ReactOS 0.4.16-dev-555-g690643f
jquant1.c
Go to the documentation of this file.
1/*
2 * jquant1.c
3 *
4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * Modified 2011 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains 1-pass color quantization (color mapping) routines.
10 * These routines provide mapping to a fixed color map using equally spaced
11 * color values. Optional Floyd-Steinberg or ordered dithering is available.
12 */
13
14#define JPEG_INTERNALS
15#include "jinclude.h"
16#include "jpeglib.h"
17
18#ifdef QUANT_1PASS_SUPPORTED
19
20
21/*
22 * The main purpose of 1-pass quantization is to provide a fast, if not very
23 * high quality, colormapped output capability. A 2-pass quantizer usually
24 * gives better visual quality; however, for quantized grayscale output this
25 * quantizer is perfectly adequate. Dithering is highly recommended with this
26 * quantizer, though you can turn it off if you really want to.
27 *
28 * In 1-pass quantization the colormap must be chosen in advance of seeing the
29 * image. We use a map consisting of all combinations of Ncolors[i] color
30 * values for the i'th component. The Ncolors[] values are chosen so that
31 * their product, the total number of colors, is no more than that requested.
32 * (In most cases, the product will be somewhat less.)
33 *
34 * Since the colormap is orthogonal, the representative value for each color
35 * component can be determined without considering the other components;
36 * then these indexes can be combined into a colormap index by a standard
37 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
38 * can be precalculated and stored in the lookup table colorindex[].
39 * colorindex[i][j] maps pixel value j in component i to the nearest
40 * representative value (grid plane) for that component; this index is
41 * multiplied by the array stride for component i, so that the
42 * index of the colormap entry closest to a given pixel value is just
43 * sum( colorindex[component-number][pixel-component-value] )
44 * Aside from being fast, this scheme allows for variable spacing between
45 * representative values with no additional lookup cost.
46 *
47 * If gamma correction has been applied in color conversion, it might be wise
48 * to adjust the color grid spacing so that the representative colors are
49 * equidistant in linear space. At this writing, gamma correction is not
50 * implemented by jdcolor, so nothing is done here.
51 */
52
53
54/* Declarations for ordered dithering.
55 *
56 * We use a standard 16x16 ordered dither array. The basic concept of ordered
57 * dithering is described in many references, for instance Dale Schumacher's
58 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
59 * In place of Schumacher's comparisons against a "threshold" value, we add a
60 * "dither" value to the input pixel and then round the result to the nearest
61 * output value. The dither value is equivalent to (0.5 - threshold) times
62 * the distance between output values. For ordered dithering, we assume that
63 * the output colors are equally spaced; if not, results will probably be
64 * worse, since the dither may be too much or too little at a given point.
65 *
66 * The normal calculation would be to form pixel value + dither, range-limit
67 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
68 * We can skip the separate range-limiting step by extending the colorindex
69 * table in both directions.
70 */
71
72#define ODITHER_SIZE 16 /* dimension of dither matrix */
73/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
74#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
75#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
76
77typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
78typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
79
80static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
81 /* Bayer's order-4 dither array. Generated by the code given in
82 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
83 * The values in this array must range from 0 to ODITHER_CELLS-1.
84 */
85 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
86 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
87 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
88 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
89 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
90 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
91 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
92 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
93 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
94 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
95 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
96 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
97 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
98 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
99 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
100 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
101};
102
103
104/* Declarations for Floyd-Steinberg dithering.
105 *
106 * Errors are accumulated into the array fserrors[], at a resolution of
107 * 1/16th of a pixel count. The error at a given pixel is propagated
108 * to its not-yet-processed neighbors using the standard F-S fractions,
109 * ... (here) 7/16
110 * 3/16 5/16 1/16
111 * We work left-to-right on even rows, right-to-left on odd rows.
112 *
113 * We can get away with a single array (holding one row's worth of errors)
114 * by using it to store the current row's errors at pixel columns not yet
115 * processed, but the next row's errors at columns already processed. We
116 * need only a few extra variables to hold the errors immediately around the
117 * current column. (If we are lucky, those variables are in registers, but
118 * even if not, they're probably cheaper to access than array elements are.)
119 *
120 * The fserrors[] array is indexed [component#][position].
121 * We provide (#columns + 2) entries per component; the extra entry at each
122 * end saves us from special-casing the first and last pixels.
123 *
124 * Note: on a wide image, we might not have enough room in a PC's near data
125 * segment to hold the error array; so it is allocated with alloc_large.
126 */
127
128#if BITS_IN_JSAMPLE == 8
129typedef INT16 FSERROR; /* 16 bits should be enough */
130typedef int LOCFSERROR; /* use 'int' for calculation temps */
131#else
132typedef INT32 FSERROR; /* may need more than 16 bits */
133typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
134#endif
135
136typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
137
138
139/* Private subobject */
140
141#define MAX_Q_COMPS 4 /* max components I can handle */
142
143typedef struct {
144 struct jpeg_color_quantizer pub; /* public fields */
145
146 /* Initially allocated colormap is saved here */
147 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
148 int sv_actual; /* number of entries in use */
149
150 JSAMPARRAY colorindex; /* Precomputed mapping for speed */
151 /* colorindex[i][j] = index of color closest to pixel value j in component i,
152 * premultiplied as described above. Since colormap indexes must fit into
153 * JSAMPLEs, the entries of this array will too.
154 */
155 boolean is_padded; /* is the colorindex padded for odither? */
156
157 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
158
159 /* Variables for ordered dithering */
160 int row_index; /* cur row's vertical index in dither matrix */
161 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
162
163 /* Variables for Floyd-Steinberg dithering */
164 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
165 boolean on_odd_row; /* flag to remember which row we are on */
166} my_cquantizer;
167
168typedef my_cquantizer * my_cquantize_ptr;
169
170
171/*
172 * Policy-making subroutines for create_colormap and create_colorindex.
173 * These routines determine the colormap to be used. The rest of the module
174 * only assumes that the colormap is orthogonal.
175 *
176 * * select_ncolors decides how to divvy up the available colors
177 * among the components.
178 * * output_value defines the set of representative values for a component.
179 * * largest_input_value defines the mapping from input values to
180 * representative values for a component.
181 * Note that the latter two routines may impose different policies for
182 * different components, though this is not currently done.
183 */
184
185
186LOCAL(int)
187select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
188/* Determine allocation of desired colors to components, */
189/* and fill in Ncolors[] array to indicate choice. */
190/* Return value is total number of colors (product of Ncolors[] values). */
191{
192 int nc = cinfo->out_color_components; /* number of color components */
193 int max_colors = cinfo->desired_number_of_colors;
194 int total_colors, iroot, i, j;
195 boolean changed;
196 long temp;
197 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
198
199 /* We can allocate at least the nc'th root of max_colors per component. */
200 /* Compute floor(nc'th root of max_colors). */
201 iroot = 1;
202 do {
203 iroot++;
204 temp = iroot; /* set temp = iroot ** nc */
205 for (i = 1; i < nc; i++)
206 temp *= iroot;
207 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
208 iroot--; /* now iroot = floor(root) */
209
210 /* Must have at least 2 color values per component */
211 if (iroot < 2)
212 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
213
214 /* Initialize to iroot color values for each component */
215 total_colors = 1;
216 for (i = 0; i < nc; i++) {
217 Ncolors[i] = iroot;
218 total_colors *= iroot;
219 }
220 /* We may be able to increment the count for one or more components without
221 * exceeding max_colors, though we know not all can be incremented.
222 * Sometimes, the first component can be incremented more than once!
223 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
224 * In RGB colorspace, try to increment G first, then R, then B.
225 */
226 do {
227 changed = FALSE;
228 for (i = 0; i < nc; i++) {
229 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
230 /* calculate new total_colors if Ncolors[j] is incremented */
231 temp = total_colors / Ncolors[j];
232 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
233 if (temp > (long) max_colors)
234 break; /* won't fit, done with this pass */
235 Ncolors[j]++; /* OK, apply the increment */
236 total_colors = (int) temp;
237 changed = TRUE;
238 }
239 } while (changed);
240
241 return total_colors;
242}
243
244
245LOCAL(int)
246output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
247/* Return j'th output value, where j will range from 0 to maxj */
248/* The output values must fall in 0..MAXJSAMPLE in increasing order */
249{
250 /* We always provide values 0 and MAXJSAMPLE for each component;
251 * any additional values are equally spaced between these limits.
252 * (Forcing the upper and lower values to the limits ensures that
253 * dithering can't produce a color outside the selected gamut.)
254 */
255 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
256}
257
258
259LOCAL(int)
260largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
261/* Return largest input value that should map to j'th output value */
262/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
263{
264 /* Breakpoints are halfway between values returned by output_value */
265 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
266}
267
268
269/*
270 * Create the colormap.
271 */
272
273LOCAL(void)
274create_colormap (j_decompress_ptr cinfo)
275{
276 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
277 JSAMPARRAY colormap; /* Created colormap */
278 int total_colors; /* Number of distinct output colors */
279 int i,j,k, nci, blksize, blkdist, ptr, val;
280
281 /* Select number of colors for each component */
282 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
283
284 /* Report selected color counts */
285 if (cinfo->out_color_components == 3)
286 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
287 total_colors, cquantize->Ncolors[0],
288 cquantize->Ncolors[1], cquantize->Ncolors[2]);
289 else
290 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
291
292 /* Allocate and fill in the colormap. */
293 /* The colors are ordered in the map in standard row-major order, */
294 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
295
296 colormap = (*cinfo->mem->alloc_sarray)
297 ((j_common_ptr) cinfo, JPOOL_IMAGE,
298 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
299
300 /* blksize is number of adjacent repeated entries for a component */
301 /* blkdist is distance between groups of identical entries for a component */
302 blkdist = total_colors;
303
304 for (i = 0; i < cinfo->out_color_components; i++) {
305 /* fill in colormap entries for i'th color component */
306 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
307 blksize = blkdist / nci;
308 for (j = 0; j < nci; j++) {
309 /* Compute j'th output value (out of nci) for component */
310 val = output_value(cinfo, i, j, nci-1);
311 /* Fill in all colormap entries that have this value of this component */
312 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
313 /* fill in blksize entries beginning at ptr */
314 for (k = 0; k < blksize; k++)
315 colormap[i][ptr+k] = (JSAMPLE) val;
316 }
317 }
318 blkdist = blksize; /* blksize of this color is blkdist of next */
319 }
320
321 /* Save the colormap in private storage,
322 * where it will survive color quantization mode changes.
323 */
324 cquantize->sv_colormap = colormap;
325 cquantize->sv_actual = total_colors;
326}
327
328
329/*
330 * Create the color index table.
331 */
332
333LOCAL(void)
334create_colorindex (j_decompress_ptr cinfo)
335{
336 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
337 JSAMPROW indexptr;
338 int i,j,k, nci, blksize, val, pad;
339
340 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
341 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
342 * This is not necessary in the other dithering modes. However, we
343 * flag whether it was done in case user changes dithering mode.
344 */
345 if (cinfo->dither_mode == JDITHER_ORDERED) {
346 pad = MAXJSAMPLE*2;
347 cquantize->is_padded = TRUE;
348 } else {
349 pad = 0;
350 cquantize->is_padded = FALSE;
351 }
352
353 cquantize->colorindex = (*cinfo->mem->alloc_sarray)
354 ((j_common_ptr) cinfo, JPOOL_IMAGE,
355 (JDIMENSION) (MAXJSAMPLE+1 + pad),
357
358 /* blksize is number of adjacent repeated entries for a component */
359 blksize = cquantize->sv_actual;
360
361 for (i = 0; i < cinfo->out_color_components; i++) {
362 /* fill in colorindex entries for i'th color component */
363 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
364 blksize = blksize / nci;
365
366 /* adjust colorindex pointers to provide padding at negative indexes. */
367 if (pad)
368 cquantize->colorindex[i] += MAXJSAMPLE;
369
370 /* in loop, val = index of current output value, */
371 /* and k = largest j that maps to current val */
372 indexptr = cquantize->colorindex[i];
373 val = 0;
374 k = largest_input_value(cinfo, i, 0, nci-1);
375 for (j = 0; j <= MAXJSAMPLE; j++) {
376 while (j > k) /* advance val if past boundary */
377 k = largest_input_value(cinfo, i, ++val, nci-1);
378 /* premultiply so that no multiplication needed in main processing */
379 indexptr[j] = (JSAMPLE) (val * blksize);
380 }
381 /* Pad at both ends if necessary */
382 if (pad)
383 for (j = 1; j <= MAXJSAMPLE; j++) {
384 indexptr[-j] = indexptr[0];
385 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
386 }
387 }
388}
389
390
391/*
392 * Create an ordered-dither array for a component having ncolors
393 * distinct output values.
394 */
395
396LOCAL(ODITHER_MATRIX_PTR)
397make_odither_array (j_decompress_ptr cinfo, int ncolors)
398{
399 ODITHER_MATRIX_PTR odither;
400 int j,k;
401 INT32 num,den;
402
403 odither = (ODITHER_MATRIX_PTR)
404 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
405 SIZEOF(ODITHER_MATRIX));
406 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
407 * Hence the dither value for the matrix cell with fill order f
408 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
409 * On 16-bit-int machine, be careful to avoid overflow.
410 */
411 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
412 for (j = 0; j < ODITHER_SIZE; j++) {
413 for (k = 0; k < ODITHER_SIZE; k++) {
414 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
415 * MAXJSAMPLE;
416 /* Ensure round towards zero despite C's lack of consistency
417 * about rounding negative values in integer division...
418 */
419 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
420 }
421 }
422 return odither;
423}
424
425
426/*
427 * Create the ordered-dither tables.
428 * Components having the same number of representative colors may
429 * share a dither table.
430 */
431
432LOCAL(void)
433create_odither_tables (j_decompress_ptr cinfo)
434{
435 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
436 ODITHER_MATRIX_PTR odither;
437 int i, j, nci;
438
439 for (i = 0; i < cinfo->out_color_components; i++) {
440 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
441 odither = NULL; /* search for matching prior component */
442 for (j = 0; j < i; j++) {
443 if (nci == cquantize->Ncolors[j]) {
444 odither = cquantize->odither[j];
445 break;
446 }
447 }
448 if (odither == NULL) /* need a new table? */
449 odither = make_odither_array(cinfo, nci);
450 cquantize->odither[i] = odither;
451 }
452}
453
454
455/*
456 * Map some rows of pixels to the output colormapped representation.
457 */
458
459METHODDEF(void)
460color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
462/* General case, no dithering */
463{
464 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
465 JSAMPARRAY colorindex = cquantize->colorindex;
466 register int pixcode, ci;
467 register JSAMPROW ptrin, ptrout;
468 int row;
469 JDIMENSION col;
471 register int nc = cinfo->out_color_components;
472
473 for (row = 0; row < num_rows; row++) {
474 ptrin = input_buf[row];
475 ptrout = output_buf[row];
476 for (col = width; col > 0; col--) {
477 pixcode = 0;
478 for (ci = 0; ci < nc; ci++) {
479 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
480 }
481 *ptrout++ = (JSAMPLE) pixcode;
482 }
483 }
484}
485
486
487METHODDEF(void)
488color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
490/* Fast path for out_color_components==3, no dithering */
491{
492 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
493 register int pixcode;
494 register JSAMPROW ptrin, ptrout;
495 JSAMPROW colorindex0 = cquantize->colorindex[0];
496 JSAMPROW colorindex1 = cquantize->colorindex[1];
497 JSAMPROW colorindex2 = cquantize->colorindex[2];
498 int row;
499 JDIMENSION col;
501
502 for (row = 0; row < num_rows; row++) {
503 ptrin = input_buf[row];
504 ptrout = output_buf[row];
505 for (col = width; col > 0; col--) {
506 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
507 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
508 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
509 *ptrout++ = (JSAMPLE) pixcode;
510 }
511 }
512}
513
514
515METHODDEF(void)
516quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
518/* General case, with ordered dithering */
519{
520 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
521 register JSAMPROW input_ptr;
522 register JSAMPROW output_ptr;
523 JSAMPROW colorindex_ci;
524 int * dither; /* points to active row of dither matrix */
525 int row_index, col_index; /* current indexes into dither matrix */
526 int nc = cinfo->out_color_components;
527 int ci;
528 int row;
529 JDIMENSION col;
531
532 for (row = 0; row < num_rows; row++) {
533 /* Initialize output values to 0 so can process components separately */
534 FMEMZERO((void FAR *) output_buf[row],
535 (size_t) (width * SIZEOF(JSAMPLE)));
536 row_index = cquantize->row_index;
537 for (ci = 0; ci < nc; ci++) {
538 input_ptr = input_buf[row] + ci;
539 output_ptr = output_buf[row];
540 colorindex_ci = cquantize->colorindex[ci];
541 dither = cquantize->odither[ci][row_index];
542 col_index = 0;
543
544 for (col = width; col > 0; col--) {
545 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
546 * select output value, accumulate into output code for this pixel.
547 * Range-limiting need not be done explicitly, as we have extended
548 * the colorindex table to produce the right answers for out-of-range
549 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
550 * required amount of padding.
551 */
552 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
553 input_ptr += nc;
554 output_ptr++;
555 col_index = (col_index + 1) & ODITHER_MASK;
556 }
557 }
558 /* Advance row index for next row */
559 row_index = (row_index + 1) & ODITHER_MASK;
560 cquantize->row_index = row_index;
561 }
562}
563
564
565METHODDEF(void)
566quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
568/* Fast path for out_color_components==3, with ordered dithering */
569{
570 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
571 register int pixcode;
572 register JSAMPROW input_ptr;
573 register JSAMPROW output_ptr;
574 JSAMPROW colorindex0 = cquantize->colorindex[0];
575 JSAMPROW colorindex1 = cquantize->colorindex[1];
576 JSAMPROW colorindex2 = cquantize->colorindex[2];
577 int * dither0; /* points to active row of dither matrix */
578 int * dither1;
579 int * dither2;
580 int row_index, col_index; /* current indexes into dither matrix */
581 int row;
582 JDIMENSION col;
584
585 for (row = 0; row < num_rows; row++) {
586 row_index = cquantize->row_index;
587 input_ptr = input_buf[row];
588 output_ptr = output_buf[row];
589 dither0 = cquantize->odither[0][row_index];
590 dither1 = cquantize->odither[1][row_index];
591 dither2 = cquantize->odither[2][row_index];
592 col_index = 0;
593
594 for (col = width; col > 0; col--) {
595 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
596 dither0[col_index]]);
597 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
598 dither1[col_index]]);
599 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
600 dither2[col_index]]);
601 *output_ptr++ = (JSAMPLE) pixcode;
602 col_index = (col_index + 1) & ODITHER_MASK;
603 }
604 row_index = (row_index + 1) & ODITHER_MASK;
605 cquantize->row_index = row_index;
606 }
607}
608
609
610METHODDEF(void)
611quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
613/* General case, with Floyd-Steinberg dithering */
614{
615 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
616 register LOCFSERROR cur; /* current error or pixel value */
617 LOCFSERROR belowerr; /* error for pixel below cur */
618 LOCFSERROR bpreverr; /* error for below/prev col */
619 LOCFSERROR bnexterr; /* error for below/next col */
620 LOCFSERROR delta;
621 register FSERRPTR errorptr; /* => fserrors[] at column before current */
622 register JSAMPROW input_ptr;
623 register JSAMPROW output_ptr;
624 JSAMPROW colorindex_ci;
625 JSAMPROW colormap_ci;
626 int pixcode;
627 int nc = cinfo->out_color_components;
628 int dir; /* 1 for left-to-right, -1 for right-to-left */
629 int dirnc; /* dir * nc */
630 int ci;
631 int row;
632 JDIMENSION col;
634 JSAMPLE *range_limit = cinfo->sample_range_limit;
636
637 for (row = 0; row < num_rows; row++) {
638 /* Initialize output values to 0 so can process components separately */
639 FMEMZERO((void FAR *) output_buf[row],
640 (size_t) (width * SIZEOF(JSAMPLE)));
641 for (ci = 0; ci < nc; ci++) {
642 input_ptr = input_buf[row] + ci;
643 output_ptr = output_buf[row];
644 if (cquantize->on_odd_row) {
645 /* work right to left in this row */
646 input_ptr += (width-1) * nc; /* so point to rightmost pixel */
647 output_ptr += width-1;
648 dir = -1;
649 dirnc = -nc;
650 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
651 } else {
652 /* work left to right in this row */
653 dir = 1;
654 dirnc = nc;
655 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
656 }
657 colorindex_ci = cquantize->colorindex[ci];
658 colormap_ci = cquantize->sv_colormap[ci];
659 /* Preset error values: no error propagated to first pixel from left */
660 cur = 0;
661 /* and no error propagated to row below yet */
662 belowerr = bpreverr = 0;
663
664 for (col = width; col > 0; col--) {
665 /* cur holds the error propagated from the previous pixel on the
666 * current line. Add the error propagated from the previous line
667 * to form the complete error correction term for this pixel, and
668 * round the error term (which is expressed * 16) to an integer.
669 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670 * for either sign of the error value.
671 * Note: errorptr points to *previous* column's array entry.
672 */
673 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
675 * The maximum error is +- MAXJSAMPLE; this sets the required size
676 * of the range_limit array.
677 */
678 cur += GETJSAMPLE(*input_ptr);
679 cur = GETJSAMPLE(range_limit[cur]);
680 /* Select output value, accumulate into output code for this pixel */
681 pixcode = GETJSAMPLE(colorindex_ci[cur]);
682 *output_ptr += (JSAMPLE) pixcode;
683 /* Compute actual representation error at this pixel */
684 /* Note: we can do this even though we don't have the final */
685 /* pixel code, because the colormap is orthogonal. */
686 cur -= GETJSAMPLE(colormap_ci[pixcode]);
687 /* Compute error fractions to be propagated to adjacent pixels.
688 * Add these into the running sums, and simultaneously shift the
689 * next-line error sums left by 1 column.
690 */
691 bnexterr = cur;
692 delta = cur * 2;
693 cur += delta; /* form error * 3 */
694 errorptr[0] = (FSERROR) (bpreverr + cur);
695 cur += delta; /* form error * 5 */
696 bpreverr = belowerr + cur;
697 belowerr = bnexterr;
698 cur += delta; /* form error * 7 */
699 /* At this point cur contains the 7/16 error value to be propagated
700 * to the next pixel on the current line, and all the errors for the
701 * next line have been shifted over. We are therefore ready to move on.
702 */
703 input_ptr += dirnc; /* advance input ptr to next column */
704 output_ptr += dir; /* advance output ptr to next column */
705 errorptr += dir; /* advance errorptr to current column */
706 }
707 /* Post-loop cleanup: we must unload the final error value into the
708 * final fserrors[] entry. Note we need not unload belowerr because
709 * it is for the dummy column before or after the actual array.
710 */
711 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
712 }
713 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
714 }
715}
716
717
718/*
719 * Allocate workspace for Floyd-Steinberg errors.
720 */
721
722LOCAL(void)
723alloc_fs_workspace (j_decompress_ptr cinfo)
724{
725 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
726 size_t arraysize;
727 int i;
728
729 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
730 for (i = 0; i < cinfo->out_color_components; i++) {
731 cquantize->fserrors[i] = (FSERRPTR)
732 (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
733 }
734}
735
736
737/*
738 * Initialize for one-pass color quantization.
739 */
740
741METHODDEF(void)
742start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
743{
744 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
745 size_t arraysize;
746 int i;
747
748 /* Install my colormap. */
749 cinfo->colormap = cquantize->sv_colormap;
750 cinfo->actual_number_of_colors = cquantize->sv_actual;
751
752 /* Initialize for desired dithering mode. */
753 switch (cinfo->dither_mode) {
754 case JDITHER_NONE:
755 if (cinfo->out_color_components == 3)
756 cquantize->pub.color_quantize = color_quantize3;
757 else
758 cquantize->pub.color_quantize = color_quantize;
759 break;
760 case JDITHER_ORDERED:
761 if (cinfo->out_color_components == 3)
762 cquantize->pub.color_quantize = quantize3_ord_dither;
763 else
764 cquantize->pub.color_quantize = quantize_ord_dither;
765 cquantize->row_index = 0; /* initialize state for ordered dither */
766 /* If user changed to ordered dither from another mode,
767 * we must recreate the color index table with padding.
768 * This will cost extra space, but probably isn't very likely.
769 */
770 if (! cquantize->is_padded)
771 create_colorindex(cinfo);
772 /* Create ordered-dither tables if we didn't already. */
773 if (cquantize->odither[0] == NULL)
774 create_odither_tables(cinfo);
775 break;
776 case JDITHER_FS:
777 cquantize->pub.color_quantize = quantize_fs_dither;
778 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779 /* Allocate Floyd-Steinberg workspace if didn't already. */
780 if (cquantize->fserrors[0] == NULL)
781 alloc_fs_workspace(cinfo);
782 /* Initialize the propagated errors to zero. */
783 arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
784 for (i = 0; i < cinfo->out_color_components; i++)
785 FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
786 break;
787 default:
788 ERREXIT(cinfo, JERR_NOT_COMPILED);
789 break;
790 }
791}
792
793
794/*
795 * Finish up at the end of the pass.
796 */
797
798METHODDEF(void)
799finish_pass_1_quant (j_decompress_ptr cinfo)
800{
801 /* no work in 1-pass case */
802}
803
804
805/*
806 * Switch to a new external colormap between output passes.
807 * Shouldn't get to this module!
808 */
809
810METHODDEF(void)
811new_color_map_1_quant (j_decompress_ptr cinfo)
812{
813 ERREXIT(cinfo, JERR_MODE_CHANGE);
814}
815
816
817/*
818 * Module initialization routine for 1-pass color quantization.
819 */
820
821GLOBAL(void)
822jinit_1pass_quantizer (j_decompress_ptr cinfo)
823{
824 my_cquantize_ptr cquantize;
825
826 cquantize = (my_cquantize_ptr)
827 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
828 SIZEOF(my_cquantizer));
829 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
830 cquantize->pub.start_pass = start_pass_1_quant;
831 cquantize->pub.finish_pass = finish_pass_1_quant;
832 cquantize->pub.new_color_map = new_color_map_1_quant;
833 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
834 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
835
836 /* Make sure my internal arrays won't overflow */
837 if (cinfo->out_color_components > MAX_Q_COMPS)
838 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
839 /* Make sure colormap indexes can be represented by JSAMPLEs */
840 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
841 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
842
843 /* Create the colormap and color index table. */
844 create_colormap(cinfo);
845 create_colorindex(cinfo);
846
847 /* Allocate Floyd-Steinberg workspace now if requested.
848 * We do this now since it is FAR storage and may affect the memory
849 * manager's space calculations. If the user changes to FS dither
850 * mode in a later pass, we will allocate the space then, and will
851 * possibly overrun the max_memory_to_use setting.
852 */
853 if (cinfo->dither_mode == JDITHER_FS)
854 alloc_fs_workspace(cinfo);
855}
856
857#endif /* QUANT_1PASS_SUPPORTED */
signed int INT32
signed short INT16
unsigned char UINT8
unsigned int dir
Definition: maze.c:112
static void output_value(const WCHAR *value_name, DWORD type, BYTE *data, DWORD data_size)
Definition: query.c:113
#define SIZEOF(_ar)
Definition: calc.h:97
#define NULL
Definition: types.h:112
#define TRUE
Definition: types.h:120
#define FALSE
Definition: types.h:117
#define FAR
Definition: zlib.h:34
struct png_info_def *typedef unsigned char **typedef struct png_info_def *typedef struct png_info_def *typedef struct png_info_def *typedef unsigned char ** row
Definition: typeof.h:78
unsigned int(__cdecl typeof(jpeg_read_scanlines))(struct jpeg_decompress_struct *
Definition: typeof.h:31
switch(r->id)
Definition: btrfs.c:3046
__kernel_size_t size_t
Definition: linux.h:237
FxCollectionEntry * cur
GLint GLint GLsizei width
Definition: gl.h:1546
GLuint GLfloat * val
Definition: glext.h:7180
GLuint GLuint num
Definition: glext.h:9618
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint GLint GLint j
Definition: glfuncs.h:250
jpeg_component_info JCOEFPTR JSAMPARRAY output_buf
Definition: jdct.h:239
#define TRACEMS1(cinfo, lvl, code, p1)
Definition: jerror.h:268
#define TRACEMS4(cinfo, lvl, code, p1, p2, p3, p4)
Definition: jerror.h:282
#define ERREXIT1(cinfo, code, p1)
Definition: jerror.h:212
unsigned int JDIMENSION
Definition: jmorecfg.h:229
#define MAXJSAMPLE
Definition: jmorecfg.h:83
char JSAMPLE
Definition: jmorecfg.h:74
#define LOCAL(type)
Definition: jmorecfg.h:289
#define METHODDEF(type)
Definition: jmorecfg.h:287
#define GLOBAL(type)
Definition: jmorecfg.h:291
#define GETJSAMPLE(value)
Definition: jmorecfg.h:78
#define SHIFT_TEMPS
Definition: jpegint.h:301
#define FMEMZERO(target, size)
Definition: jpegint.h:368
int JSAMPARRAY int int num_rows
Definition: jpegint.h:421
#define RIGHT_SHIFT(x, shft)
Definition: jpegint.h:302
struct jpeg_common_struct * j_common_ptr
Definition: jpeglib.h:284
@ JDITHER_NONE
Definition: jpeglib.h:256
@ JDITHER_FS
Definition: jpeglib.h:258
@ JDITHER_ORDERED
Definition: jpeglib.h:257
@ JCS_RGB
Definition: jpeglib.h:223
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:76
JSAMPLE FAR * JSAMPROW
Definition: jpeglib.h:75
#define JPOOL_IMAGE
Definition: jpeglib.h:808
if(dx< 0)
Definition: linetemp.h:194
#define for
Definition: utility.h:88
static PVOID ptr
Definition: dispmode.c:27
int k
Definition: mpi.c:3369
#define ERREXIT(msg)
Definition: rdjpgcom.c:72
static calc_node_t temp
Definition: rpn_ieee.c:38
JSAMPARRAY colormap
Definition: jpeglib.h:527
J_COLOR_SPACE out_color_space
Definition: jpeglib.h:478
JSAMPLE * sample_range_limit
Definition: jpeglib.h:642
JDIMENSION output_width
Definition: jpeglib.h:507
J_DITHER_MODE dither_mode
Definition: jpeglib.h:493
struct jpeg_color_quantizer * cquantize
Definition: jpeglib.h:688
MYWORD blksize
Definition: tftpd.cpp:45