ReactOS 0.4.15-dev-5666-gc548b97
clip.c
Go to the documentation of this file.
1/* $Id: clip.c,v 1.16 1998/02/03 23:45:36 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 2.6
6 * Copyright (C) 1995-1997 Brian Paul
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Library General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public
19 * License along with this library; if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23
24/*
25 * $Log: clip.c,v $
26 * Revision 1.16 1998/02/03 23:45:36 brianp
27 * added space parameter to clip interpolation functions
28 *
29 * Revision 1.15 1998/01/06 02:40:52 brianp
30 * added DavidB's clipping interpolation optimization
31 *
32 * Revision 1.14 1997/07/24 01:24:45 brianp
33 * changed precompiled header symbol from PCH to PC_HEADER
34 *
35 * Revision 1.13 1997/05/28 03:23:48 brianp
36 * added precompiled header (PCH) support
37 *
38 * Revision 1.12 1997/04/02 03:10:06 brianp
39 * call gl_analyze_modelview_matrix instead of gl_compute_modelview_inverse
40 *
41 * Revision 1.11 1997/02/13 21:16:09 brianp
42 * if too many vertices in polygon return VB_SIZE-1, not VB_SIZE
43 *
44 * Revision 1.10 1997/02/10 21:16:12 brianp
45 * added checks in polygon clippers to prevent array overflows
46 *
47 * Revision 1.9 1997/02/04 19:39:39 brianp
48 * changed size of vlist2[] arrays to VB_SIZE per Randy Frank
49 *
50 * Revision 1.8 1996/12/02 20:10:07 brianp
51 * changed the macros in gl_viewclip_polygon() to be like gl_viewclip_line()
52 *
53 * Revision 1.7 1996/10/29 02:55:02 brianp
54 * fixed duplicate vertex bug in gl_viewclip_polygon()
55 *
56 * Revision 1.6 1996/10/07 23:48:33 brianp
57 * changed temporaries to GLdouble in gl_viewclip_polygon()
58 *
59 * Revision 1.5 1996/10/03 01:43:45 brianp
60 * changed INSIDE() macro in gl_viewclip_polygon() to work like other macros
61 *
62 * Revision 1.4 1996/10/03 01:36:33 brianp
63 * changed COMPUTE_INTERSECTION macros in gl_viewclip_polygon to avoid
64 * potential roundoff errors
65 *
66 * Revision 1.3 1996/09/27 01:24:23 brianp
67 * removed unused variables
68 *
69 * Revision 1.2 1996/09/15 01:48:58 brianp
70 * removed #define NULL 0
71 *
72 * Revision 1.1 1996/09/13 01:38:16 brianp
73 * Initial revision
74 *
75 */
76
77
78#ifdef PC_HEADER
79#include "all.h"
80#else
81#include <string.h>
82#include "clip.h"
83#include "context.h"
84#include "dlist.h"
85#include "macros.h"
86#include "matrix.h"
87#include "types.h"
88#include "vb.h"
89#include "xform.h"
90#endif
91
92
93
94
95/* Linear interpolation between A and B: */
96#define LINTERP( T, A, B ) ( (A) + (T) * ( (B) - (A) ) )
97
98
99/* Clipping coordinate spaces */
100#define EYE_SPACE 1
101#define CLIP_SPACE 2
102
103
104
105/*
106 * This function is used to interpolate colors, indexes, and texture
107 * coordinates when clipping has to be done. In general, we compute
108 * aux[dst] = aux[in] + t * (aux[out] - aux[in])
109 * where aux is the quantity to be interpolated.
110 * Input: space - either EYE_SPACE or CLIP_SPACE
111 * dst - index of array position to store interpolated value
112 * t - a value in [0,1]
113 * in - index of array position corresponding to 'inside' vertex
114 * out - index of array position corresponding to 'outside' vertex
115 */
118{
119 struct vertex_buffer* VB = ctx->VB;
120
121 if (ctx->ClipMask & CLIP_FCOLOR_BIT) {
122 VB->Fcolor[dst][0] = LINTERP( t, VB->Fcolor[in][0], VB->Fcolor[out][0] );
123 VB->Fcolor[dst][1] = LINTERP( t, VB->Fcolor[in][1], VB->Fcolor[out][1] );
124 VB->Fcolor[dst][2] = LINTERP( t, VB->Fcolor[in][2], VB->Fcolor[out][2] );
125 VB->Fcolor[dst][3] = LINTERP( t, VB->Fcolor[in][3], VB->Fcolor[out][3] );
126 }
127 else if (ctx->ClipMask & CLIP_FINDEX_BIT) {
128 VB->Findex[dst] = (GLuint) (GLint) LINTERP( t, (GLfloat) VB->Findex[in],
129 (GLfloat) VB->Findex[out] );
130 }
131
132 if (ctx->ClipMask & CLIP_BCOLOR_BIT) {
133 VB->Bcolor[dst][0] = LINTERP( t, VB->Bcolor[in][0], VB->Bcolor[out][0] );
134 VB->Bcolor[dst][1] = LINTERP( t, VB->Bcolor[in][1], VB->Bcolor[out][1] );
135 VB->Bcolor[dst][2] = LINTERP( t, VB->Bcolor[in][2], VB->Bcolor[out][2] );
136 VB->Bcolor[dst][3] = LINTERP( t, VB->Bcolor[in][3], VB->Bcolor[out][3] );
137 }
138 else if (ctx->ClipMask & CLIP_BINDEX_BIT) {
139 VB->Bindex[dst] = (GLuint) (GLint) LINTERP( t, (GLfloat) VB->Bindex[in],
140 (GLfloat) VB->Bindex[out] );
141 }
142
143 if (ctx->ClipMask & CLIP_TEXTURE_BIT) {
144 /* TODO: is more sophisticated texture coord interpolation needed?? */
145 if (space==CLIP_SPACE) {
146 /* also interpolate eye Z component */
147 VB->Eye[dst][2] = LINTERP( t, VB->Eye[in][2], VB->Eye[out][2] );
148 }
149 VB->TexCoord[dst][0] = LINTERP(t,VB->TexCoord[in][0],VB->TexCoord[out][0]);
150 VB->TexCoord[dst][1] = LINTERP(t,VB->TexCoord[in][1],VB->TexCoord[out][1]);
151 VB->TexCoord[dst][2] = LINTERP(t,VB->TexCoord[in][2],VB->TexCoord[out][2]);
152 VB->TexCoord[dst][3] = LINTERP(t,VB->TexCoord[in][3],VB->TexCoord[out][3]);
153 }
154
155}
156
157
158/*
159 * Some specialized version of the interpolate_aux
160 *
161 */
162
165{
166 struct vertex_buffer* VB = ctx->VB;
167
168 VB->Fcolor[dst][0] = LINTERP( t, VB->Fcolor[in][0], VB->Fcolor[out][0] );
169 VB->Fcolor[dst][1] = LINTERP( t, VB->Fcolor[in][1], VB->Fcolor[out][1] );
170 VB->Fcolor[dst][2] = LINTERP( t, VB->Fcolor[in][2], VB->Fcolor[out][2] );
171 VB->Fcolor[dst][3] = LINTERP( t, VB->Fcolor[in][3], VB->Fcolor[out][3] );
172
173 VB->Eye[dst][2] = LINTERP( t, VB->Eye[in][2], VB->Eye[out][2] );
174 VB->TexCoord[dst][0] = LINTERP(t,VB->TexCoord[in][0],VB->TexCoord[out][0]);
175 VB->TexCoord[dst][1] = LINTERP(t,VB->TexCoord[in][1],VB->TexCoord[out][1]);
176}
177
178
181{
182 struct vertex_buffer* VB = ctx->VB;
183
184 VB->Eye[dst][2] = LINTERP( t, VB->Eye[in][2], VB->Eye[out][2] );
185 VB->TexCoord[dst][0] = LINTERP(t,VB->TexCoord[in][0],VB->TexCoord[out][0]);
186 VB->TexCoord[dst][1] = LINTERP(t,VB->TexCoord[in][1],VB->TexCoord[out][1]);
187}
188
189
192{
193 struct vertex_buffer* VB = ctx->VB;
194
195 VB->Fcolor[dst][0] = LINTERP( t, VB->Fcolor[in][0], VB->Fcolor[out][0] );
196 VB->Fcolor[dst][1] = LINTERP( t, VB->Fcolor[in][1], VB->Fcolor[out][1] );
197 VB->Fcolor[dst][2] = LINTERP( t, VB->Fcolor[in][2], VB->Fcolor[out][2] );
198 VB->Fcolor[dst][3] = LINTERP( t, VB->Fcolor[in][3], VB->Fcolor[out][3] );
199}
200
201
202
203
205{
206 GLint p;
207
210 gl_error( ctx, GL_INVALID_ENUM, "glClipPlane" );
211 return;
212 }
213
214 /*
215 * The equation is transformed by the transpose of the inverse of the
216 * current modelview matrix and stored in the resulting eye coordinates.
217 */
218 if (ctx->NewModelViewMatrix) {
220 }
221 gl_transform_vector( ctx->Transform.ClipEquation[p], equation,
222 ctx->ModelViewInv );
223}
224
225
226
228{
229 GLint p;
230
231 if (INSIDE_BEGIN_END(ctx)) {
232 gl_error( ctx, GL_INVALID_OPERATION, "glGetClipPlane" );
233 return;
234 }
235
236 p = (GLint) (plane - GL_CLIP_PLANE0);
238 gl_error( ctx, GL_INVALID_ENUM, "glGetClipPlane" );
239 return;
240 }
241
242 equation[0] = (GLdouble) ctx->Transform.ClipEquation[p][0];
243 equation[1] = (GLdouble) ctx->Transform.ClipEquation[p][1];
244 equation[2] = (GLdouble) ctx->Transform.ClipEquation[p][2];
245 equation[3] = (GLdouble) ctx->Transform.ClipEquation[p][3];
246}
247
248
249
250
251/**********************************************************************/
252/* View volume clipping. */
253/**********************************************************************/
254
255
256/*
257 * Clip a point against the view volume.
258 * Input: v - vertex-vector describing the point to clip
259 * Return: 0 = outside view volume
260 * 1 = inside view volume
261 */
263{
264 if ( v[0] > v[3] || v[0] < -v[3]
265 || v[1] > v[3] || v[1] < -v[3]
266 || v[2] > v[3] || v[2] < -v[3] ) {
267 return 0;
268 }
269 else {
270 return 1;
271 }
272}
273
274
275
276
277/*
278 * Clip a line segment against the view volume defined by -w<=x,y,z<=w.
279 * Input: i, j - indexes into VB->V* of endpoints of the line
280 * Return: 0 = line completely outside of view
281 * 1 = line is inside view.
282 */
284{
285 struct vertex_buffer* VB = ctx->VB;
286 GLfloat (*coord)[4] = VB->Clip;
287
288 GLfloat t, dx, dy, dz, dw;
289 register GLuint ii, jj;
290
291 ii = *i;
292 jj = *j;
293
294/*
295 * We use 6 instances of this code to clip agains the 6 planes.
296 * For each plane, we define the OUTSIDE and COMPUTE_INTERSECTION
297 * macros apprpriately.
298 */
299#define GENERAL_CLIP \
300 if (OUTSIDE(ii)) { \
301 if (OUTSIDE(jj)) { \
302 /* both verts are outside ==> return 0 */ \
303 return 0; \
304 } \
305 else { \
306 /* ii is outside, jj is inside ==> clip */ \
307 /* new vertex put in position VB->Free */ \
308 COMPUTE_INTERSECTION( VB->Free, jj, ii ) \
309 if (ctx->ClipMask) \
310 ctx->ClipInterpAuxFunc( ctx, CLIP_SPACE, VB->Free, t, jj, ii );\
311 ii = VB->Free; \
312 VB->Free++; \
313 if (VB->Free==VB_SIZE) VB->Free = 1; \
314 } \
315 } \
316 else { \
317 if (OUTSIDE(jj)) { \
318 /* ii is inside, jj is outside ==> clip */ \
319 /* new vertex put in position VB->Free */ \
320 COMPUTE_INTERSECTION( VB->Free, ii, jj ); \
321 if (ctx->ClipMask) \
322 ctx->ClipInterpAuxFunc( ctx, CLIP_SPACE, VB->Free, t, ii, jj );\
323 jj = VB->Free; \
324 VB->Free++; \
325 if (VB->Free==VB_SIZE) VB->Free = 1; \
326 } \
327 /* else both verts are inside ==> do nothing */ \
328 }
329
330
331#define X(I) coord[I][0]
332#define Y(I) coord[I][1]
333#define Z(I) coord[I][2]
334#define W(I) coord[I][3]
335
336/*
337 * Begin clipping
338 */
339
340 /*** Clip against +X side ***/
341#define OUTSIDE(K) (X(K) > W(K))
342#define COMPUTE_INTERSECTION( new, in, out ) \
343 dx = X(out) - X(in); \
344 dw = W(out) - W(in); \
345 t = (X(in) - W(in)) / (dw-dx); \
346 X(new) = X(in) + t * dx; \
347 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
348 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
349 W(new) = W(in) + t * dw;
350
352
353#undef OUTSIDE
354#undef COMPUTE_INTERSECTION
355
356
357 /*** Clip against -X side ***/
358#define OUTSIDE(K) (X(K) < -W(K))
359#define COMPUTE_INTERSECTION( new, in, out ) \
360 dx = X(out) - X(in); \
361 dw = W(out) - W(in); \
362 t = -(X(in) + W(in)) / (dw+dx); \
363 X(new) = X(in) + t * dx; \
364 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
365 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
366 W(new) = W(in) + t * dw;
367
369
370#undef OUTSIDE
371#undef COMPUTE_INTERSECTION
372
373
374 /*** Clip against +Y side ***/
375#define OUTSIDE(K) (Y(K) > W(K))
376#define COMPUTE_INTERSECTION( new, in, out ) \
377 dy = Y(out) - Y(in); \
378 dw = W(out) - W(in); \
379 t = (Y(in) - W(in)) / (dw-dy); \
380 X(new) = X(in) + t * (X(out) - X(in)); \
381 Y(new) = Y(in) + t * dy; \
382 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
383 W(new) = W(in) + t * dw;
384
386
387#undef OUTSIDE
388#undef COMPUTE_INTERSECTION
389
390
391 /*** Clip against -Y side ***/
392#define OUTSIDE(K) (Y(K) < -W(K))
393#define COMPUTE_INTERSECTION( new, in, out ) \
394 dy = Y(out) - Y(in); \
395 dw = W(out) - W(in); \
396 t = -(Y(in) + W(in)) / (dw+dy); \
397 X(new) = X(in) + t * (X(out) - X(in)); \
398 Y(new) = Y(in) + t * dy; \
399 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
400 W(new) = W(in) + t * dw;
401
403
404#undef OUTSIDE
405#undef COMPUTE_INTERSECTION
406
407
408 /*** Clip against +Z side ***/
409#define OUTSIDE(K) (Z(K) > W(K))
410#define COMPUTE_INTERSECTION( new, in, out ) \
411 dz = Z(out) - Z(in); \
412 dw = W(out) - W(in); \
413 t = (Z(in) - W(in)) / (dw-dz); \
414 X(new) = X(in) + t * (X(out) - X(in)); \
415 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
416 Z(new) = Z(in) + t * dz; \
417 W(new) = W(in) + t * dw;
418
420
421#undef OUTSIDE
422#undef COMPUTE_INTERSECTION
423
424
425 /*** Clip against -Z side ***/
426#define OUTSIDE(K) (Z(K) < -W(K))
427#define COMPUTE_INTERSECTION( new, in, out ) \
428 dz = Z(out) - Z(in); \
429 dw = W(out) - W(in); \
430 t = -(Z(in) + W(in)) / (dw+dz); \
431 X(new) = X(in) + t * (X(out) - X(in)); \
432 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
433 Z(new) = Z(in) + t * dz; \
434 W(new) = W(in) + t * dw;
435
437
438#undef OUTSIDE
439#undef COMPUTE_INTERSECTION
440
441#undef GENERAL_CLIP
442
443 *i = ii;
444 *j = jj;
445 return 1;
446}
447
448
449
450
451/*
452 * Clip a polygon against the view volume defined by -w<=x,y,z<=w.
453 * Input: n - number of vertices in input polygon.
454 * vlist - list of indexes into VB->V* of polygon to clip.
455 * Output: vlist - modified list of vertex indexes
456 * Return: number of vertices in resulting polygon
457 */
459
460{
461 struct vertex_buffer* VB = ctx->VB;
462 GLfloat (*coord)[4] = VB->Clip;
463
464 GLuint previ, prevj;
465 GLuint curri, currj;
466 GLuint vlist2[VB_SIZE];
467 GLuint n2;
468 GLdouble dx, dy, dz, dw, t, neww;
469
470/*
471 * We use 6 instances of this code to implement clipping against the
472 * 6 sides of the view volume. Prior to each we define the macros:
473 * INLIST = array which lists input vertices
474 * OUTLIST = array which lists output vertices
475 * INCOUNT = variable which is the number of vertices in INLIST[]
476 * OUTCOUNT = variable which is the number of vertices in OUTLIST[]
477 * INSIDE(i) = test if vertex v[i] is inside the view volume
478 * COMPUTE_INTERSECTION(in,out,new) = compute intersection of line
479 * from v[in] to v[out] with the clipping plane and store
480 * the result in v[new]
481 */
482
483#define GENERAL_CLIP \
484 if (INCOUNT<3) return 0; \
485 previ = INCOUNT-1; /* let previous = last vertex */ \
486 prevj = INLIST[previ]; \
487 OUTCOUNT = 0; \
488 for (curri=0;curri<INCOUNT;curri++) { \
489 currj = INLIST[curri]; \
490 if (INSIDE(currj)) { \
491 if (INSIDE(prevj)) { \
492 /* both verts are inside ==> copy current to outlist */ \
493 OUTLIST[OUTCOUNT] = currj; \
494 OUTCOUNT++; \
495 } \
496 else { \
497 /* current is inside and previous is outside ==> clip */ \
498 COMPUTE_INTERSECTION( currj, prevj, VB->Free ) \
499 /* if new point not coincident with previous point... */ \
500 if (t>0.0) { \
501 /* interpolate aux info using the value of t */ \
502 if (ctx->ClipMask) \
503 ctx->ClipInterpAuxFunc( ctx, CLIP_SPACE, VB->Free, t, currj, prevj ); \
504 VB->Edgeflag[VB->Free] = VB->Edgeflag[prevj]; \
505 /* output new point */ \
506 OUTLIST[OUTCOUNT] = VB->Free; \
507 VB->Free++; \
508 if (VB->Free==VB_SIZE) VB->Free = 1; \
509 OUTCOUNT++; \
510 } \
511 /* Output current */ \
512 OUTLIST[OUTCOUNT] = currj; \
513 OUTCOUNT++; \
514 } \
515 } \
516 else { \
517 if (INSIDE(prevj)) { \
518 /* current is outside and previous is inside ==> clip */ \
519 COMPUTE_INTERSECTION( prevj, currj, VB->Free ) \
520 /* if new point not coincident with previous point... */ \
521 if (t>0.0) { \
522 /* interpolate aux info using the value of t */ \
523 if (ctx->ClipMask) \
524 ctx->ClipInterpAuxFunc( ctx, CLIP_SPACE, VB->Free, t, prevj, currj ); \
525 VB->Edgeflag[VB->Free] = VB->Edgeflag[prevj]; \
526 /* output new point */ \
527 OUTLIST[OUTCOUNT] = VB->Free; \
528 VB->Free++; \
529 if (VB->Free==VB_SIZE) VB->Free = 1; \
530 OUTCOUNT++; \
531 } \
532 } \
533 /* else both verts are outside ==> do nothing */ \
534 } \
535 /* let previous = current */ \
536 previ = curri; \
537 prevj = currj; \
538 /* check for overflowing vertex buffer */ \
539 if (OUTCOUNT>=VB_SIZE-1) { \
540 /* Too many vertices */ \
541 if (OUTLIST==vlist2) { \
542 /* copy OUTLIST[] to vlist[] */ \
543 int i; \
544 for (i=0;i<VB_SIZE;i++) { \
545 vlist[i] = OUTLIST[i]; \
546 } \
547 } \
548 return VB_SIZE-1; \
549 } \
550 }
551
552
553#define X(I) coord[I][0]
554#define Y(I) coord[I][1]
555#define Z(I) coord[I][2]
556#define W(I) coord[I][3]
557
558/*
559 * Clip against +X
560 */
561#define INCOUNT n
562#define OUTCOUNT n2
563#define INLIST vlist
564#define OUTLIST vlist2
565#define INSIDE(K) (X(K) <= W(K))
566
567#define COMPUTE_INTERSECTION( in, out, new ) \
568 dx = X(out) - X(in); \
569 dw = W(out) - W(in); \
570 t = (X(in)-W(in)) / (dw-dx); \
571 neww = W(in) + t * dw; \
572 X(new) = neww; \
573 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
574 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
575 W(new) = neww;
576
578
579#undef INCOUNT
580#undef OUTCOUNT
581#undef INLIST
582#undef OUTLIST
583#undef INSIDE
584#undef COMPUTE_INTERSECTION
585
586
587/*
588 * Clip against -X
589 */
590#define INCOUNT n2
591#define OUTCOUNT n
592#define INLIST vlist2
593#define OUTLIST vlist
594#define INSIDE(K) (X(K) >= -W(K))
595#define COMPUTE_INTERSECTION( in, out, new ) \
596 dx = X(out)-X(in); \
597 dw = W(out)-W(in); \
598 t = -(X(in)+W(in)) / (dw+dx); \
599 neww = W(in) + t * dw; \
600 X(new) = -neww; \
601 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
602 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
603 W(new) = neww;
604
606
607#undef INCOUNT
608#undef OUTCOUNT
609#undef INLIST
610#undef OUTLIST
611#undef INSIDE
612#undef COMPUTE_INTERSECTION
613
614
615/*
616 * Clip against +Y
617 */
618#define INCOUNT n
619#define OUTCOUNT n2
620#define INLIST vlist
621#define OUTLIST vlist2
622#define INSIDE(K) (Y(K) <= W(K))
623#define COMPUTE_INTERSECTION( in, out, new ) \
624 dy = Y(out)-Y(in); \
625 dw = W(out)-W(in); \
626 t = (Y(in)-W(in)) / (dw-dy); \
627 neww = W(in) + t * dw; \
628 X(new) = X(in) + t * (X(out) - X(in)); \
629 Y(new) = neww; \
630 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
631 W(new) = neww;
632
634
635#undef INCOUNT
636#undef OUTCOUNT
637#undef INLIST
638#undef OUTLIST
639#undef INSIDE
640#undef COMPUTE_INTERSECTION
641
642
643/*
644 * Clip against -Y
645 */
646#define INCOUNT n2
647#define OUTCOUNT n
648#define INLIST vlist2
649#define OUTLIST vlist
650#define INSIDE(K) (Y(K) >= -W(K))
651#define COMPUTE_INTERSECTION( in, out, new ) \
652 dy = Y(out)-Y(in); \
653 dw = W(out)-W(in); \
654 t = -(Y(in)+W(in)) / (dw+dy); \
655 neww = W(in) + t * dw; \
656 X(new) = X(in) + t * (X(out) - X(in)); \
657 Y(new) = -neww; \
658 Z(new) = Z(in) + t * (Z(out) - Z(in)); \
659 W(new) = neww;
660
662
663#undef INCOUNT
664#undef OUTCOUNT
665#undef INLIST
666#undef OUTLIST
667#undef INSIDE
668#undef COMPUTE_INTERSECTION
669
670
671
672/*
673 * Clip against +Z
674 */
675#define INCOUNT n
676#define OUTCOUNT n2
677#define INLIST vlist
678#define OUTLIST vlist2
679#define INSIDE(K) (Z(K) <= W(K))
680#define COMPUTE_INTERSECTION( in, out, new ) \
681 dz = Z(out)-Z(in); \
682 dw = W(out)-W(in); \
683 t = (Z(in)-W(in)) / (dw-dz); \
684 neww = W(in) + t * dw; \
685 X(new) = X(in) + t * (X(out) - X(in)); \
686 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
687 Z(new) = neww; \
688 W(new) = neww;
689
691
692#undef INCOUNT
693#undef OUTCOUNT
694#undef INLIST
695#undef OUTLIST
696#undef INSIDE
697#undef COMPUTE_INTERSECTION
698
699
700/*
701 * Clip against -Z
702 */
703#define INCOUNT n2
704#define OUTCOUNT n
705#define INLIST vlist2
706#define OUTLIST vlist
707#define INSIDE(K) (Z(K) >= -W(K))
708#define COMPUTE_INTERSECTION( in, out, new ) \
709 dz = Z(out)-Z(in); \
710 dw = W(out)-W(in); \
711 t = -(Z(in)+W(in)) / (dw+dz); \
712 neww = W(in) + t * dw; \
713 X(new) = X(in) + t * (X(out) - X(in)); \
714 Y(new) = Y(in) + t * (Y(out) - Y(in)); \
715 Z(new) = -neww; \
716 W(new) = neww;
717
719
720#undef INCOUNT
721#undef INLIST
722#undef OUTLIST
723#undef INSIDE
724#undef COMPUTE_INTERSECTION
725
726 /* 'OUTCOUNT' clipped vertices are now back in v[] */
727 return OUTCOUNT;
728
729#undef GENERAL_CLIP
730#undef OUTCOUNT
731}
732
733
734
735
736/**********************************************************************/
737/* Clipping against user-defined clipping planes. */
738/**********************************************************************/
739
740
741
742/*
743 * If the dot product of the eye coordinates of a vertex with the
744 * stored plane equation components is positive or zero, the vertex
745 * is in with respect to that clipping plane, otherwise it is out.
746 */
747
748
749
750/*
751 * Clip a point against the user clipping planes.
752 * Input: v - vertex-vector describing the point to clip.
753 * Return: 0 = point was clipped
754 * 1 = point not clipped
755 */
757{
758 GLuint p;
759
760 for (p=0;p<MAX_CLIP_PLANES;p++) {
761 if (ctx->Transform.ClipEnabled[p]) {
762 GLfloat dot = v[0] * ctx->Transform.ClipEquation[p][0]
763 + v[1] * ctx->Transform.ClipEquation[p][1]
764 + v[2] * ctx->Transform.ClipEquation[p][2]
765 + v[3] * ctx->Transform.ClipEquation[p][3];
766 if (dot < 0.0F) {
767 return 0;
768 }
769 }
770 }
771
772 return 1;
773}
774
775
776#define MAGIC_NUMBER -0.8e-03F
777
778
779/* Test if VB->Eye[J] is inside the clipping plane defined by A,B,C,D */
780#define INSIDE( J, A, B, C, D ) \
781 ( (VB->Eye[J][0] * A + VB->Eye[J][1] * B \
782 + VB->Eye[J][2] * C + VB->Eye[J][3] * D) >= MAGIC_NUMBER )
783
784
785/* Test if VB->Eye[J] is outside the clipping plane defined by A,B,C,D */
786#define OUTSIDE( J, A, B, C, D ) \
787 ( (VB->Eye[J][0] * A + VB->Eye[J][1] * B \
788 + VB->Eye[J][2] * C + VB->Eye[J][3] * D) < MAGIC_NUMBER )
789
790
791/*
792 * Clip a line against the user clipping planes.
793 * Input: i, j - indexes into VB->V*[] of endpoints
794 * Output: i, j - indexes into VB->V*[] of (possibly clipped) endpoints
795 * Return: 0 = line completely clipped
796 * 1 = line is visible
797 */
799{
800 struct vertex_buffer* VB = ctx->VB;
801
802 GLuint p, ii, jj;
803
804 ii = *i;
805 jj = *j;
806
807 for (p=0;p<MAX_CLIP_PLANES;p++) {
808 if (ctx->Transform.ClipEnabled[p]) {
809 register GLfloat a, b, c, d;
810 a = ctx->Transform.ClipEquation[p][0];
811 b = ctx->Transform.ClipEquation[p][1];
812 c = ctx->Transform.ClipEquation[p][2];
813 d = ctx->Transform.ClipEquation[p][3];
814
815 if (OUTSIDE( ii, a,b,c,d )) {
816 if (OUTSIDE( jj, a,b,c,d )) {
817 /* ii and jj outside ==> quit */
818 return 0;
819 }
820 else {
821 /* ii is outside, jj is inside ==> clip */
822 GLfloat dx, dy, dz, dw, t, denom;
823 dx = VB->Eye[ii][0] - VB->Eye[jj][0];
824 dy = VB->Eye[ii][1] - VB->Eye[jj][1];
825 dz = VB->Eye[ii][2] - VB->Eye[jj][2];
826 dw = VB->Eye[ii][3] - VB->Eye[jj][3];
827 denom = dx*a + dy*b + dz*c + dw*d;
828 if (denom==0.0) {
829 t = 0.0;
830 }
831 else {
832 t = -(VB->Eye[jj][0]*a+VB->Eye[jj][1]*b
833 +VB->Eye[jj][2]*c+VB->Eye[jj][3]*d) / denom;
834 if (t>1.0F) t = 1.0F;
835 }
836 VB->Eye[VB->Free][0] = VB->Eye[jj][0] + t * dx;
837 VB->Eye[VB->Free][1] = VB->Eye[jj][1] + t * dy;
838 VB->Eye[VB->Free][2] = VB->Eye[jj][2] + t * dz;
839 VB->Eye[VB->Free][3] = VB->Eye[jj][3] + t * dw;
840
841 /* Interpolate colors, indexes, and/or texture coords */
842 if (ctx->ClipMask)
843 interpolate_aux( ctx, EYE_SPACE, VB->Free, t, jj, ii );
844
845 ii = VB->Free;
846 VB->Free++;
847 if (VB->Free==VB_SIZE) VB->Free = 1;
848 }
849 }
850 else {
851 if (OUTSIDE( jj, a,b,c,d )) {
852 /* ii is inside, jj is outside ==> clip */
853 GLfloat dx, dy, dz, dw, t, denom;
854 dx = VB->Eye[jj][0] - VB->Eye[ii][0];
855 dy = VB->Eye[jj][1] - VB->Eye[ii][1];
856 dz = VB->Eye[jj][2] - VB->Eye[ii][2];
857 dw = VB->Eye[jj][3] - VB->Eye[ii][3];
858 denom = dx*a + dy*b + dz*c + dw*d;
859 if (denom==0.0) {
860 t = 0.0;
861 }
862 else {
863 t = -(VB->Eye[ii][0]*a+VB->Eye[ii][1]*b
864 +VB->Eye[ii][2]*c+VB->Eye[ii][3]*d) / denom;
865 if (t>1.0F) t = 1.0F;
866 }
867 VB->Eye[VB->Free][0] = VB->Eye[ii][0] + t * dx;
868 VB->Eye[VB->Free][1] = VB->Eye[ii][1] + t * dy;
869 VB->Eye[VB->Free][2] = VB->Eye[ii][2] + t * dz;
870 VB->Eye[VB->Free][3] = VB->Eye[ii][3] + t * dw;
871
872 /* Interpolate colors, indexes, and/or texture coords */
873 if (ctx->ClipMask)
874 interpolate_aux( ctx, EYE_SPACE, VB->Free, t, ii, jj );
875
876 jj = VB->Free;
877 VB->Free++;
878 if (VB->Free==VB_SIZE) VB->Free = 1;
879 }
880 else {
881 /* ii and jj inside ==> do nothing */
882 }
883 }
884 }
885 }
886
887 *i = ii;
888 *j = jj;
889 return 1;
890}
891
892
893
894
895/*
896 * Clip a polygon against the user clipping planes defined in eye coordinates.
897 * Input: n - number of vertices.
898 * vlist - list of vertices in input polygon.
899 * Output: vlist - list of vertices in output polygon.
900 * Return: number of vertices after clipping.
901 */
903{
904 struct vertex_buffer* VB = ctx->VB;
905
906 GLuint vlist2[VB_SIZE];
907 GLuint *inlist, *outlist;
908 GLuint incount, outcount;
909 GLuint curri, currj;
910 GLuint previ, prevj;
911 GLuint p;
912
913 /* initialize input vertex list */
914 incount = n;
915 inlist = vlist;
916 outlist = vlist2;
917
918 for (p=0;p<MAX_CLIP_PLANES;p++) {
919 if (ctx->Transform.ClipEnabled[p]) {
920 register float a = ctx->Transform.ClipEquation[p][0];
921 register float b = ctx->Transform.ClipEquation[p][1];
922 register float c = ctx->Transform.ClipEquation[p][2];
923 register float d = ctx->Transform.ClipEquation[p][3];
924
925 if (incount<3) return 0;
926
927 /* initialize prev to be last in the input list */
928 previ = incount - 1;
929 prevj = inlist[previ];
930
931 outcount = 0;
932
933 for (curri=0;curri<incount;curri++) {
934 currj = inlist[curri];
935
936 if (INSIDE(currj, a,b,c,d)) {
937 if (INSIDE(prevj, a,b,c,d)) {
938 /* both verts are inside ==> copy current to outlist */
939 outlist[outcount++] = currj;
940 }
941 else {
942 /* current is inside and previous is outside ==> clip */
943 GLfloat dx, dy, dz, dw, t, denom;
944 /* compute t */
945 dx = VB->Eye[prevj][0] - VB->Eye[currj][0];
946 dy = VB->Eye[prevj][1] - VB->Eye[currj][1];
947 dz = VB->Eye[prevj][2] - VB->Eye[currj][2];
948 dw = VB->Eye[prevj][3] - VB->Eye[currj][3];
949 denom = dx*a + dy*b + dz*c + dw*d;
950 if (denom==0.0) {
951 t = 0.0;
952 }
953 else {
954 t = -(VB->Eye[currj][0]*a+VB->Eye[currj][1]*b
955 +VB->Eye[currj][2]*c+VB->Eye[currj][3]*d) / denom;
956 if (t>1.0F) {
957 t = 1.0F;
958 }
959 }
960 /* interpolate new vertex position */
961 VB->Eye[VB->Free][0] = VB->Eye[currj][0] + t*dx;
962 VB->Eye[VB->Free][1] = VB->Eye[currj][1] + t*dy;
963 VB->Eye[VB->Free][2] = VB->Eye[currj][2] + t*dz;
964 VB->Eye[VB->Free][3] = VB->Eye[currj][3] + t*dw;
965
966 /* interpolate color, index, and/or texture coord */
967 if (ctx->ClipMask) {
968 interpolate_aux( ctx, EYE_SPACE, VB->Free, t, currj, prevj);
969 }
970 VB->Edgeflag[VB->Free] = VB->Edgeflag[prevj];
971
972 /* output new vertex */
973 outlist[outcount++] = VB->Free;
974 VB->Free++;
975 if (VB->Free==VB_SIZE) VB->Free = 1;
976 /* output current vertex */
977 outlist[outcount++] = currj;
978 }
979 }
980 else {
981 if (INSIDE(prevj, a,b,c,d)) {
982 /* current is outside and previous is inside ==> clip */
983 GLfloat dx, dy, dz, dw, t, denom;
984 /* compute t */
985 dx = VB->Eye[currj][0]-VB->Eye[prevj][0];
986 dy = VB->Eye[currj][1]-VB->Eye[prevj][1];
987 dz = VB->Eye[currj][2]-VB->Eye[prevj][2];
988 dw = VB->Eye[currj][3]-VB->Eye[prevj][3];
989 denom = dx*a + dy*b + dz*c + dw*d;
990 if (denom==0.0) {
991 t = 0.0;
992 }
993 else {
994 t = -(VB->Eye[prevj][0]*a+VB->Eye[prevj][1]*b
995 +VB->Eye[prevj][2]*c+VB->Eye[prevj][3]*d) / denom;
996 if (t>1.0F) {
997 t = 1.0F;
998 }
999 }
1000 /* interpolate new vertex position */
1001 VB->Eye[VB->Free][0] = VB->Eye[prevj][0] + t*dx;
1002 VB->Eye[VB->Free][1] = VB->Eye[prevj][1] + t*dy;
1003 VB->Eye[VB->Free][2] = VB->Eye[prevj][2] + t*dz;
1004 VB->Eye[VB->Free][3] = VB->Eye[prevj][3] + t*dw;
1005
1006 /* interpolate color, index, and/or texture coord */
1007 if (ctx->ClipMask) {
1008 interpolate_aux( ctx, EYE_SPACE, VB->Free, t, prevj, currj);
1009 }
1010 VB->Edgeflag[VB->Free] = VB->Edgeflag[prevj];
1011
1012 /* output new vertex */
1013 outlist[outcount++] = VB->Free;
1014 VB->Free++;
1015 if (VB->Free==VB_SIZE) VB->Free = 1;
1016 }
1017 /* else both verts are outside ==> do nothing */
1018 }
1019
1020 previ = curri;
1021 prevj = currj;
1022
1023 /* check for overflowing vertex buffer */
1024 if (outcount>=VB_SIZE-1) {
1025 /* Too many vertices */
1026 if (outlist!=vlist2) {
1027 MEMCPY( vlist, vlist2, outcount * sizeof(GLuint) );
1028 }
1029 return VB_SIZE-1;
1030 }
1031
1032 } /* for i */
1033
1034 /* swap inlist and outlist pointers */
1035 {
1036 GLuint *tmp;
1037 tmp = inlist;
1038 inlist = outlist;
1039 outlist = tmp;
1040 incount = outcount;
1041 }
1042
1043 } /* if */
1044 } /* for p */
1045
1046 /* outlist points to the list of vertices resulting from the last */
1047 /* clipping. If outlist == vlist2 then we have to copy the vertices */
1048 /* back to vlist */
1049 if (outlist!=vlist2) {
1050 MEMCPY( vlist, vlist2, outcount * sizeof(GLuint) );
1051 }
1052
1053 return outcount;
1054}
1055
void interpolate_aux_color_tex2(GLcontext *ctx, GLuint space, GLuint dst, GLfloat t, GLuint in, GLuint out)
Definition: clip.c:163
void interpolate_aux(GLcontext *ctx, GLuint space, GLuint dst, GLfloat t, GLuint in, GLuint out)
Definition: clip.c:116
#define GENERAL_CLIP
void gl_GetClipPlane(GLcontext *ctx, GLenum plane, GLdouble *equation)
Definition: clip.c:227
GLuint gl_viewclip_polygon(GLcontext *ctx, GLuint n, GLuint vlist[])
Definition: clip.c:458
#define EYE_SPACE
Definition: clip.c:100
#define INSIDE(K)
Definition: clip.c:780
void interpolate_aux_color(GLcontext *ctx, GLuint space, GLuint dst, GLfloat t, GLuint in, GLuint out)
Definition: clip.c:190
#define OUTSIDE(K)
Definition: clip.c:786
void interpolate_aux_tex2(GLcontext *ctx, GLuint space, GLuint dst, GLfloat t, GLuint in, GLuint out)
Definition: clip.c:179
GLuint gl_userclip_line(GLcontext *ctx, GLuint *i, GLuint *j)
Definition: clip.c:798
#define LINTERP(T, A, B)
Definition: clip.c:96
#define CLIP_SPACE
Definition: clip.c:101
GLuint gl_userclip_polygon(GLcontext *ctx, GLuint n, GLuint vlist[])
Definition: clip.c:902
GLuint gl_viewclip_line(GLcontext *ctx, GLuint *i, GLuint *j)
Definition: clip.c:283
GLuint gl_userclip_point(GLcontext *ctx, const GLfloat v[])
Definition: clip.c:756
GLuint gl_viewclip_point(const GLfloat v[])
Definition: clip.c:262
void gl_ClipPlane(GLcontext *ctx, GLenum plane, const GLfloat *equation)
Definition: clip.c:204
#define OUTCOUNT
#define MAX_CLIP_PLANES
Definition: config.h:87
void gl_error(GLcontext *ctx, GLenum error, const char *s)
Definition: context.c:1421
void gl_analyze_modelview_matrix(GLcontext *ctx)
Definition: matrix.c:420
#define CLIP_TEXTURE_BIT
Definition: types.h:1208
#define CLIP_BCOLOR_BIT
Definition: types.h:1205
#define CLIP_BINDEX_BIT
Definition: types.h:1207
#define CLIP_FINDEX_BIT
Definition: types.h:1206
#define CLIP_FCOLOR_BIT
Definition: types.h:1204
#define GL_CLIP_PLANE0
Definition: gl.h:346
float GLfloat
Definition: gl.h:161
const GLdouble * v
Definition: gl.h:2040
double GLdouble
Definition: gl.h:163
#define GL_INVALID_OPERATION
Definition: gl.h:696
unsigned int GLenum
Definition: gl.h:150
unsigned int GLuint
Definition: gl.h:159
GLdouble GLdouble t
Definition: gl.h:2047
int GLint
Definition: gl.h:156
#define GL_INVALID_ENUM
Definition: gl.h:694
GLdouble n
Definition: glext.h:7729
GLuint coord
Definition: glext.h:9511
const GLubyte * c
Definition: glext.h:8905
GLboolean GLboolean GLboolean b
Definition: glext.h:6204
GLuint in
Definition: glext.h:9616
GLenum GLenum dst
Definition: glext.h:6340
GLfloat GLfloat p
Definition: glext.h:8902
GLboolean GLboolean GLboolean GLboolean a
Definition: glext.h:6204
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint GLint GLint GLenum GLenum GLenum GLint GLuint GLenum GLenum GLfloat GLenum GLfloat GLenum GLint const GLfloat GLenum GLint const GLushort GLint GLint GLsizei GLsizei GLenum GLsizei GLsizei GLenum GLenum const GLvoid GLenum GLdouble * equation
Definition: glfuncs.h:270
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint GLint GLint j
Definition: glfuncs.h:250
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint GLint GLint GLenum GLenum GLenum GLint GLuint GLenum GLenum GLfloat GLenum GLfloat GLenum GLint const GLfloat GLenum GLint const GLushort GLint GLint GLsizei GLsizei GLenum GLsizei GLsizei GLenum GLenum const GLvoid GLenum plane
Definition: glfuncs.h:270
REFIID LPVOID DWORD_PTR dw
Definition: atlbase.h:40
#define d
Definition: ke_i.h:81
#define a
Definition: ke_i.h:78
#define c
Definition: ke_i.h:80
#define b
Definition: ke_i.h:79
GLint dy
Definition: linetemp.h:97
GLint dx
Definition: linetemp.h:97
#define MEMCPY(DST, SRC, BYTES)
Definition: macros.h:231
#define INSIDE_BEGIN_END(CTX)
Definition: macros.h:135
static FILE * out
Definition: regtests2xml.c:44
int n2
Definition: dwarfget.c:148
struct vertex_buffer * VB
Definition: tritemp.h:139
#define VB_SIZE
Definition: vb.h:89
void gl_transform_vector(GLfloat u[4], const GLfloat v[4], const GLfloat m[16])
Definition: xform.c:248