ReactOS 0.4.16-dev-197-g92996da
matrix.c
Go to the documentation of this file.
1/* $Id: matrix.c,v 1.23 1997/12/29 23:48:53 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version: 2.6
6 * Copyright (C) 1995-1997 Brian Paul
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Library General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Library General Public License for more details.
17 *
18 * You should have received a copy of the GNU Library General Public
19 * License along with this library; if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23
24/*
25 * $Log: matrix.c,v $
26 * Revision 1.23 1997/12/29 23:48:53 brianp
27 * call Driver.NearFar() in gl_LoadMatrixf() for projection matrix
28 *
29 * Revision 1.22 1997/10/16 23:37:23 brianp
30 * fixed scotter's email address
31 *
32 * Revision 1.21 1997/08/13 01:54:34 brianp
33 * new matrix invert code from Scott McCaskill
34 *
35 * Revision 1.20 1997/07/24 01:23:16 brianp
36 * changed precompiled header symbol from PCH to PC_HEADER
37 *
38 * Revision 1.19 1997/05/30 02:21:43 brianp
39 * gl_PopMatrix() set ctx->New*Matrix flag incorrectly
40 *
41 * Revision 1.18 1997/05/28 04:06:03 brianp
42 * implemented projection near/far value stack for Driver.NearFar() function
43 *
44 * Revision 1.17 1997/05/28 03:25:43 brianp
45 * added precompiled header (PCH) support
46 *
47 * Revision 1.16 1997/05/01 01:39:40 brianp
48 * replace sqrt() with GL_SQRT()
49 *
50 * Revision 1.15 1997/04/21 01:20:41 brianp
51 * added MATRIX_2D_NO_ROT
52 *
53 * Revision 1.14 1997/04/20 20:28:49 brianp
54 * replaced abort() with gl_problem()
55 *
56 * Revision 1.13 1997/04/20 16:31:08 brianp
57 * added NearFar device driver function
58 *
59 * Revision 1.12 1997/04/20 16:18:15 brianp
60 * added glOrtho and glFrustum API pointers
61 *
62 * Revision 1.11 1997/04/01 04:23:53 brianp
63 * added gl_analyze_*_matrix() functions
64 *
65 * Revision 1.10 1997/02/10 19:47:53 brianp
66 * moved buffer resize code out of gl_Viewport() into gl_ResizeBuffersMESA()
67 *
68 * Revision 1.9 1997/01/31 23:32:40 brianp
69 * now clear depth buffer after reallocation due to window resize
70 *
71 * Revision 1.8 1997/01/29 19:06:04 brianp
72 * removed extra, local definition of Identity[] matrix
73 *
74 * Revision 1.7 1997/01/28 22:19:17 brianp
75 * new matrix inversion code from Stephane Rehel
76 *
77 * Revision 1.6 1996/12/22 17:53:11 brianp
78 * faster invert_matrix() function from scotter@iname.com
79 *
80 * Revision 1.5 1996/12/02 18:58:34 brianp
81 * gl_rotation_matrix() now returns identity matrix if given a 0 rotation axis
82 *
83 * Revision 1.4 1996/09/27 01:29:05 brianp
84 * added missing default cases to switches
85 *
86 * Revision 1.3 1996/09/15 14:18:37 brianp
87 * now use GLframebuffer and GLvisual
88 *
89 * Revision 1.2 1996/09/14 06:46:04 brianp
90 * better matmul() from Jacques Leroy
91 *
92 * Revision 1.1 1996/09/13 01:38:16 brianp
93 * Initial revision
94 *
95 */
96
97
98/*
99 * Matrix operations
100 *
101 *
102 * NOTES:
103 * 1. 4x4 transformation matrices are stored in memory in column major order.
104 * 2. Points/vertices are to be thought of as column vectors.
105 * 3. Transformation of a point p by a matrix M is: p' = M * p
106 *
107 */
108
109
110#ifdef PC_HEADER
111#include "all.h"
112#else
113#include <math.h>
114#include <stdio.h>
115#include <stdlib.h>
116#include <string.h>
117#include "context.h"
118#include "dlist.h"
119#include "macros.h"
120#include "matrix.h"
121#include "mmath.h"
122#include "types.h"
123#endif
124
125
126
127static GLfloat Identity[16] = {
128 1.0, 0.0, 0.0, 0.0,
129 0.0, 1.0, 0.0, 0.0,
130 0.0, 0.0, 1.0, 0.0,
131 0.0, 0.0, 0.0, 1.0
132};
133
134
135#if 0
136static void print_matrix( const GLfloat m[16] )
137{
138 int i;
139
140 for (i=0;i<4;i++) {
141 printf("%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
142 }
143}
144#endif
145
146
147/*
148 * Perform a 4x4 matrix multiplication (product = a x b).
149 * Input: a, b - matrices to multiply
150 * Output: product - product of a and b
151 * WARNING: (product != b) assumed
152 * NOTE: (product == a) allowed
153 */
154static void matmul( GLfloat *product, const GLfloat *a, const GLfloat *b )
155{
156 /* This matmul was contributed by Thomas Malik */
157 GLint i;
158
159#define A(row,col) a[(col<<2)+row]
160#define B(row,col) b[(col<<2)+row]
161#define P(row,col) product[(col<<2)+row]
162
163 /* i-te Zeile */
164 for (i = 0; i < 4; i++) {
165 GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
166 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
167 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
168 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
169 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
170 }
171
172#undef A
173#undef B
174#undef P
175}
176
177
178
179/*
180 * Compute the inverse of a 4x4 matrix.
181 *
182 * From an algorithm by V. Strassen, 1969, _Numerishe Mathematik_, vol. 13,
183 * pp. 354-356.
184 * 60 multiplies, 24 additions, 10 subtractions, 8 negations, 2 divisions,
185 * 48 assignments, _0_ branches
186 *
187 * This implementation by Scott McCaskill
188 */
189
190typedef GLfloat Mat2[2][2];
191
192enum {
193 M00 = 0, M01 = 4, M02 = 8, M03 = 12,
194 M10 = 1, M11 = 5, M12 = 9, M13 = 13,
195 M20 = 2, M21 = 6, M22 = 10,M23 = 14,
196 M30 = 3, M31 = 7, M32 = 11,M33 = 15
198
200{
201 Mat2 r1, r2, r3, r4, r5, r6, r7;
202 const GLfloat * A = m;
203 GLfloat * C = out;
204 GLfloat one_over_det;
205
206 /*
207 * A is the 4x4 source matrix (to be inverted).
208 * C is the 4x4 destination matrix
209 * a11 is the 2x2 matrix in the upper left quadrant of A
210 * a12 is the 2x2 matrix in the upper right quadrant of A
211 * a21 is the 2x2 matrix in the lower left quadrant of A
212 * a22 is the 2x2 matrix in the lower right quadrant of A
213 * similarly, cXX are the 2x2 quadrants of the destination matrix
214 */
215
216 /* R1 = inverse( a11 ) */
217 one_over_det = 1.0f / ( ( A[M00] * A[M11] ) - ( A[M10] * A[M01] ) );
218 r1[0][0] = one_over_det * A[M11];
219 r1[0][1] = one_over_det * -A[M01];
220 r1[1][0] = one_over_det * -A[M10];
221 r1[1][1] = one_over_det * A[M00];
222
223 /* R2 = a21 x R1 */
224 r2[0][0] = A[M20] * r1[0][0] + A[M21] * r1[1][0];
225 r2[0][1] = A[M20] * r1[0][1] + A[M21] * r1[1][1];
226 r2[1][0] = A[M30] * r1[0][0] + A[M31] * r1[1][0];
227 r2[1][1] = A[M30] * r1[0][1] + A[M31] * r1[1][1];
228
229 /* R3 = R1 x a12 */
230 r3[0][0] = r1[0][0] * A[M02] + r1[0][1] * A[M12];
231 r3[0][1] = r1[0][0] * A[M03] + r1[0][1] * A[M13];
232 r3[1][0] = r1[1][0] * A[M02] + r1[1][1] * A[M12];
233 r3[1][1] = r1[1][0] * A[M03] + r1[1][1] * A[M13];
234
235 /* R4 = a21 x R3 */
236 r4[0][0] = A[M20] * r3[0][0] + A[M21] * r3[1][0];
237 r4[0][1] = A[M20] * r3[0][1] + A[M21] * r3[1][1];
238 r4[1][0] = A[M30] * r3[0][0] + A[M31] * r3[1][0];
239 r4[1][1] = A[M30] * r3[0][1] + A[M31] * r3[1][1];
240
241 /* R5 = R4 - a22 */
242 r5[0][0] = r4[0][0] - A[M22];
243 r5[0][1] = r4[0][1] - A[M23];
244 r5[1][0] = r4[1][0] - A[M32];
245 r5[1][1] = r4[1][1] - A[M33];
246
247 /* R6 = inverse( R5 ) */
248 one_over_det = 1.0f / ( ( r5[0][0] * r5[1][1] ) - ( r5[1][0] * r5[0][1] ) );
249 r6[0][0] = one_over_det * r5[1][1];
250 r6[0][1] = one_over_det * -r5[0][1];
251 r6[1][0] = one_over_det * -r5[1][0];
252 r6[1][1] = one_over_det * r5[0][0];
253
254 /* c12 = R3 x R6 */
255 C[M02] = r3[0][0] * r6[0][0] + r3[0][1] * r6[1][0];
256 C[M03] = r3[0][0] * r6[0][1] + r3[0][1] * r6[1][1];
257 C[M12] = r3[1][0] * r6[0][0] + r3[1][1] * r6[1][0];
258 C[M13] = r3[1][0] * r6[0][1] + r3[1][1] * r6[1][1];
259
260 /* c21 = R6 x R2 */
261 C[M20] = r6[0][0] * r2[0][0] + r6[0][1] * r2[1][0];
262 C[M21] = r6[0][0] * r2[0][1] + r6[0][1] * r2[1][1];
263 C[M30] = r6[1][0] * r2[0][0] + r6[1][1] * r2[1][0];
264 C[M31] = r6[1][0] * r2[0][1] + r6[1][1] * r2[1][1];
265
266 /* R7 = R3 x c21 */
267 r7[0][0] = r3[0][0] * C[M20] + r3[0][1] * C[M30];
268 r7[0][1] = r3[0][0] * C[M21] + r3[0][1] * C[M31];
269 r7[1][0] = r3[1][0] * C[M20] + r3[1][1] * C[M30];
270 r7[1][1] = r3[1][0] * C[M21] + r3[1][1] * C[M31];
271
272 /* c11 = R1 - R7 */
273 C[M00] = r1[0][0] - r7[0][0];
274 C[M01] = r1[0][1] - r7[0][1];
275 C[M10] = r1[1][0] - r7[1][0];
276 C[M11] = r1[1][1] - r7[1][1];
277
278 /* c22 = -R6 */
279 C[M22] = -r6[0][0];
280 C[M23] = -r6[0][1];
281 C[M32] = -r6[1][0];
282 C[M33] = -r6[1][1];
283}
284
285
286/*
287 * Invert matrix m. This algorithm contributed by Stephane Rehel
288 * <rehel@worldnet.fr>
289 */
290static void invert_matrix( const GLfloat *m, GLfloat *out )
291{
292/* NB. OpenGL Matrices are COLUMN major. */
293#define MAT(m,r,c) (m)[(c)*4+(r)]
294
295/* Here's some shorthand converting standard (row,column) to index. */
296#define m11 MAT(m,0,0)
297#define m12 MAT(m,0,1)
298#define m13 MAT(m,0,2)
299#define m14 MAT(m,0,3)
300#define m21 MAT(m,1,0)
301#define m22 MAT(m,1,1)
302#define m23 MAT(m,1,2)
303#define m24 MAT(m,1,3)
304#define m31 MAT(m,2,0)
305#define m32 MAT(m,2,1)
306#define m33 MAT(m,2,2)
307#define m34 MAT(m,2,3)
308#define m41 MAT(m,3,0)
309#define m42 MAT(m,3,1)
310#define m43 MAT(m,3,2)
311#define m44 MAT(m,3,3)
312
313 register GLfloat det;
314 GLfloat tmp[16]; /* Allow out == in. */
315
316 if( m41 != 0. || m42 != 0. || m43 != 0. || m44 != 1. ) {
318 return;
319 }
320
321 /* Inverse = adjoint / det. (See linear algebra texts.)*/
322
323 tmp[0]= m22 * m33 - m23 * m32;
324 tmp[1]= m23 * m31 - m21 * m33;
325 tmp[2]= m21 * m32 - m22 * m31;
326
327 /* Compute determinant as early as possible using these cofactors. */
328 det= m11 * tmp[0] + m12 * tmp[1] + m13 * tmp[2];
329
330 /* Run singularity test. */
331 if (det == 0.0F) {
332 /* printf("invert_matrix: Warning: Singular matrix.\n"); */
333 MEMCPY( out, Identity, 16*sizeof(GLfloat) );
334 }
335 else {
336 GLfloat d12, d13, d23, d24, d34, d41;
337 register GLfloat im11, im12, im13, im14;
338
339 det= 1. / det;
340
341 /* Compute rest of inverse. */
342 tmp[0] *= det;
343 tmp[1] *= det;
344 tmp[2] *= det;
345 tmp[3] = 0.;
346
347 im11= m11 * det;
348 im12= m12 * det;
349 im13= m13 * det;
350 im14= m14 * det;
351 tmp[4] = im13 * m32 - im12 * m33;
352 tmp[5] = im11 * m33 - im13 * m31;
353 tmp[6] = im12 * m31 - im11 * m32;
354 tmp[7] = 0.;
355
356 /* Pre-compute 2x2 dets for first two rows when computing */
357 /* cofactors of last two rows. */
358 d12 = im11*m22 - m21*im12;
359 d13 = im11*m23 - m21*im13;
360 d23 = im12*m23 - m22*im13;
361 d24 = im12*m24 - m22*im14;
362 d34 = im13*m24 - m23*im14;
363 d41 = im14*m21 - m24*im11;
364
365 tmp[8] = d23;
366 tmp[9] = -d13;
367 tmp[10] = d12;
368 tmp[11] = 0.;
369
370 tmp[12] = -(m32 * d34 - m33 * d24 + m34 * d23);
371 tmp[13] = (m31 * d34 + m33 * d41 + m34 * d13);
372 tmp[14] = -(m31 * d24 + m32 * d41 + m34 * d12);
373 tmp[15] = 1.;
374
375 MEMCPY(out, tmp, 16*sizeof(GLfloat));
376 }
377
378#undef m11
379#undef m12
380#undef m13
381#undef m14
382#undef m21
383#undef m22
384#undef m23
385#undef m24
386#undef m31
387#undef m32
388#undef m33
389#undef m34
390#undef m41
391#undef m42
392#undef m43
393#undef m44
394#undef MAT
395}
396
397
398
399/*
400 * Determine if the given matrix is the identity matrix.
401 */
402static GLboolean is_identity( const GLfloat m[16] )
403{
404 if ( m[0]==1.0F && m[4]==0.0F && m[ 8]==0.0F && m[12]==0.0F
405 && m[1]==0.0F && m[5]==1.0F && m[ 9]==0.0F && m[13]==0.0F
406 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
407 && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
408 return GL_TRUE;
409 }
410 else {
411 return GL_FALSE;
412 }
413}
414
415
416/*
417 * Examine the current modelview matrix to determine its type.
418 * Later we use the matrix type to optimize vertex transformations.
419 */
421{
422 const GLfloat *m = ctx->ModelViewMatrix;
423 if (is_identity(m)) {
424 ctx->ModelViewMatrixType = MATRIX_IDENTITY;
425 }
426 else if ( m[4]==0.0F && m[ 8]==0.0F
427 && m[1]==0.0F && m[ 9]==0.0F
428 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
429 && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
430 ctx->ModelViewMatrixType = MATRIX_2D_NO_ROT;
431 }
432 else if ( m[ 8]==0.0F
433 && m[ 9]==0.0F
434 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
435 && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
436 ctx->ModelViewMatrixType = MATRIX_2D;
437 }
438 else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
439 ctx->ModelViewMatrixType = MATRIX_3D;
440 }
441 else {
442 ctx->ModelViewMatrixType = MATRIX_GENERAL;
443 }
444
445 invert_matrix( ctx->ModelViewMatrix, ctx->ModelViewInv );
446 ctx->NewModelViewMatrix = GL_FALSE;
447}
448
449
450
451/*
452 * Examine the current projection matrix to determine its type.
453 * Later we use the matrix type to optimize vertex transformations.
454 */
456{
457 /* look for common-case ortho and perspective matrices */
458 const GLfloat *m = ctx->ProjectionMatrix;
459 if (is_identity(m)) {
460 ctx->ProjectionMatrixType = MATRIX_IDENTITY;
461 }
462 else if ( m[4]==0.0F && m[8] ==0.0F
463 && m[1]==0.0F && m[9] ==0.0F
464 && m[2]==0.0F && m[6]==0.0F
465 && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
466 ctx->ProjectionMatrixType = MATRIX_ORTHO;
467 }
468 else if ( m[4]==0.0F && m[12]==0.0F
469 && m[1]==0.0F && m[13]==0.0F
470 && m[2]==0.0F && m[6]==0.0F
471 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
472 ctx->ProjectionMatrixType = MATRIX_PERSPECTIVE;
473 }
474 else {
475 ctx->ProjectionMatrixType = MATRIX_GENERAL;
476 }
477
478 ctx->NewProjectionMatrix = GL_FALSE;
479}
480
481
482
483/*
484 * Examine the current texture matrix to determine its type.
485 * Later we use the matrix type to optimize texture coordinate transformations.
486 */
488{
489 const GLfloat *m = ctx->TextureMatrix;
490 if (is_identity(m)) {
491 ctx->TextureMatrixType = MATRIX_IDENTITY;
492 }
493 else if ( m[ 8]==0.0F
494 && m[ 9]==0.0F
495 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F
496 && m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
497 ctx->TextureMatrixType = MATRIX_2D;
498 }
499 else if (m[3]==0.0F && m[7]==0.0F && m[11]==0.0F && m[15]==1.0F) {
500 ctx->TextureMatrixType = MATRIX_3D;
501 }
502 else {
503 ctx->TextureMatrixType = MATRIX_GENERAL;
504 }
505
506 ctx->NewTextureMatrix = GL_FALSE;
507}
508
509
510
514 GLdouble nearval, GLdouble farval )
515{
516 GLfloat x, y, a, b, c, d;
517 GLfloat m[16];
518
519 if (nearval<=0.0 || farval<=0.0) {
520 gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
521 }
522
523 x = (2.0*nearval) / (right-left);
524 y = (2.0*nearval) / (top-bottom);
525 a = (right+left) / (right-left);
526 b = (top+bottom) / (top-bottom);
527 c = -(farval+nearval) / ( farval-nearval);
528 d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
529
530#define M(row,col) m[col*4+row]
531 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
532 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
533 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
534 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
535#undef M
536
537 gl_MultMatrixf( ctx, m );
538
539
540 /* Need to keep a stack of near/far values in case the user push/pops
541 * the projection matrix stack so that we can call Driver.NearFar()
542 * after a pop.
543 */
544 ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
545 ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
546
547 if (ctx->Driver.NearFar) {
548 (*ctx->Driver.NearFar)( ctx, nearval, farval );
549 }
550}
551
552
556 GLdouble nearval, GLdouble farval )
557{
558 GLfloat x, y, z;
559 GLfloat tx, ty, tz;
560 GLfloat m[16];
561
562 x = 2.0 / (right-left);
563 y = 2.0 / (top-bottom);
564 z = -2.0 / (farval-nearval);
565 tx = -(right+left) / (right-left);
566 ty = -(top+bottom) / (top-bottom);
567 tz = -(farval+nearval) / (farval-nearval);
568
569#define M(row,col) m[col*4+row]
570 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
571 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
572 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
573 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
574#undef M
575
576 gl_MultMatrixf( ctx, m );
577
578 if (ctx->Driver.NearFar) {
579 (*ctx->Driver.NearFar)( ctx, nearval, farval );
580 }
581}
582
583
585{
586 if (INSIDE_BEGIN_END(ctx)) {
587 gl_error( ctx, GL_INVALID_OPERATION, "glMatrixMode" );
588 return;
589 }
590 switch (mode) {
591 case GL_MODELVIEW:
592 case GL_PROJECTION:
593 case GL_TEXTURE:
594 ctx->Transform.MatrixMode = mode;
595 break;
596 default:
597 gl_error( ctx, GL_INVALID_ENUM, "glMatrixMode" );
598 }
599}
600
601
602
604{
605 if (INSIDE_BEGIN_END(ctx)) {
606 gl_error( ctx, GL_INVALID_OPERATION, "glPushMatrix" );
607 return;
608 }
609 switch (ctx->Transform.MatrixMode) {
610 case GL_MODELVIEW:
611 if (ctx->ModelViewStackDepth>=MAX_MODELVIEW_STACK_DEPTH-1) {
612 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
613 return;
614 }
615 MEMCPY( ctx->ModelViewStack[ctx->ModelViewStackDepth],
616 ctx->ModelViewMatrix,
617 16*sizeof(GLfloat) );
618 ctx->ModelViewStackDepth++;
619 break;
620 case GL_PROJECTION:
621 if (ctx->ProjectionStackDepth>=MAX_PROJECTION_STACK_DEPTH) {
622 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
623 return;
624 }
625 MEMCPY( ctx->ProjectionStack[ctx->ProjectionStackDepth],
626 ctx->ProjectionMatrix,
627 16*sizeof(GLfloat) );
628 ctx->ProjectionStackDepth++;
629
630 /* Save near and far projection values */
631 ctx->NearFarStack[ctx->ProjectionStackDepth][0]
632 = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
633 ctx->NearFarStack[ctx->ProjectionStackDepth][1]
634 = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
635 break;
636 case GL_TEXTURE:
637 if (ctx->TextureStackDepth>=MAX_TEXTURE_STACK_DEPTH) {
638 gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
639 return;
640 }
641 MEMCPY( ctx->TextureStack[ctx->TextureStackDepth],
642 ctx->TextureMatrix,
643 16*sizeof(GLfloat) );
644 ctx->TextureStackDepth++;
645 break;
646 default:
647 gl_problem(ctx, "Bad matrix mode in gl_PushMatrix");
648 }
649}
650
651
652
654{
655 if (INSIDE_BEGIN_END(ctx)) {
656 gl_error( ctx, GL_INVALID_OPERATION, "glPopMatrix" );
657 return;
658 }
659 switch (ctx->Transform.MatrixMode) {
660 case GL_MODELVIEW:
661 if (ctx->ModelViewStackDepth==0) {
662 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
663 return;
664 }
665 ctx->ModelViewStackDepth--;
666 MEMCPY( ctx->ModelViewMatrix,
667 ctx->ModelViewStack[ctx->ModelViewStackDepth],
668 16*sizeof(GLfloat) );
669 ctx->NewModelViewMatrix = GL_TRUE;
670 break;
671 case GL_PROJECTION:
672 if (ctx->ProjectionStackDepth==0) {
673 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
674 return;
675 }
676 ctx->ProjectionStackDepth--;
677 MEMCPY( ctx->ProjectionMatrix,
678 ctx->ProjectionStack[ctx->ProjectionStackDepth],
679 16*sizeof(GLfloat) );
680 ctx->NewProjectionMatrix = GL_TRUE;
681
682 /* Device driver near/far values */
683 {
684 GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
685 GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
686 if (ctx->Driver.NearFar) {
687 (*ctx->Driver.NearFar)( ctx, nearVal, farVal );
688 }
689 }
690 break;
691 case GL_TEXTURE:
692 if (ctx->TextureStackDepth==0) {
693 gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
694 return;
695 }
696 ctx->TextureStackDepth--;
697 MEMCPY( ctx->TextureMatrix,
698 ctx->TextureStack[ctx->TextureStackDepth],
699 16*sizeof(GLfloat) );
700 ctx->NewTextureMatrix = GL_TRUE;
701 break;
702 default:
703 gl_problem(ctx, "Bad matrix mode in gl_PopMatrix");
704 }
705}
706
707
708
710{
711 if (INSIDE_BEGIN_END(ctx)) {
712 gl_error( ctx, GL_INVALID_OPERATION, "glLoadIdentity" );
713 return;
714 }
715 switch (ctx->Transform.MatrixMode) {
716 case GL_MODELVIEW:
717 MEMCPY( ctx->ModelViewMatrix, Identity, 16*sizeof(GLfloat) );
718 MEMCPY( ctx->ModelViewInv, Identity, 16*sizeof(GLfloat) );
719 ctx->ModelViewMatrixType = MATRIX_IDENTITY;
720 ctx->NewModelViewMatrix = GL_FALSE;
721 break;
722 case GL_PROJECTION:
723 MEMCPY( ctx->ProjectionMatrix, Identity, 16*sizeof(GLfloat) );
724 ctx->ProjectionMatrixType = MATRIX_IDENTITY;
725 ctx->NewProjectionMatrix = GL_FALSE;
726 break;
727 case GL_TEXTURE:
728 MEMCPY( ctx->TextureMatrix, Identity, 16*sizeof(GLfloat) );
729 ctx->TextureMatrixType = MATRIX_IDENTITY;
730 ctx->NewTextureMatrix = GL_FALSE;
731 break;
732 default:
733 gl_problem(ctx, "Bad matrix mode in gl_LoadIdentity");
734 }
735}
736
737
739{
740 if (INSIDE_BEGIN_END(ctx)) {
741 gl_error( ctx, GL_INVALID_OPERATION, "glLoadMatrix" );
742 return;
743 }
744 switch (ctx->Transform.MatrixMode) {
745 case GL_MODELVIEW:
746 MEMCPY( ctx->ModelViewMatrix, m, 16*sizeof(GLfloat) );
747 ctx->NewModelViewMatrix = GL_TRUE;
748 break;
749 case GL_PROJECTION:
750 MEMCPY( ctx->ProjectionMatrix, m, 16*sizeof(GLfloat) );
751 ctx->NewProjectionMatrix = GL_TRUE;
752 {
753 float n,f,c,d;
754
755#define M(row,col) m[col*4+row]
756 c = M(2,2);
757 d = M(2,3);
758#undef M
759 n = d / (c-1);
760 f = d / (c+1);
761
762 /* Need to keep a stack of near/far values in case the user
763 * push/pops the projection matrix stack so that we can call
764 * Driver.NearFar() after a pop.
765 */
766 ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n;
767 ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f;
768
769 if (ctx->Driver.NearFar) {
770 (*ctx->Driver.NearFar)( ctx, n, f );
771 }
772 }
773 break;
774 case GL_TEXTURE:
775 MEMCPY( ctx->TextureMatrix, m, 16*sizeof(GLfloat) );
776 ctx->NewTextureMatrix = GL_TRUE;
777 break;
778 default:
779 gl_problem(ctx, "Bad matrix mode in gl_LoadMatrixf");
780 }
781}
782
783
784
786{
787 if (INSIDE_BEGIN_END(ctx)) {
788 gl_error( ctx, GL_INVALID_OPERATION, "glMultMatrix" );
789 return;
790 }
791 switch (ctx->Transform.MatrixMode) {
792 case GL_MODELVIEW:
793 matmul( ctx->ModelViewMatrix, ctx->ModelViewMatrix, m );
794 ctx->NewModelViewMatrix = GL_TRUE;
795 break;
796 case GL_PROJECTION:
797 matmul( ctx->ProjectionMatrix, ctx->ProjectionMatrix, m );
798 ctx->NewProjectionMatrix = GL_TRUE;
799 break;
800 case GL_TEXTURE:
801 matmul( ctx->TextureMatrix, ctx->TextureMatrix, m );
802 ctx->NewTextureMatrix = GL_TRUE;
803 break;
804 default:
805 gl_problem(ctx, "Bad matrix mode in gl_MultMatrixf");
806 }
807}
808
809
810
811/*
812 * Generate a 4x4 transformation matrix from glRotate parameters.
813 */
815 GLfloat m[] )
816{
817 /* This function contributed by Erich Boleyn (erich@uruk.org) */
818 GLfloat mag, s, c;
819 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
820
821 s = sin( angle * DEG2RAD );
822 c = cos( angle * DEG2RAD );
823
824 mag = GL_SQRT( x*x + y*y + z*z );
825
826 if (mag == 0.0) {
827 /* generate an identity matrix and return */
828 MEMCPY(m, Identity, sizeof(GLfloat)*16);
829 return;
830 }
831
832 x /= mag;
833 y /= mag;
834 z /= mag;
835
836#define M(row,col) m[col*4+row]
837
838 /*
839 * Arbitrary axis rotation matrix.
840 *
841 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
842 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
843 * (which is about the X-axis), and the two composite transforms
844 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
845 * from the arbitrary axis to the X-axis then back. They are
846 * all elementary rotations.
847 *
848 * Rz' is a rotation about the Z-axis, to bring the axis vector
849 * into the x-z plane. Then Ry' is applied, rotating about the
850 * Y-axis to bring the axis vector parallel with the X-axis. The
851 * rotation about the X-axis is then performed. Ry and Rz are
852 * simply the respective inverse transforms to bring the arbitrary
853 * axis back to it's original orientation. The first transforms
854 * Rz' and Ry' are considered inverses, since the data from the
855 * arbitrary axis gives you info on how to get to it, not how
856 * to get away from it, and an inverse must be applied.
857 *
858 * The basic calculation used is to recognize that the arbitrary
859 * axis vector (x, y, z), since it is of unit length, actually
860 * represents the sines and cosines of the angles to rotate the
861 * X-axis to the same orientation, with theta being the angle about
862 * Z and phi the angle about Y (in the order described above)
863 * as follows:
864 *
865 * cos ( theta ) = x / sqrt ( 1 - z^2 )
866 * sin ( theta ) = y / sqrt ( 1 - z^2 )
867 *
868 * cos ( phi ) = sqrt ( 1 - z^2 )
869 * sin ( phi ) = z
870 *
871 * Note that cos ( phi ) can further be inserted to the above
872 * formulas:
873 *
874 * cos ( theta ) = x / cos ( phi )
875 * sin ( theta ) = y / sin ( phi )
876 *
877 * ...etc. Because of those relations and the standard trigonometric
878 * relations, it is pssible to reduce the transforms down to what
879 * is used below. It may be that any primary axis chosen will give the
880 * same results (modulo a sign convention) using thie method.
881 *
882 * Particularly nice is to notice that all divisions that might
883 * have caused trouble when parallel to certain planes or
884 * axis go away with care paid to reducing the expressions.
885 * After checking, it does perform correctly under all cases, since
886 * in all the cases of division where the denominator would have
887 * been zero, the numerator would have been zero as well, giving
888 * the expected result.
889 */
890
891 xx = x * x;
892 yy = y * y;
893 zz = z * z;
894 xy = x * y;
895 yz = y * z;
896 zx = z * x;
897 xs = x * s;
898 ys = y * s;
899 zs = z * s;
900 one_c = 1.0F - c;
901
902 M(0,0) = (one_c * xx) + c;
903 M(0,1) = (one_c * xy) - zs;
904 M(0,2) = (one_c * zx) + ys;
905 M(0,3) = 0.0F;
906
907 M(1,0) = (one_c * xy) + zs;
908 M(1,1) = (one_c * yy) + c;
909 M(1,2) = (one_c * yz) - xs;
910 M(1,3) = 0.0F;
911
912 M(2,0) = (one_c * zx) - ys;
913 M(2,1) = (one_c * yz) + xs;
914 M(2,2) = (one_c * zz) + c;
915 M(2,3) = 0.0F;
916
917 M(3,0) = 0.0F;
918 M(3,1) = 0.0F;
919 M(3,2) = 0.0F;
920 M(3,3) = 1.0F;
921
922#undef M
923}
924
925
926
929{
930 GLfloat m[16];
931 gl_rotation_matrix( angle, x, y, z, m );
932 gl_MultMatrixf( ctx, m );
933}
934
935
936
937/*
938 * Execute a glScale call
939 */
941{
942 GLfloat *m;
943
944 if (INSIDE_BEGIN_END(ctx)) {
945 gl_error( ctx, GL_INVALID_OPERATION, "glScale" );
946 return;
947 }
948 switch (ctx->Transform.MatrixMode) {
949 case GL_MODELVIEW:
950 m = ctx->ModelViewMatrix;
951 ctx->NewModelViewMatrix = GL_TRUE;
952 break;
953 case GL_PROJECTION:
954 m = ctx->ProjectionMatrix;
955 ctx->NewProjectionMatrix = GL_TRUE;
956 break;
957 case GL_TEXTURE:
958 m = ctx->TextureMatrix;
959 ctx->NewTextureMatrix = GL_TRUE;
960 break;
961 default:
962 gl_problem(ctx, "Bad matrix mode in gl_Scalef");
963 return;
964 }
965 m[0] *= x; m[4] *= y; m[8] *= z;
966 m[1] *= x; m[5] *= y; m[9] *= z;
967 m[2] *= x; m[6] *= y; m[10] *= z;
968 m[3] *= x; m[7] *= y; m[11] *= z;
969}
970
971
972
973/*
974 * Execute a glTranslate call
975 */
977{
978 GLfloat *m;
979 if (INSIDE_BEGIN_END(ctx)) {
980 gl_error( ctx, GL_INVALID_OPERATION, "glTranslate" );
981 return;
982 }
983 switch (ctx->Transform.MatrixMode) {
984 case GL_MODELVIEW:
985 m = ctx->ModelViewMatrix;
986 ctx->NewModelViewMatrix = GL_TRUE;
987 break;
988 case GL_PROJECTION:
989 m = ctx->ProjectionMatrix;
990 ctx->NewProjectionMatrix = GL_TRUE;
991 break;
992 case GL_TEXTURE:
993 m = ctx->TextureMatrix;
994 ctx->NewTextureMatrix = GL_TRUE;
995 break;
996 default:
997 gl_problem(ctx, "Bad matrix mode in gl_Translatef");
998 return;
999 }
1000
1001 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1002 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1003 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1004 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1005}
1006
1007
1008
1009
1010/*
1011 * Define a new viewport and reallocate auxillary buffers if the size of
1012 * the window (color buffer) has changed.
1013 */
1016{
1017 if (width<0 || height<0) {
1018 gl_error( ctx, GL_INVALID_VALUE, "glViewport" );
1019 return;
1020 }
1021 if (INSIDE_BEGIN_END(ctx)) {
1022 gl_error( ctx, GL_INVALID_OPERATION, "glViewport" );
1023 return;
1024 }
1025
1026 /* clamp width, and height to implementation dependent range */
1027 width = CLAMP( width, 1, MAX_WIDTH );
1028 height = CLAMP( height, 1, MAX_HEIGHT );
1029
1030 /* Save viewport */
1031 ctx->Viewport.X = x;
1032 ctx->Viewport.Width = width;
1033 ctx->Viewport.Y = y;
1034 ctx->Viewport.Height = height;
1035
1036 /* compute scale and bias values */
1037 ctx->Viewport.Sx = (GLfloat) width / 2.0F;
1038 ctx->Viewport.Tx = ctx->Viewport.Sx + x;
1039 ctx->Viewport.Sy = (GLfloat) height / 2.0F;
1040 ctx->Viewport.Ty = ctx->Viewport.Sy + y;
1041
1042 ctx->NewState |= NEW_ALL; /* just to be safe */
1043
1044 /* Check if window/buffer has been resized and if so, reallocate the
1045 * ancillary buffers.
1046 */
1048}
_STLP_DECLSPEC complex< float > _STLP_CALL cos(const complex< float > &)
_STLP_DECLSPEC complex< float > _STLP_CALL sin(const complex< float > &)
#define DEG2RAD(degree)
Definition: precomp.h:76
Definition: ehthrow.cxx:93
Definition: terminate.cpp:24
#define MAX_MODELVIEW_STACK_DEPTH
Definition: config.h:66
#define MAX_WIDTH
Definition: config.h:130
#define MAX_TEXTURE_STACK_DEPTH
Definition: config.h:72
#define MAX_PROJECTION_STACK_DEPTH
Definition: config.h:69
#define MAX_HEIGHT
Definition: config.h:131
void gl_ResizeBuffersMESA(GLcontext *ctx)
Definition: context.c:1497
void gl_problem(const GLcontext *ctx, const char *s)
Definition: context.c:1394
void gl_error(GLcontext *ctx, GLenum error, const char *s)
Definition: context.c:1421
static void invert_matrix_general(const GLfloat *m, GLfloat *out)
Definition: matrix.c:199
void gl_Scalef(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z)
Definition: matrix.c:940
#define m32
void gl_analyze_texture_matrix(GLcontext *ctx)
Definition: matrix.c:487
void gl_rotation_matrix(GLfloat angle, GLfloat x, GLfloat y, GLfloat z, GLfloat m[])
Definition: matrix.c:814
#define m34
void gl_LoadIdentity(GLcontext *ctx)
Definition: matrix.c:709
#define m33
#define m14
static void matmul(GLfloat *product, const GLfloat *a, const GLfloat *b)
Definition: matrix.c:154
#define m31
#define m22
#define m11
#define m43
#define m42
#define P(row, col)
#define m13
void gl_Rotatef(GLcontext *ctx, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
Definition: matrix.c:927
#define m24
#define m23
static void invert_matrix(const GLfloat *m, GLfloat *out)
Definition: matrix.c:290
#define A(row, col)
void gl_Viewport(GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height)
Definition: matrix.c:1014
void gl_analyze_modelview_matrix(GLcontext *ctx)
Definition: matrix.c:420
@ M23
Definition: matrix.c:195
@ M21
Definition: matrix.c:195
@ M33
Definition: matrix.c:196
@ M13
Definition: matrix.c:194
@ M20
Definition: matrix.c:195
@ M31
Definition: matrix.c:196
@ M01
Definition: matrix.c:193
@ M03
Definition: matrix.c:193
@ M32
Definition: matrix.c:196
@ M10
Definition: matrix.c:194
@ M12
Definition: matrix.c:194
@ M11
Definition: matrix.c:194
@ M02
Definition: matrix.c:193
@ M30
Definition: matrix.c:196
@ M00
Definition: matrix.c:193
@ M22
Definition: matrix.c:195
#define B(row, col)
void gl_Translatef(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z)
Definition: matrix.c:976
void gl_PopMatrix(GLcontext *ctx)
Definition: matrix.c:653
void gl_analyze_projection_matrix(GLcontext *ctx)
Definition: matrix.c:455
#define m12
#define m21
void gl_MultMatrixf(GLcontext *ctx, const GLfloat *m)
Definition: matrix.c:785
void gl_PushMatrix(GLcontext *ctx)
Definition: matrix.c:603
void gl_Ortho(GLcontext *ctx, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
Definition: matrix.c:553
#define M(row, col)
static GLboolean is_identity(const GLfloat m[16])
Definition: matrix.c:402
static GLfloat Identity[16]
Definition: matrix.c:127
void gl_Frustum(GLcontext *ctx, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval)
Definition: matrix.c:511
void gl_LoadMatrixf(GLcontext *ctx, const GLfloat *m)
Definition: matrix.c:738
#define m41
GLfloat Mat2[2][2]
Definition: matrix.c:190
#define m44
void gl_MatrixMode(GLcontext *ctx, GLenum mode)
Definition: matrix.c:584
#define MATRIX_GENERAL
Definition: types.h:1242
#define MATRIX_ORTHO
Definition: types.h:1244
#define MATRIX_2D_NO_ROT
Definition: types.h:1247
#define NEW_ALL
Definition: types.h:1236
#define MATRIX_3D
Definition: types.h:1248
#define MATRIX_PERSPECTIVE
Definition: types.h:1245
#define MATRIX_IDENTITY
Definition: types.h:1243
#define MATRIX_2D
Definition: types.h:1246
#define printf
Definition: freeldr.h:97
#define GL_TRUE
Definition: gl.h:174
#define GL_INVALID_VALUE
Definition: gl.h:695
#define GL_TEXTURE
Definition: gl.h:247
float GLfloat
Definition: gl.h:161
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
double GLdouble
Definition: gl.h:163
#define GL_INVALID_OPERATION
Definition: gl.h:696
unsigned int GLenum
Definition: gl.h:150
GLdouble s
Definition: gl.h:2039
#define GL_STACK_OVERFLOW
Definition: gl.h:697
GLint GLint GLint GLint GLint GLint y
Definition: gl.h:1548
#define GL_PROJECTION
Definition: gl.h:246
#define GL_MODELVIEW
Definition: gl.h:245
GLint GLint GLsizei GLsizei height
Definition: gl.h:1546
#define GL_FALSE
Definition: gl.h:173
int GLsizei
Definition: gl.h:160
int GLint
Definition: gl.h:156
GLint GLint GLsizei width
Definition: gl.h:1546
unsigned char GLboolean
Definition: gl.h:151
#define GL_INVALID_ENUM
Definition: gl.h:694
#define GL_STACK_UNDERFLOW
Definition: gl.h:698
GLbyte GLbyte tz
Definition: glext.h:8756
GLdouble n
Definition: glext.h:7729
const GLubyte * c
Definition: glext.h:8905
GLdouble GLdouble GLdouble GLdouble top
Definition: glext.h:10859
GLdouble GLdouble right
Definition: glext.h:10859
GLfloat f
Definition: glext.h:7540
GLboolean GLboolean GLboolean b
Definition: glext.h:6204
GLenum mode
Definition: glext.h:6217
GLint left
Definition: glext.h:7726
GLint GLint bottom
Definition: glext.h:7726
GLfloat angle
Definition: glext.h:10853
GLboolean GLboolean GLboolean GLboolean a
Definition: glext.h:6204
GLbyte ty
Definition: glext.h:8756
GLdouble GLdouble z
Definition: glext.h:5874
const GLfloat * m
Definition: glext.h:10848
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
#define d
Definition: ke_i.h:81
#define f
Definition: ke_i.h:83
#define a
Definition: ke_i.h:78
#define c
Definition: ke_i.h:80
#define b
Definition: ke_i.h:79
#define MEMCPY(DST, SRC, BYTES)
Definition: macros.h:231
#define INSIDE_BEGIN_END(CTX)
Definition: macros.h:135
#define GL_SQRT(X)
Definition: mmath.h:63
static DNS_RECORDW r3
Definition: record.c:39
static DNS_RECORDW r1
Definition: record.c:37
static DNS_RECORDW r2
Definition: record.c:38
int xx
Definition: npserver.c:29
static FILE * out
Definition: regtests2xml.c:44
#define CLAMP(f, min, max)
Definition: tif_color.c:177