104 * the ability to represent 53 bits wide mantissa.
105 */
106#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
107# define USE_IEEE_754
108#endif
109
110
111/*************************************************************************
112 * Constants
113 */
114
115static TRIO_CONST char rcsid[] = "@(#)$Id$";
116
117#if defined(USE_IEEE_754)
118
119/*
120 * Endian-agnostic indexing macro.
121 *
122 * The value of internalEndianMagic, when converted into a 64-bit
123 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
124 * integer value instead of a double, but not all platforms supports
125 * that type). The value is automatically encoded with the correct
126 * endianness by the compiler, which means that we can support any
127 * kind of endianness. The individual bytes are then used as an index
128 * for the IEEE 754 bit-patterns and masks.
129 */
130#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
131
132#if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
133static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
134#else
135static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
136#endif
137
138/* Mask for the exponent */
139static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
140 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
141};
142
143/* Mask for the mantissa */
144static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
145 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
146};
147
148/* Mask for the sign bit */
149static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
150 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
151};
152
153/* Bit-pattern for negative zero */
154static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
155 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
156};
157
158/* Bit-pattern for infinity */
159static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
160 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
161};
162
163/* Bit-pattern for quiet NaN */
164static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
165 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
166};
167
168
169/*************************************************************************
170 * Functions
171 */
172
173/*
174 * trio_make_double
175 */
176TRIO_PRIVATE double
177trio_make_double
179 TRIO_CONST unsigned char *values)
180{
181 TRIO_VOLATILE double result;
182 int i;
183
184 for (i = 0; i < (int)sizeof(double); i++) {
185 ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
186 }
187 return result;
188}
189
190/*
191 * trio_is_special_quantity
192 */
193TRIO_PRIVATE int
194trio_is_special_quantity
195TRIO_ARGS2((number, has_mantissa),
196 double number,
197 int *has_mantissa)
198{
199 unsigned int i;
200 unsigned char current;
201 int is_special_quantity = TRIO_TRUE;
202
203 *has_mantissa = 0;
204
205 for (i = 0; i < (unsigned int)sizeof(double); i++) {
206 current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
207 is_special_quantity
208 &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
209 *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
210 }
211 return is_special_quantity;
212}
213
214/*
215 * trio_is_negative
216 */
217TRIO_PRIVATE int
218trio_is_negative
220 double number)
221{
222 unsigned int i;
223 int is_negative = TRIO_FALSE;
224
225 for (i = 0; i < (unsigned int)sizeof(double); i++) {
226 is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
227 & ieee_754_sign_mask[i]);
228 }
229 return is_negative;
230}
231
232#endif /* USE_IEEE_754 */
233
234
240TRIO_PUBLIC double
242{
243#if defined(USE_IEEE_754)
244 return trio_make_double(ieee_754_negzero_array);
245#else
246 TRIO_VOLATILE double zero = 0.0;
247
248 return -zero;
249#endif
250}
251
257TRIO_PUBLIC double
259{
260 /* Cache the result */
261 static double result = 0.0;
262
263 if (result == 0.0) {
264
265#if defined(INFINITY) && defined(__STDC_IEC_559__)
267
268#elif defined(USE_IEEE_754)
269 result = trio_make_double(ieee_754_infinity_array);
270
271#else
272 /*
273 * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
274 * as infinity. Otherwise we have to resort to an overflow
275 * operation to generate infinity.
276 */
277# if defined(TRIO_PLATFORM_UNIX)
278 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
279# endif
280
282 if (HUGE_VAL == DBL_MAX) {
283 /* Force overflow */
284 result += HUGE_VAL;
285 }
286
287# if defined(TRIO_PLATFORM_UNIX)
288 signal(SIGFPE, signal_handler);
289# endif
290
291#endif
292 }
293 return result;
294}
295
301TRIO_PUBLIC double
303{
304 static double result = 0.0;
305
306 if (result == 0.0) {
307 /*
308 * Negative infinity is calculated by negating positive infinity,
309 * which can be done because it is legal to do calculations on
310 * infinity (for example, 1 / infinity == 0).
311 */
312 result = -trio_pinf();
313 }
314 return result;
315}
316
322TRIO_PUBLIC double
324{
325 /* Cache the result */
326 static double result = 0.0;
327
328 if (result == 0.0) {
329
330#if defined(TRIO_COMPILER_SUPPORTS_C99) && (!defined(__REACTOS__) || !defined(__clang__))
331 result = nan("");
332
333#elif defined(NAN) && defined(__STDC_IEC_559__)
334 result = (double)NAN;
335
336#elif defined(USE_IEEE_754)
337 result = trio_make_double(ieee_754_qnan_array);
338
339#else
340 /*
341 * There are several ways to generate NaN. The one used here is
342 * to divide infinity by infinity. I would have preferred to add
343 * negative infinity to positive infinity, but that yields wrong
344 * result (infinity) on FreeBSD.
345 *
346 * This may fail if the hardware does not support NaN, or if
347 * the Invalid Operation floating-point exception is unmasked.
348 */
349# if defined(TRIO_PLATFORM_UNIX)
350 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
351# endif
352
353 result = trio_pinf() / trio_pinf();
354
355# if defined(TRIO_PLATFORM_UNIX)
356 signal(SIGFPE, signal_handler);
357# endif
358
359#endif
360 }
361 return result;
362}
363
370TRIO_PUBLIC int
371trio_isnan
373 double number)
374{
375#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
376 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
377 /*
378 * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
379 * function. This function was already present in XPG4, but this
380 * is a bit tricky to detect with compiler defines, so we choose
381 * the conservative approach and only use it for UNIX95.
382 */
383 return isnan(number);
384
385#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
386 /*
387 * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
388 * function.
389 */
390 return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
391
392#elif defined(USE_IEEE_754)
393 /*
394 * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
395 * pattern, and a non-empty mantissa.
396 */
397 int has_mantissa;
398 int is_special_quantity;
399
400 is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
401
402 return (is_special_quantity && has_mantissa);
403
404#else
405 /*
406 * Fallback solution
407 */
408 int status;
409 double integral, fraction;
410
411# if defined(TRIO_PLATFORM_UNIX)
412 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
413# endif
414
415 status = (/*
416 * NaN is the only number which does not compare to itself
417 */
419 /*
420 * Fallback solution if NaN compares to NaN
421 */
422 ((number != 0.0) &&
423 (fraction = modf(number, &integral),
424 integral == fraction)));
425
426# if defined(TRIO_PLATFORM_UNIX)
427 signal(SIGFPE, signal_handler);
428# endif
429
430 return status;
431
432#endif
433}
434
441TRIO_PUBLIC int
442trio_isinf
444 double number)
445{
446#if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
447 /*
448 * DECC has an isinf() macro, but it works differently than that
449 * of C99, so we use the fp_class() function instead.
450 */
451 return ((fp_class(number) == FP_POS_INF)
452 ? 1
453 : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
454
455#elif defined(isinf)
456 /*
457 * C99 defines isinf() as a macro.
458 */
459 return isinf(number)
460 ? ((number > 0.0) ? 1 : -1)
461 : 0;
462
463#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
464 /*
465 * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
466 * function that can be used to detect infinity.
467 */
468 return ((_fpclass(number) == _FPCLASS_PINF)
469 ? 1
470 : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
471
472#elif defined(USE_IEEE_754)
473 /*
474 * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
475 * pattern, and an empty mantissa.
476 */
477 int has_mantissa;
478 int is_special_quantity;
479
480 is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
481
482 return (is_special_quantity && !has_mantissa)
483 ? ((number < 0.0) ? -1 : 1)
484 : 0;
485
486#else
487 /*
488 * Fallback solution.
489 */
490 int status;
491
492# if defined(TRIO_PLATFORM_UNIX)
493 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
494# endif
495
496 double infinity = trio_pinf();
497
498 status = ((number == infinity)
499 ? 1
500 : ((number == -infinity) ? -1 : 0));
501
502# if defined(TRIO_PLATFORM_UNIX)
503 signal(SIGFPE, signal_handler);
504# endif
505
506 return status;
507
508#endif
509}
510
511#if 0
512 /* Temporary fix - this routine is not used anywhere */
519TRIO_PUBLIC int
520trio_isfinite
522 double number)
523{
524#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
525 /*
526 * C99 defines isfinite() as a macro.
527 */
528 return isfinite(number);
529
530#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
531 /*
532 * Microsoft Visual C++ and Borland C++ Builder use _finite().
533 */
534 return _finite(number);
535
536#elif defined(USE_IEEE_754)
537 /*
538 * Examine IEEE 754 bit-pattern. For finity we do not care about the
539 * mantissa.
540 */
541 int dummy;
542
543 return (! trio_is_special_quantity(number, &dummy));
544
545#else
546 /*
547 * Fallback solution.
548 */
549 return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
550
551#endif
552}
553
554#endif
555
556/*
557 * The sign of NaN is always false
558 */
559TRIO_PUBLIC int
560trio_fpclassify_and_signbit
561TRIO_ARGS2((number, is_negative),
562 double number,
563 int *is_negative)
564{
565#if defined(fpclassify) && defined(signbit)
566 /*
567 * C99 defines fpclassify() and signbit() as a macros
568 */
569 *is_negative = signbit(number);
570 switch (fpclassify(number)) {
571 case FP_NAN:
572 return TRIO_FP_NAN;
573 case FP_INFINITE:
574 return TRIO_FP_INFINITE;
575 case FP_SUBNORMAL:
576 return TRIO_FP_SUBNORMAL;
577 case FP_ZERO:
578 return TRIO_FP_ZERO;
579 default:
580 return TRIO_FP_NORMAL;
581 }
582
583#else
584# if defined(TRIO_COMPILER_DECC)
585 /*
586 * DECC has an fp_class() function.
587 */
588# define TRIO_FPCLASSIFY(n) fp_class(n)
589# define TRIO_QUIET_NAN FP_QNAN
590# define TRIO_SIGNALLING_NAN FP_SNAN
591# define TRIO_POSITIVE_INFINITY FP_POS_INF
592# define TRIO_NEGATIVE_INFINITY FP_NEG_INF
593# define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
594# define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
595# define TRIO_POSITIVE_ZERO FP_POS_ZERO
596# define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
597# define TRIO_POSITIVE_NORMAL FP_POS_NORM
598# define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
599
600# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
601 /*
602 * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
603 * function.
604 */
605# define TRIO_FPCLASSIFY(n) _fpclass(n)
606# define TRIO_QUIET_NAN _FPCLASS_QNAN
607# define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
608# define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
609# define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
610# define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
611# define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
612# define TRIO_POSITIVE_ZERO _FPCLASS_PZ
613# define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
614# define TRIO_POSITIVE_NORMAL _FPCLASS_PN
615# define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
616
617# elif defined(FP_PLUS_NORM)
618 /*
619 * HP-UX 9.x and 10.x have an fpclassify() function, that is different
620 * from the C99 fpclassify() macro supported on HP-UX 11.x.
621 *
622 * AIX has class() for C, and _class() for C++, which returns the
623 * same values as the HP-UX fpclassify() function.
624 */
625# if defined(TRIO_PLATFORM_AIX)
626# if defined(__cplusplus)
627# define TRIO_FPCLASSIFY(n) _class(n)
628# else
629# define TRIO_FPCLASSIFY(n) class(n)
630# endif
631# else
632# define TRIO_FPCLASSIFY(n) fpclassify(n)
633# endif
634# define TRIO_QUIET_NAN FP_QNAN
635# define TRIO_SIGNALLING_NAN FP_SNAN
636# define TRIO_POSITIVE_INFINITY FP_PLUS_INF
637# define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
638# define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
639# define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
640# define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
641# define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
642# define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
643# define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
644# endif
645
646# if defined(TRIO_FPCLASSIFY)
647 switch (TRIO_FPCLASSIFY(number)) {
648 case TRIO_QUIET_NAN:
649 case TRIO_SIGNALLING_NAN:
650 *is_negative = TRIO_FALSE; /* NaN has no sign */
651 return TRIO_FP_NAN;
652 case TRIO_POSITIVE_INFINITY:
653 *is_negative = TRIO_FALSE;
654 return TRIO_FP_INFINITE;
655 case TRIO_NEGATIVE_INFINITY:
656 *is_negative = TRIO_TRUE;
657 return TRIO_FP_INFINITE;
658 case TRIO_POSITIVE_SUBNORMAL:
659 *is_negative = TRIO_FALSE;
660 return TRIO_FP_SUBNORMAL;
661 case TRIO_NEGATIVE_SUBNORMAL:
662 *is_negative = TRIO_TRUE;
663 return TRIO_FP_SUBNORMAL;
664 case TRIO_POSITIVE_ZERO:
665 *is_negative = TRIO_FALSE;
666 return TRIO_FP_ZERO;
667 case TRIO_NEGATIVE_ZERO:
668 *is_negative = TRIO_TRUE;
669 return TRIO_FP_ZERO;
670 case TRIO_POSITIVE_NORMAL:
671 *is_negative = TRIO_FALSE;
672 return TRIO_FP_NORMAL;
673 case TRIO_NEGATIVE_NORMAL:
674 *is_negative = TRIO_TRUE;
675 return TRIO_FP_NORMAL;
676 default:
677 /* Just in case... */
678 *is_negative = (number < 0.0);
679 return TRIO_FP_NORMAL;
680 }
681
682# else
683 /*
684 * Fallback solution.
685 */
686 int rc;
687
688 if (number == 0.0) {
689 /*
690 * In IEEE 754 the sign of zero is ignored in comparisons, so we
691 * have to handle this as a special case by examining the sign bit
692 * directly.
693 */
694# if defined(USE_IEEE_754)
695 *is_negative = trio_is_negative(number);
696# else
697 *is_negative = TRIO_FALSE; /* FIXME */
698# endif
699 return TRIO_FP_ZERO;
700 }
701 if (trio_isnan(number)) {
702 *is_negative = TRIO_FALSE;
703 return TRIO_FP_NAN;
704 }
705 if ((rc = trio_isinf(number))) {
706 *is_negative = (rc == -1);
707 return TRIO_FP_INFINITE;
708 }
709 if ((number > 0.0) && (number < DBL_MIN)) {
710 *is_negative = TRIO_FALSE;
711 return TRIO_FP_SUBNORMAL;
712 }
713 if ((number < 0.0) && (number > -DBL_MIN)) {
714 *is_negative = TRIO_TRUE;
715 return TRIO_FP_SUBNORMAL;
716 }
717 *is_negative = (number < 0.0);
718 return TRIO_FP_NORMAL;
719
720# endif
721#endif
722}
723
731TRIO_PUBLIC int
732trio_signbit
734 double number)
735{
736 int is_negative;
737
738 (void)trio_fpclassify_and_signbit(number, &is_negative);
739 return is_negative;
740}
741
742#if 0
743 /* Temporary fix - this routine is not used in libxml */
750TRIO_PUBLIC int
751trio_fpclassify
753 double number)
754{
755 int dummy;
756
757 return trio_fpclassify_and_signbit(number, &dummy);
758}
759
760#endif
761
764/*************************************************************************
765 * For test purposes.
766 *
767 * Add the following compiler option to include this test code.
768 *
769 * Unix : -DSTANDALONE
770 * VMS : /DEFINE=(STANDALONE)
771 */
772#if defined(STANDALONE)
773# include <stdio.h>
774
775static TRIO_CONST char *
776getClassification
778 int type)
779{
780 switch (type) {
781 case TRIO_FP_INFINITE:
782 return "FP_INFINITE";
783 case TRIO_FP_NAN:
784 return "FP_NAN";
785 case TRIO_FP_NORMAL:
786 return "FP_NORMAL";
788 return "FP_SUBNORMAL";
789 case TRIO_FP_ZERO:
790 return "FP_ZERO";
791 default:
792 return "FP_UNKNOWN";
793 }
794}
795
796static void
797print_class
798TRIO_ARGS2((prefix, number),
799 TRIO_CONST char *prefix,
800 double number)
801{
802 printf("%-6s: %s %-15s %g\n",
803 prefix,
804 trio_signbit(number) ? "-" : "+",
805 getClassification(TRIO_FPCLASSIFY(number)),
806 number);
807}
808
809int main(TRIO_NOARGS)
810{
811 double my_nan;
812 double my_pinf;
813 double my_ninf;
814# if defined(TRIO_PLATFORM_UNIX)
815 void (*signal_handler) TRIO_PROTO((int));
816# endif
817
818 my_nan = trio_nan();
819 my_pinf = trio_pinf();
820 my_ninf = trio_ninf();
821
822 print_class("Nan", my_nan);
823 print_class("PInf", my_pinf);
824 print_class("NInf", my_ninf);
825 print_class("PZero", 0.0);
826 print_class("NZero", -0.0);
827 print_class("PNorm", 1.0);
828 print_class("NNorm", -1.0);
829 print_class("PSub", 1.01e-307 - 1.00e-307);
830 print_class("NSub", 1.00e-307 - 1.01e-307);
831
832 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
833 my_nan,
834 ((unsigned char *)&my_nan)[0],
835 ((unsigned char *)&my_nan)[1],
836 ((unsigned char *)&my_nan)[2],
837 ((unsigned char *)&my_nan)[3],
838 ((unsigned char *)&my_nan)[4],
839 ((unsigned char *)&my_nan)[5],
840 ((unsigned char *)&my_nan)[6],
841 ((unsigned char *)&my_nan)[7],
842 trio_isnan(my_nan), trio_isinf(my_nan));
843 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
844 my_pinf,
845 ((unsigned char *)&my_pinf)[0],
846 ((unsigned char *)&my_pinf)[1],
847 ((unsigned char *)&my_pinf)[2],
848 ((unsigned char *)&my_pinf)[3],
849 ((unsigned char *)&my_pinf)[4],
850 ((unsigned char *)&my_pinf)[5],
851 ((unsigned char *)&my_pinf)[6],
852 ((unsigned char *)&my_pinf)[7],
853 trio_isnan(my_pinf), trio_isinf(my_pinf));
854 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
855 my_ninf,
856 ((unsigned char *)&my_ninf)[0],
857 ((unsigned char *)&my_ninf)[1],
858 ((unsigned char *)&my_ninf)[2],
859 ((unsigned char *)&my_ninf)[3],
860 ((unsigned char *)&my_ninf)[4],
861 ((unsigned char *)&my_ninf)[5],
862 ((unsigned char *)&my_ninf)[6],
863 ((unsigned char *)&my_ninf)[7],
864 trio_isnan(my_ninf), trio_isinf(my_ninf));
865
866# if defined(TRIO_PLATFORM_UNIX)
867 signal_handler = signal(SIGFPE, SIG_IGN);
868# endif
869
870 my_pinf = DBL_MAX + DBL_MAX;
871 my_ninf = -my_pinf;
872 my_nan = my_pinf / my_pinf;
873
874# if defined(TRIO_PLATFORM_UNIX)
875 signal(SIGFPE, signal_handler);
876# endif
877
878 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
879 my_nan,
880 ((unsigned char *)&my_nan)[0],
881 ((unsigned char *)&my_nan)[1],
882 ((unsigned char *)&my_nan)[2],
883 ((unsigned char *)&my_nan)[3],
884 ((unsigned char *)&my_nan)[4],
885 ((unsigned char *)&my_nan)[5],
886 ((unsigned char *)&my_nan)[6],
887 ((unsigned char *)&my_nan)[7],
888 trio_isnan(my_nan), trio_isinf(my_nan));
889 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
890 my_pinf,
891 ((unsigned char *)&my_pinf)[0],
892 ((unsigned char *)&my_pinf)[1],
893 ((unsigned char *)&my_pinf)[2],
894 ((unsigned char *)&my_pinf)[3],
895 ((unsigned char *)&my_pinf)[4],
896 ((unsigned char *)&my_pinf)[5],
897 ((unsigned char *)&my_pinf)[6],
898 ((unsigned char *)&my_pinf)[7],
899 trio_isnan(my_pinf), trio_isinf(my_pinf));
900 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
901 my_ninf,
902 ((unsigned char *)&my_ninf)[0],
903 ((unsigned char *)&my_ninf)[1],
904 ((unsigned char *)&my_ninf)[2],
905 ((unsigned char *)&my_ninf)[3],
906 ((unsigned char *)&my_ninf)[4],
907 ((unsigned char *)&my_ninf)[5],
908 ((unsigned char *)&my_ninf)[6],
909 ((unsigned char *)&my_ninf)[7],
910 trio_isnan(my_ninf), trio_isinf(my_ninf));
911
912 return 0;
913}
914#endif
#define SIGFPE
Definition: signal.h:30
#define SIG_IGN
Definition: signal.h:48
#define TRIO_ARGS2(list, a1, a2)
Definition: triodef.h:138
#define TRIO_PROTO(x)
Definition: triodef.h:135
#define TRIO_NOARGS
Definition: triodef.h:136
#define TRIO_PUBLIC
Definition: triodef.h:118
#define TRIO_PRIVATE
Definition: triodef.h:121
#define TRIO_VOLATILE
Definition: triodef.h:130
#define TRIO_ARGS1(list, a1)
Definition: triodef.h:137
#define TRIO_CONST
Definition: triodef.h:129
unsigned int(__cdecl typeof(jpeg_read_scanlines))(struct jpeg_decompress_struct *
Definition: typeof.h:31
int main()
Definition: test.c:6
#define printf
Definition: freeldr.h:97
#define DBL_MIN
Definition: gcc_float.h:125
#define DBL_MAX
Definition: gcc_float.h:108
GLuint GLuint GLsizei GLenum type
Definition: gl.h:1545
GLboolean GLenum GLenum GLvoid * values
Definition: glext.h:5666
GLuint64EXT * result
Definition: glext.h:11304
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
TRIO_PUBLIC double trio_nzero(TRIO_NOARGS)
Definition: trionan.c:241
static TRIO_CONST char rcsid[]
Definition: trionan.c:115
TRIO_PUBLIC double trio_pinf(TRIO_NOARGS)
Definition: trionan.c:258
TRIO_PUBLIC double trio_ninf(TRIO_NOARGS)
Definition: trionan.c:302
#define TRIO_TRUE
Definition: trionan.c:73
#define TRIO_FALSE
Definition: trionan.c:74
TRIO_PUBLIC double trio_nan(TRIO_NOARGS)
Definition: trionan.c:323
_Check_return_ __MINGW_NOTHROW _CRTIMP int __cdecl _fpclass(_In_ double)
#define _FPCLASS_NINF
Definition: float.h:74
_Check_return_ __MINGW_NOTHROW _CRTIMP int __cdecl _isnan(_In_ double)
_Check_return_ __MINGW_NOTHROW _CRTIMP int __cdecl _finite(_In_ double)
#define _FPCLASS_PINF
Definition: float.h:81
#define FP_NAN
Definition: math.h:68
#define FP_ZERO
Definition: math.h:71
_Check_return_ _CRTIMP double __cdecl modf(_In_ double x, _Out_ double *y)
#define FP_INFINITE
Definition: math.h:67
#define FP_SUBNORMAL
Definition: math.h:70
#define HUGE_VAL
Definition: math.h:51
#define isfinite(x)
Definition: mingw_math.h:91
#define isinf(x)
Definition: mingw_math.h:94
#define isnan(x)
Definition: mingw_math.h:133
double __cdecl nan(const char *tagp)
#define fpclassify(x)
Definition: mingw_math.h:86
#define signbit(x)
Definition: mingw_math.h:164
struct task_struct * current
Definition: linux.c:32
#define NAN
Definition: mesh.c:39
static unsigned int number
Definition: dsound.c:1479
#define INFINITY
Definition: misc.c:36
static const char mbstate_t *static wchar_t const char mbstate_t *static const wchar_t int *static double
Definition: string.c:80
int signal
Definition: except.c:82
int zero
Definition: sehframes.cpp:29
Definition: ps.c:97
@ TRIO_FP_ZERO
Definition: trionan.h:32
@ TRIO_FP_SUBNORMAL
Definition: trionan.h:31
@ TRIO_FP_NAN
Definition: trionan.h:29
@ TRIO_FP_INFINITE
Definition: trionan.h:28
@ TRIO_FP_NORMAL
Definition: trionan.h:30