ReactOS  0.4.15-dev-994-ga9f6032
jmemmgr.c
Go to the documentation of this file.
1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2011-2019 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the JPEG system-independent memory management
10  * routines. This code is usable across a wide variety of machines; most
11  * of the system dependencies have been isolated in a separate file.
12  * The major functions provided here are:
13  * * pool-based allocation and freeing of memory;
14  * * policy decisions about how to divide available memory among the
15  * virtual arrays;
16  * * control logic for swapping virtual arrays between main memory and
17  * backing storage.
18  * The separate system-dependent file provides the actual backing-storage
19  * access code, and it contains the policy decision about how much total
20  * main memory to use.
21  * This file is system-dependent in the sense that some of its functions
22  * are unnecessary in some systems. For example, if there is enough virtual
23  * memory so that backing storage will never be used, much of the virtual
24  * array control logic could be removed. (Of course, if you have that much
25  * memory then you shouldn't care about a little bit of unused code...)
26  */
27 
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
30 #include "jinclude.h"
31 #include "jpeglib.h"
32 #include "jmemsys.h" /* import the system-dependent declarations */
33 
34 #ifndef NO_GETENV
35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
36 extern char * getenv JPP((const char * name));
37 #endif
38 #endif
39 
40 
41 /*
42  * Some important notes:
43  * The allocation routines provided here must never return NULL.
44  * They should exit to error_exit if unsuccessful.
45  *
46  * It's not a good idea to try to merge the sarray and barray routines,
47  * even though they are textually almost the same, because samples are
48  * usually stored as bytes while coefficients are shorts or ints. Thus,
49  * in machines where byte pointers have a different representation from
50  * word pointers, the resulting machine code could not be the same.
51  */
52 
53 
54 /*
55  * Many machines require storage alignment: longs must start on 4-byte
56  * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
57  * always returns pointers that are multiples of the worst-case alignment
58  * requirement, and we had better do so too.
59  * There isn't any really portable way to determine the worst-case alignment
60  * requirement. This module assumes that the alignment requirement is
61  * multiples of sizeof(ALIGN_TYPE).
62  * By default, we define ALIGN_TYPE as double. This is necessary on some
63  * workstations (where doubles really do need 8-byte alignment) and will work
64  * fine on nearly everything. If your machine has lesser alignment needs,
65  * you can save a few bytes by making ALIGN_TYPE smaller.
66  * The only place I know of where this will NOT work is certain Macintosh
67  * 680x0 compilers that define double as a 10-byte IEEE extended float.
68  * Doing 10-byte alignment is counterproductive because longwords won't be
69  * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
70  * such a compiler.
71  */
72 
73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
74 #define ALIGN_TYPE double
75 #endif
76 
77 
78 /*
79  * We allocate objects from "pools", where each pool is gotten with a single
80  * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
81  * overhead within a pool, except for alignment padding. Each pool has a
82  * header with a link to the next pool of the same class.
83  * Small and large pool headers are identical except that the latter's
84  * link pointer must be FAR on 80x86 machines.
85  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86  * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87  * of the alignment requirement of ALIGN_TYPE.
88  */
89 
91 
92 typedef union small_pool_struct {
93  struct {
94  small_pool_ptr next; /* next in list of pools */
95  size_t bytes_used; /* how many bytes already used within pool */
96  size_t bytes_left; /* bytes still available in this pool */
97  } hdr;
98  ALIGN_TYPE dummy; /* included in union to ensure alignment */
100 
102 
103 typedef union large_pool_struct {
104  struct {
105  large_pool_ptr next; /* next in list of pools */
106  size_t bytes_used; /* how many bytes already used within pool */
107  size_t bytes_left; /* bytes still available in this pool */
108  } hdr;
109  ALIGN_TYPE dummy; /* included in union to ensure alignment */
111 
112 
113 /*
114  * Here is the full definition of a memory manager object.
115  */
116 
117 typedef struct {
118  struct jpeg_memory_mgr pub; /* public fields */
119 
120  /* Each pool identifier (lifetime class) names a linked list of pools. */
123 
124  /* Since we only have one lifetime class of virtual arrays, only one
125  * linked list is necessary (for each datatype). Note that the virtual
126  * array control blocks being linked together are actually stored somewhere
127  * in the small-pool list.
128  */
131 
132  /* This counts total space obtained from jpeg_get_small/large */
134 
135  /* alloc_sarray and alloc_barray set this value for use by virtual
136  * array routines.
137  */
138  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139 } my_memory_mgr;
140 
142 
143 
144 /*
145  * The control blocks for virtual arrays.
146  * Note that these blocks are allocated in the "small" pool area.
147  * System-dependent info for the associated backing store (if any) is hidden
148  * inside the backing_store_info struct.
149  */
150 
152  JSAMPARRAY mem_buffer; /* => the in-memory buffer */
153  JDIMENSION rows_in_array; /* total virtual array height */
154  JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
155  JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
156  JDIMENSION rows_in_mem; /* height of memory buffer */
157  JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
158  JDIMENSION cur_start_row; /* first logical row # in the buffer */
159  JDIMENSION first_undef_row; /* row # of first uninitialized row */
160  boolean pre_zero; /* pre-zero mode requested? */
161  boolean dirty; /* do current buffer contents need written? */
162  boolean b_s_open; /* is backing-store data valid? */
163  jvirt_sarray_ptr next; /* link to next virtual sarray control block */
164  backing_store_info b_s_info; /* System-dependent control info */
165 };
166 
168  JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
169  JDIMENSION rows_in_array; /* total virtual array height */
170  JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
171  JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
172  JDIMENSION rows_in_mem; /* height of memory buffer */
173  JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
174  JDIMENSION cur_start_row; /* first logical row # in the buffer */
175  JDIMENSION first_undef_row; /* row # of first uninitialized row */
176  boolean pre_zero; /* pre-zero mode requested? */
177  boolean dirty; /* do current buffer contents need written? */
178  boolean b_s_open; /* is backing-store data valid? */
179  jvirt_barray_ptr next; /* link to next virtual barray control block */
180  backing_store_info b_s_info; /* System-dependent control info */
181 };
182 
183 
184 #ifdef MEM_STATS /* optional extra stuff for statistics */
185 
186 LOCAL(void)
187 print_mem_stats (j_common_ptr cinfo, int pool_id)
188 {
189  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190  small_pool_ptr shdr_ptr;
191  large_pool_ptr lhdr_ptr;
192 
193  /* Since this is only a debugging stub, we can cheat a little by using
194  * fprintf directly rather than going through the trace message code.
195  * This is helpful because message parm array can't handle longs.
196  */
197  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198  pool_id, (long) mem->total_space_allocated);
199 
200  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201  lhdr_ptr = lhdr_ptr->hdr.next) {
202  fprintf(stderr, " Large chunk used %ld\n",
203  (long) lhdr_ptr->hdr.bytes_used);
204  }
205 
206  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207  shdr_ptr = shdr_ptr->hdr.next) {
208  fprintf(stderr, " Small chunk used %ld free %ld\n",
209  (long) shdr_ptr->hdr.bytes_used,
210  (long) shdr_ptr->hdr.bytes_left);
211  }
212 }
213 
214 #endif /* MEM_STATS */
215 
216 
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
221 {
222 #ifdef MEM_STATS
223  cinfo->err->trace_level = 2; /* force self_destruct to report stats */
224 #endif
225  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226 }
227 
228 
229 /*
230  * Allocation of "small" objects.
231  *
232  * For these, we use pooled storage. When a new pool must be created,
233  * we try to get enough space for the current request plus a "slop" factor,
234  * where the slop will be the amount of leftover space in the new pool.
235  * The speed vs. space tradeoff is largely determined by the slop values.
236  * A different slop value is provided for each pool class (lifetime),
237  * and we also distinguish the first pool of a class from later ones.
238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
239  * machines, but may be too small if longs are 64 bits or more.
240  */
241 
242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
243 {
244  1600, /* first PERMANENT pool */
245  16000 /* first IMAGE pool */
246 };
247 
248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
249 {
250  0, /* additional PERMANENT pools */
251  5000 /* additional IMAGE pools */
252 };
253 
254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
255 
256 
257 METHODDEF(void *)
258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259 /* Allocate a "small" object */
260 {
261  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262  small_pool_ptr hdr_ptr, prev_hdr_ptr;
263  size_t odd_bytes, min_request, slop;
264  char * data_ptr;
265 
266  /* Check for unsatisfiable request (do now to ensure no overflow below) */
268  out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
269 
270  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272  if (odd_bytes > 0)
273  sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274 
275  /* See if space is available in any existing pool */
276  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278  prev_hdr_ptr = NULL;
279  hdr_ptr = mem->small_list[pool_id];
280  while (hdr_ptr != NULL) {
281  if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282  break; /* found pool with enough space */
283  prev_hdr_ptr = hdr_ptr;
284  hdr_ptr = hdr_ptr->hdr.next;
285  }
286 
287  /* Time to make a new pool? */
288  if (hdr_ptr == NULL) {
289  /* min_request is what we need now, slop is what will be leftover */
290  min_request = sizeofobject + SIZEOF(small_pool_hdr);
291  if (prev_hdr_ptr == NULL) /* first pool in class? */
292  slop = first_pool_slop[pool_id];
293  else
294  slop = extra_pool_slop[pool_id];
295  /* Don't ask for more than MAX_ALLOC_CHUNK */
296  if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)
297  slop = (size_t) MAX_ALLOC_CHUNK - min_request;
298  /* Try to get space, if fail reduce slop and try again */
299  for (;;) {
300  hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301  if (hdr_ptr != NULL)
302  break;
303  slop /= 2;
304  if (slop < MIN_SLOP) /* give up when it gets real small */
305  out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306  }
307  mem->total_space_allocated += min_request + slop;
308  /* Success, initialize the new pool header and add to end of list */
309  hdr_ptr->hdr.next = NULL;
310  hdr_ptr->hdr.bytes_used = 0;
311  hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312  if (prev_hdr_ptr == NULL) /* first pool in class? */
313  mem->small_list[pool_id] = hdr_ptr;
314  else
315  prev_hdr_ptr->hdr.next = hdr_ptr;
316  }
317 
318  /* OK, allocate the object from the current pool */
319  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321  hdr_ptr->hdr.bytes_used += sizeofobject;
322  hdr_ptr->hdr.bytes_left -= sizeofobject;
323 
324  return (void *) data_ptr;
325 }
326 
327 
328 /*
329  * Allocation of "large" objects.
330  *
331  * The external semantics of these are the same as "small" objects,
332  * except that FAR pointers are used on 80x86. However the pool
333  * management heuristics are quite different. We assume that each
334  * request is large enough that it may as well be passed directly to
335  * jpeg_get_large; the pool management just links everything together
336  * so that we can free it all on demand.
337  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338  * structures. The routines that create these structures (see below)
339  * deliberately bunch rows together to ensure a large request size.
340  */
341 
342 METHODDEF(void FAR *)
343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344 /* Allocate a "large" object */
345 {
346  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347  large_pool_ptr hdr_ptr;
348  size_t odd_bytes;
349 
350  /* Check for unsatisfiable request (do now to ensure no overflow below) */
352  out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
353 
354  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356  if (odd_bytes > 0)
357  sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358 
359  /* Always make a new pool */
360  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362 
363  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
365  if (hdr_ptr == NULL)
366  out_of_memory(cinfo, 4); /* jpeg_get_large failed */
367  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368 
369  /* Success, initialize the new pool header and add to list */
370  hdr_ptr->hdr.next = mem->large_list[pool_id];
371  /* We maintain space counts in each pool header for statistical purposes,
372  * even though they are not needed for allocation.
373  */
374  hdr_ptr->hdr.bytes_used = sizeofobject;
375  hdr_ptr->hdr.bytes_left = 0;
376  mem->large_list[pool_id] = hdr_ptr;
377 
378  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379 }
380 
381 
382 /*
383  * Creation of 2-D sample arrays.
384  * The pointers are in near heap, the samples themselves in FAR heap.
385  *
386  * To minimize allocation overhead and to allow I/O of large contiguous
387  * blocks, we allocate the sample rows in groups of as many rows as possible
388  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389  * NB: the virtual array control routines, later in this file, know about
390  * this chunking of rows. The rowsperchunk value is left in the mem manager
391  * object so that it can be saved away if this sarray is the workspace for
392  * a virtual array.
393  */
394 
396 alloc_sarray (j_common_ptr cinfo, int pool_id,
397  JDIMENSION samplesperrow, JDIMENSION numrows)
398 /* Allocate a 2-D sample array */
399 {
400  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
402  JSAMPROW workspace;
403  JDIMENSION rowsperchunk, currow, i;
404  long ltemp;
405 
406  /* Calculate max # of rows allowed in one allocation chunk */
407  ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
408  ((long) samplesperrow * SIZEOF(JSAMPLE));
409  if (ltemp <= 0)
410  ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411  if (ltemp < (long) numrows)
412  rowsperchunk = (JDIMENSION) ltemp;
413  else
414  rowsperchunk = numrows;
415  mem->last_rowsperchunk = rowsperchunk;
416 
417  /* Get space for row pointers (small object) */
418  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419  (size_t) numrows * SIZEOF(JSAMPROW));
420 
421  /* Get the rows themselves (large objects) */
422  currow = 0;
423  while (currow < numrows) {
424  rowsperchunk = MIN(rowsperchunk, numrows - currow);
425  workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426  (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));
427  for (i = rowsperchunk; i > 0; i--) {
428  result[currow++] = workspace;
429  workspace += samplesperrow;
430  }
431  }
432 
433  return result;
434 }
435 
436 
437 /*
438  * Creation of 2-D coefficient-block arrays.
439  * This is essentially the same as the code for sample arrays, above.
440  */
441 
443 alloc_barray (j_common_ptr cinfo, int pool_id,
444  JDIMENSION blocksperrow, JDIMENSION numrows)
445 /* Allocate a 2-D coefficient-block array */
446 {
447  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
449  JBLOCKROW workspace;
450  JDIMENSION rowsperchunk, currow, i;
451  long ltemp;
452 
453  /* Calculate max # of rows allowed in one allocation chunk */
454  ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
455  ((long) blocksperrow * SIZEOF(JBLOCK));
456  if (ltemp <= 0)
457  ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458  if (ltemp < (long) numrows)
459  rowsperchunk = (JDIMENSION) ltemp;
460  else
461  rowsperchunk = numrows;
462  mem->last_rowsperchunk = rowsperchunk;
463 
464  /* Get space for row pointers (small object) */
465  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466  (size_t) numrows * SIZEOF(JBLOCKROW));
467 
468  /* Get the rows themselves (large objects) */
469  currow = 0;
470  while (currow < numrows) {
471  rowsperchunk = MIN(rowsperchunk, numrows - currow);
472  workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473  (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));
474  for (i = rowsperchunk; i > 0; i--) {
475  result[currow++] = workspace;
476  workspace += blocksperrow;
477  }
478  }
479 
480  return result;
481 }
482 
483 
484 /*
485  * About virtual array management:
486  *
487  * The above "normal" array routines are only used to allocate strip buffers
488  * (as wide as the image, but just a few rows high). Full-image-sized buffers
489  * are handled as "virtual" arrays. The array is still accessed a strip at a
490  * time, but the memory manager must save the whole array for repeated
491  * accesses. The intended implementation is that there is a strip buffer in
492  * memory (as high as is possible given the desired memory limit), plus a
493  * backing file that holds the rest of the array.
494  *
495  * The request_virt_array routines are told the total size of the image and
496  * the maximum number of rows that will be accessed at once. The in-memory
497  * buffer must be at least as large as the maxaccess value.
498  *
499  * The request routines create control blocks but not the in-memory buffers.
500  * That is postponed until realize_virt_arrays is called. At that time the
501  * total amount of space needed is known (approximately, anyway), so free
502  * memory can be divided up fairly.
503  *
504  * The access_virt_array routines are responsible for making a specific strip
505  * area accessible (after reading or writing the backing file, if necessary).
506  * Note that the access routines are told whether the caller intends to modify
507  * the accessed strip; during a read-only pass this saves having to rewrite
508  * data to disk. The access routines are also responsible for pre-zeroing
509  * any newly accessed rows, if pre-zeroing was requested.
510  *
511  * In current usage, the access requests are usually for nonoverlapping
512  * strips; that is, successive access start_row numbers differ by exactly
513  * num_rows = maxaccess. This means we can get good performance with simple
514  * buffer dump/reload logic, by making the in-memory buffer be a multiple
515  * of the access height; then there will never be accesses across bufferload
516  * boundaries. The code will still work with overlapping access requests,
517  * but it doesn't handle bufferload overlaps very efficiently.
518  */
519 
520 
522 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
523  JDIMENSION samplesperrow, JDIMENSION numrows,
524  JDIMENSION maxaccess)
525 /* Request a virtual 2-D sample array */
526 {
527  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
529 
530  /* Only IMAGE-lifetime virtual arrays are currently supported */
531  if (pool_id != JPOOL_IMAGE)
532  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
533 
534  /* get control block */
535  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
536  SIZEOF(struct jvirt_sarray_control));
537 
538  result->mem_buffer = NULL; /* marks array not yet realized */
539  result->rows_in_array = numrows;
540  result->samplesperrow = samplesperrow;
541  result->maxaccess = maxaccess;
542  result->pre_zero = pre_zero;
543  result->b_s_open = FALSE; /* no associated backing-store object */
544  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
545  mem->virt_sarray_list = result;
546 
547  return result;
548 }
549 
550 
552 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
553  JDIMENSION blocksperrow, JDIMENSION numrows,
554  JDIMENSION maxaccess)
555 /* Request a virtual 2-D coefficient-block array */
556 {
557  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
559 
560  /* Only IMAGE-lifetime virtual arrays are currently supported */
561  if (pool_id != JPOOL_IMAGE)
562  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
563 
564  /* get control block */
565  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
566  SIZEOF(struct jvirt_barray_control));
567 
568  result->mem_buffer = NULL; /* marks array not yet realized */
569  result->rows_in_array = numrows;
570  result->blocksperrow = blocksperrow;
571  result->maxaccess = maxaccess;
572  result->pre_zero = pre_zero;
573  result->b_s_open = FALSE; /* no associated backing-store object */
574  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
575  mem->virt_barray_list = result;
576 
577  return result;
578 }
579 
580 
581 METHODDEF(void)
583 /* Allocate the in-memory buffers for any unrealized virtual arrays */
584 {
585  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586  long bytesperrow, space_per_minheight, maximum_space;
587  long avail_mem, minheights, max_minheights;
588  jvirt_sarray_ptr sptr;
589  jvirt_barray_ptr bptr;
590 
591  /* Compute the minimum space needed (maxaccess rows in each buffer)
592  * and the maximum space needed (full image height in each buffer).
593  * These may be of use to the system-dependent jpeg_mem_available routine.
594  */
595  space_per_minheight = 0;
596  maximum_space = 0;
597  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
598  if (sptr->mem_buffer == NULL) { /* if not realized yet */
599  bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
600  space_per_minheight += (long) sptr->maxaccess * bytesperrow;
601  maximum_space += (long) sptr->rows_in_array * bytesperrow;
602  }
603  }
604  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
605  if (bptr->mem_buffer == NULL) { /* if not realized yet */
606  bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);
607  space_per_minheight += (long) bptr->maxaccess * bytesperrow;
608  maximum_space += (long) bptr->rows_in_array * bytesperrow;
609  }
610  }
611 
612  if (space_per_minheight <= 0)
613  return; /* no unrealized arrays, no work */
614 
615  /* Determine amount of memory to actually use; this is system-dependent. */
616  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
617  (long) mem->total_space_allocated);
618 
619  /* If the maximum space needed is available, make all the buffers full
620  * height; otherwise parcel it out with the same number of minheights
621  * in each buffer.
622  */
623  if (avail_mem >= maximum_space)
624  max_minheights = 1000000000L;
625  else {
626  max_minheights = avail_mem / space_per_minheight;
627  /* If there doesn't seem to be enough space, try to get the minimum
628  * anyway. This allows a "stub" implementation of jpeg_mem_available().
629  */
630  if (max_minheights <= 0)
631  max_minheights = 1;
632  }
633 
634  /* Allocate the in-memory buffers and initialize backing store as needed. */
635 
636  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
637  if (sptr->mem_buffer == NULL) { /* if not realized yet */
638  minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
639  if (minheights <= max_minheights) {
640  /* This buffer fits in memory */
641  sptr->rows_in_mem = sptr->rows_in_array;
642  } else {
643  /* It doesn't fit in memory, create backing store. */
644  sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
645  jpeg_open_backing_store(cinfo, & sptr->b_s_info,
646  (long) sptr->rows_in_array *
647  (long) sptr->samplesperrow *
648  (long) SIZEOF(JSAMPLE));
649  sptr->b_s_open = TRUE;
650  }
651  sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
652  sptr->samplesperrow, sptr->rows_in_mem);
653  sptr->rowsperchunk = mem->last_rowsperchunk;
654  sptr->cur_start_row = 0;
655  sptr->first_undef_row = 0;
656  sptr->dirty = FALSE;
657  }
658  }
659 
660  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
661  if (bptr->mem_buffer == NULL) { /* if not realized yet */
662  minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
663  if (minheights <= max_minheights) {
664  /* This buffer fits in memory */
665  bptr->rows_in_mem = bptr->rows_in_array;
666  } else {
667  /* It doesn't fit in memory, create backing store. */
668  bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
669  jpeg_open_backing_store(cinfo, & bptr->b_s_info,
670  (long) bptr->rows_in_array *
671  (long) bptr->blocksperrow *
672  (long) SIZEOF(JBLOCK));
673  bptr->b_s_open = TRUE;
674  }
675  bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
676  bptr->blocksperrow, bptr->rows_in_mem);
677  bptr->rowsperchunk = mem->last_rowsperchunk;
678  bptr->cur_start_row = 0;
679  bptr->first_undef_row = 0;
680  bptr->dirty = FALSE;
681  }
682  }
683 }
684 
685 
686 LOCAL(void)
688 /* Do backing store read or write of a virtual sample array */
689 {
690  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
691 
692  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
693  file_offset = (long) ptr->cur_start_row * bytesperrow;
694  /* Loop to read or write each allocation chunk in mem_buffer */
695  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
696  /* One chunk, but check for short chunk at end of buffer */
697  rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
698  /* Transfer no more than is currently defined */
699  thisrow = (long) ptr->cur_start_row + i;
700  rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
701  /* Transfer no more than fits in file */
702  rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
703  if (rows <= 0) /* this chunk might be past end of file! */
704  break;
705  byte_count = rows * bytesperrow;
706  if (writing)
707  (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
708  (void FAR *) ptr->mem_buffer[i],
709  file_offset, byte_count);
710  else
711  (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
712  (void FAR *) ptr->mem_buffer[i],
713  file_offset, byte_count);
714  file_offset += byte_count;
715  }
716 }
717 
718 
719 LOCAL(void)
721 /* Do backing store read or write of a virtual coefficient-block array */
722 {
723  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
724 
725  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
726  file_offset = (long) ptr->cur_start_row * bytesperrow;
727  /* Loop to read or write each allocation chunk in mem_buffer */
728  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
729  /* One chunk, but check for short chunk at end of buffer */
730  rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
731  /* Transfer no more than is currently defined */
732  thisrow = (long) ptr->cur_start_row + i;
733  rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
734  /* Transfer no more than fits in file */
735  rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
736  if (rows <= 0) /* this chunk might be past end of file! */
737  break;
738  byte_count = rows * bytesperrow;
739  if (writing)
740  (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
741  (void FAR *) ptr->mem_buffer[i],
742  file_offset, byte_count);
743  else
744  (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
745  (void FAR *) ptr->mem_buffer[i],
746  file_offset, byte_count);
747  file_offset += byte_count;
748  }
749 }
750 
751 
754  JDIMENSION start_row, JDIMENSION num_rows,
755  boolean writable)
756 /* Access the part of a virtual sample array starting at start_row */
757 /* and extending for num_rows rows. writable is true if */
758 /* caller intends to modify the accessed area. */
759 {
760  JDIMENSION end_row = start_row + num_rows;
761  JDIMENSION undef_row;
762 
763  /* debugging check */
764  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
765  ptr->mem_buffer == NULL)
766  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
767 
768  /* Make the desired part of the virtual array accessible */
769  if (start_row < ptr->cur_start_row ||
770  end_row > ptr->cur_start_row + ptr->rows_in_mem) {
771  if (! ptr->b_s_open)
772  ERREXIT(cinfo, JERR_VIRTUAL_BUG);
773  /* Flush old buffer contents if necessary */
774  if (ptr->dirty) {
775  do_sarray_io(cinfo, ptr, TRUE);
776  ptr->dirty = FALSE;
777  }
778  /* Decide what part of virtual array to access.
779  * Algorithm: if target address > current window, assume forward scan,
780  * load starting at target address. If target address < current window,
781  * assume backward scan, load so that target area is top of window.
782  * Note that when switching from forward write to forward read, will have
783  * start_row = 0, so the limiting case applies and we load from 0 anyway.
784  */
785  if (start_row > ptr->cur_start_row) {
786  ptr->cur_start_row = start_row;
787  } else {
788  /* use long arithmetic here to avoid overflow & unsigned problems */
789  long ltemp;
790 
791  ltemp = (long) end_row - (long) ptr->rows_in_mem;
792  if (ltemp < 0)
793  ltemp = 0; /* don't fall off front end of file */
794  ptr->cur_start_row = (JDIMENSION) ltemp;
795  }
796  /* Read in the selected part of the array.
797  * During the initial write pass, we will do no actual read
798  * because the selected part is all undefined.
799  */
800  do_sarray_io(cinfo, ptr, FALSE);
801  }
802  /* Ensure the accessed part of the array is defined; prezero if needed.
803  * To improve locality of access, we only prezero the part of the array
804  * that the caller is about to access, not the entire in-memory array.
805  */
806  if (ptr->first_undef_row < end_row) {
807  if (ptr->first_undef_row < start_row) {
808  if (writable) /* writer skipped over a section of array */
809  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
810  undef_row = start_row; /* but reader is allowed to read ahead */
811  } else {
812  undef_row = ptr->first_undef_row;
813  }
814  if (writable)
815  ptr->first_undef_row = end_row;
816  if (ptr->pre_zero) {
817  size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
818  undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
819  end_row -= ptr->cur_start_row;
820  while (undef_row < end_row) {
821  FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
822  undef_row++;
823  }
824  } else {
825  if (! writable) /* reader looking at undefined data */
826  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
827  }
828  }
829  /* Flag the buffer dirty if caller will write in it */
830  if (writable)
831  ptr->dirty = TRUE;
832  /* Return address of proper part of the buffer */
833  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
834 }
835 
836 
839  JDIMENSION start_row, JDIMENSION num_rows,
840  boolean writable)
841 /* Access the part of a virtual block array starting at start_row */
842 /* and extending for num_rows rows. writable is true if */
843 /* caller intends to modify the accessed area. */
844 {
845  JDIMENSION end_row = start_row + num_rows;
846  JDIMENSION undef_row;
847 
848  /* debugging check */
849  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
850  ptr->mem_buffer == NULL)
851  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
852 
853  /* Make the desired part of the virtual array accessible */
854  if (start_row < ptr->cur_start_row ||
855  end_row > ptr->cur_start_row + ptr->rows_in_mem) {
856  if (! ptr->b_s_open)
857  ERREXIT(cinfo, JERR_VIRTUAL_BUG);
858  /* Flush old buffer contents if necessary */
859  if (ptr->dirty) {
860  do_barray_io(cinfo, ptr, TRUE);
861  ptr->dirty = FALSE;
862  }
863  /* Decide what part of virtual array to access.
864  * Algorithm: if target address > current window, assume forward scan,
865  * load starting at target address. If target address < current window,
866  * assume backward scan, load so that target area is top of window.
867  * Note that when switching from forward write to forward read, will have
868  * start_row = 0, so the limiting case applies and we load from 0 anyway.
869  */
870  if (start_row > ptr->cur_start_row) {
871  ptr->cur_start_row = start_row;
872  } else {
873  /* use long arithmetic here to avoid overflow & unsigned problems */
874  long ltemp;
875 
876  ltemp = (long) end_row - (long) ptr->rows_in_mem;
877  if (ltemp < 0)
878  ltemp = 0; /* don't fall off front end of file */
879  ptr->cur_start_row = (JDIMENSION) ltemp;
880  }
881  /* Read in the selected part of the array.
882  * During the initial write pass, we will do no actual read
883  * because the selected part is all undefined.
884  */
885  do_barray_io(cinfo, ptr, FALSE);
886  }
887  /* Ensure the accessed part of the array is defined; prezero if needed.
888  * To improve locality of access, we only prezero the part of the array
889  * that the caller is about to access, not the entire in-memory array.
890  */
891  if (ptr->first_undef_row < end_row) {
892  if (ptr->first_undef_row < start_row) {
893  if (writable) /* writer skipped over a section of array */
894  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895  undef_row = start_row; /* but reader is allowed to read ahead */
896  } else {
897  undef_row = ptr->first_undef_row;
898  }
899  if (writable)
900  ptr->first_undef_row = end_row;
901  if (ptr->pre_zero) {
902  size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
903  undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
904  end_row -= ptr->cur_start_row;
905  while (undef_row < end_row) {
906  FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
907  undef_row++;
908  }
909  } else {
910  if (! writable) /* reader looking at undefined data */
911  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
912  }
913  }
914  /* Flag the buffer dirty if caller will write in it */
915  if (writable)
916  ptr->dirty = TRUE;
917  /* Return address of proper part of the buffer */
918  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
919 }
920 
921 
922 /*
923  * Release all objects belonging to a specified pool.
924  */
925 
926 METHODDEF(void)
927 free_pool (j_common_ptr cinfo, int pool_id)
928 {
929  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
930  small_pool_ptr shdr_ptr;
931  large_pool_ptr lhdr_ptr;
932  size_t space_freed;
933 
934  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
935  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
936 
937 #ifdef MEM_STATS
938  if (cinfo->err->trace_level > 1)
939  print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
940 #endif
941 
942  /* If freeing IMAGE pool, close any virtual arrays first */
943  if (pool_id == JPOOL_IMAGE) {
944  jvirt_sarray_ptr sptr;
945  jvirt_barray_ptr bptr;
946 
947  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
948  if (sptr->b_s_open) { /* there may be no backing store */
949  sptr->b_s_open = FALSE; /* prevent recursive close if error */
950  (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
951  }
952  }
953  mem->virt_sarray_list = NULL;
954  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
955  if (bptr->b_s_open) { /* there may be no backing store */
956  bptr->b_s_open = FALSE; /* prevent recursive close if error */
957  (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
958  }
959  }
960  mem->virt_barray_list = NULL;
961  }
962 
963  /* Release large objects */
964  lhdr_ptr = mem->large_list[pool_id];
965  mem->large_list[pool_id] = NULL;
966 
967  while (lhdr_ptr != NULL) {
968  large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
969  space_freed = lhdr_ptr->hdr.bytes_used +
970  lhdr_ptr->hdr.bytes_left +
972  jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
973  mem->total_space_allocated -= space_freed;
974  lhdr_ptr = next_lhdr_ptr;
975  }
976 
977  /* Release small objects */
978  shdr_ptr = mem->small_list[pool_id];
979  mem->small_list[pool_id] = NULL;
980 
981  while (shdr_ptr != NULL) {
982  small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
983  space_freed = shdr_ptr->hdr.bytes_used +
984  shdr_ptr->hdr.bytes_left +
986  jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
987  mem->total_space_allocated -= space_freed;
988  shdr_ptr = next_shdr_ptr;
989  }
990 }
991 
992 
993 /*
994  * Close up shop entirely.
995  * Note that this cannot be called unless cinfo->mem is non-NULL.
996  */
997 
998 METHODDEF(void)
1000 {
1001  int pool;
1002 
1003  /* Close all backing store, release all memory.
1004  * Releasing pools in reverse order might help avoid fragmentation
1005  * with some (brain-damaged) malloc libraries.
1006  */
1007  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1008  free_pool(cinfo, pool);
1009  }
1010 
1011  /* Release the memory manager control block too. */
1012  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1013  cinfo->mem = NULL; /* ensures I will be called only once */
1014 
1015  jpeg_mem_term(cinfo); /* system-dependent cleanup */
1016 }
1017 
1018 
1019 /*
1020  * Memory manager initialization.
1021  * When this is called, only the error manager pointer is valid in cinfo!
1022  */
1023 
1024 GLOBAL(void)
1026 {
1027  my_mem_ptr mem;
1028  long max_to_use;
1029  int pool;
1030  size_t test_mac;
1031 
1032  cinfo->mem = NULL; /* for safety if init fails */
1033 
1034  /* Check for configuration errors.
1035  * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1036  * doesn't reflect any real hardware alignment requirement.
1037  * The test is a little tricky: for X>0, X and X-1 have no one-bits
1038  * in common if and only if X is a power of 2, ie has only one one-bit.
1039  * Some compilers may give an "unreachable code" warning here; ignore it.
1040  */
1041  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1042  ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1043  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1044  * a multiple of SIZEOF(ALIGN_TYPE).
1045  * Again, an "unreachable code" warning may be ignored here.
1046  * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1047  */
1049  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1050  (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1051  ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1052 
1053  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1054 
1055  /* Attempt to allocate memory manager's control block */
1057 
1058  if (mem == NULL) {
1059  jpeg_mem_term(cinfo); /* system-dependent cleanup */
1060  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1061  }
1062 
1063  /* OK, fill in the method pointers */
1064  mem->pub.alloc_small = alloc_small;
1065  mem->pub.alloc_large = alloc_large;
1066  mem->pub.alloc_sarray = alloc_sarray;
1067  mem->pub.alloc_barray = alloc_barray;
1068  mem->pub.request_virt_sarray = request_virt_sarray;
1069  mem->pub.request_virt_barray = request_virt_barray;
1070  mem->pub.realize_virt_arrays = realize_virt_arrays;
1071  mem->pub.access_virt_sarray = access_virt_sarray;
1072  mem->pub.access_virt_barray = access_virt_barray;
1073  mem->pub.free_pool = free_pool;
1074  mem->pub.self_destruct = self_destruct;
1075 
1076  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1077  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1078 
1079  /* Initialize working state */
1080  mem->pub.max_memory_to_use = max_to_use;
1081 
1082  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083  mem->small_list[pool] = NULL;
1084  mem->large_list[pool] = NULL;
1085  }
1086  mem->virt_sarray_list = NULL;
1087  mem->virt_barray_list = NULL;
1088 
1089  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1090 
1091  /* Declare ourselves open for business */
1092  cinfo->mem = &mem->pub;
1093 
1094  /* Check for an environment variable JPEGMEM; if found, override the
1095  * default max_memory setting from jpeg_mem_init. Note that the
1096  * surrounding application may again override this value.
1097  * If your system doesn't support getenv(), define NO_GETENV to disable
1098  * this feature.
1099  */
1100 #ifndef NO_GETENV
1101  { char * memenv;
1102 
1103  if ((memenv = getenv("JPEGMEM")) != NULL) {
1104  char ch = 'x';
1105 
1106  if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107  if (ch == 'm' || ch == 'M')
1108  max_to_use *= 1000L;
1109  mem->pub.max_memory_to_use = max_to_use * 1000L;
1110  }
1111  }
1112  }
1113 #endif
1114 
1115 }
request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess)
Definition: jmemmgr.c:552
struct small_pool_struct::@175 hdr
size_t bytes_used
Definition: jmemmgr.c:95
jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject)
Definition: jmemansi.c:36
ALIGN_TYPE dummy
Definition: jmemmgr.c:109
char JSAMPLE
Definition: jmorecfg.h:74
jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject)
Definition: jmemansi.c:56
JSAMPLE FAR * JSAMPROW
Definition: jpeglib.h:75
#define ERREXIT(msg)
Definition: rdjpgcom.c:72
alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
Definition: jmemmgr.c:258
alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows)
Definition: jmemmgr.c:396
#define TRUE
Definition: types.h:120
JDIMENSION maxaccess
Definition: jmemmgr.c:155
static GLenum which
Definition: wgl_font.c:159
jpeg_mem_term(j_common_ptr cinfo)
Definition: jmemansi.c:164
do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
Definition: jmemmgr.c:720
out_of_memory(j_common_ptr cinfo, int which)
Definition: jmemmgr.c:218
JDIMENSION cur_start_row
Definition: jmemmgr.c:158
JCOEF JBLOCK[DCTSIZE2]
Definition: jpeglib.h:79
JBLOCKROW * JBLOCKARRAY
Definition: jpeglib.h:81
JDIMENSION rows_in_array
Definition: jmemmgr.c:169
jvirt_sarray_ptr virt_sarray_list
Definition: jmemmgr.c:129
my_memory_mgr * my_mem_ptr
Definition: jmemmgr.c:141
jvirt_sarray_ptr next
Definition: jmemmgr.c:163
alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
Definition: jmemmgr.c:343
JBLOCKARRAY mem_buffer
Definition: jmemmgr.c:168
free_pool(j_common_ptr cinfo, int pool_id)
Definition: jmemmgr.c:927
#define ALIGN_TYPE
Definition: jmemmgr.c:74
JDIMENSION first_undef_row
Definition: jmemmgr.c:159
T MIN(T a, T b)
Definition: polytest.cpp:79
self_destruct(j_common_ptr cinfo)
Definition: jmemmgr.c:999
size_t sizeofobject
Definition: jmemsys.h:47
JDIMENSION rowsperchunk
Definition: jmemmgr.c:157
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
union large_pool_struct large_pool_hdr
#define SIZEOF(_ar)
Definition: calc.h:97
#define JPOOL_IMAGE
Definition: jpeglib.h:808
#define FALSE
Definition: types.h:117
union large_pool_struct FAR * large_pool_ptr
Definition: jmemmgr.c:101
size_t bytes_left
Definition: jmemmgr.c:96
_Check_return_opt_ _CRTIMP int __cdecl fprintf(_Inout_ FILE *_File, _In_z_ _Printf_format_string_ const char *_Format,...)
large_pool_ptr next
Definition: jmemmgr.c:105
JSAMPARRAY mem_buffer
Definition: jmemmgr.c:152
JDIMENSION blocksperrow
Definition: jmemmgr.c:170
JDIMENSION rows_in_array
Definition: jmemmgr.c:153
static PVOID ptr
Definition: dispmode.c:27
smooth NULL
Definition: ftsmooth.c:416
jpeg_open_backing_store(j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed)
Definition: jmemansi.c:141
JDIMENSION rows_in_mem
Definition: jmemmgr.c:156
JDIMENSION maxaccess
Definition: jmemmgr.c:171
do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
Definition: jmemmgr.c:687
_Check_return_ _CRTIMP int __cdecl sscanf(_In_z_ const char *_Src, _In_z_ _Scanf_format_string_ const char *_Format,...)
union small_pool_struct * small_pool_ptr
Definition: jmemmgr.c:90
ALIGN_TYPE dummy
Definition: jmemmgr.c:98
#define LOCAL(type)
Definition: jmorecfg.h:289
JDIMENSION last_rowsperchunk
Definition: jmemmgr.c:138
jvirt_barray_ptr next
Definition: jmemmgr.c:179
__kernel_size_t size_t
Definition: linux.h:237
union small_pool_struct small_pool_hdr
jpeg_free_large(j_common_ptr cinfo, void FAR *object, size_t sizeofobject)
Definition: jmemansi.c:62
jinit_memory_mgr(j_common_ptr cinfo)
Definition: jmemmgr.c:1025
if(!(yy_init))
Definition: macro.lex.yy.c:714
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:80
int JSAMPARRAY int int num_rows
Definition: jpegint.h:419
#define for
Definition: utility.h:88
access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
Definition: jmemmgr.c:753
JDIMENSION rows_in_mem
Definition: jmemmgr.c:172
static const WCHAR L[]
Definition: oid.c:1250
#define ERREXIT1(cinfo, code, p1)
Definition: jerror.h:212
static const size_t first_pool_slop[JPOOL_NUMPOOLS]
Definition: jmemmgr.c:242
jpeg_mem_available(j_common_ptr cinfo, long min_bytes_needed, long max_bytes_needed, long already_allocated)
Definition: jmemansi.c:81
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:76
struct jvirt_barray_control * jvirt_barray_ptr
Definition: jpeglib.h:812
jvirt_barray_ptr virt_barray_list
Definition: jmemmgr.c:130
size_t bytes_left
Definition: jmemmgr.c:107
#define JPOOL_NUMPOOLS
Definition: jpeglib.h:809
size_t total_space_allocated
Definition: jmemmgr.c:133
small_pool_ptr next
Definition: jmemmgr.c:94
backing_store_info b_s_info
Definition: jmemmgr.c:180
JDIMENSION cur_start_row
Definition: jmemmgr.c:174
#define GLOBAL(type)
Definition: jmorecfg.h:291
size_t bytes_used
Definition: jmemmgr.c:106
JDIMENSION rowsperchunk
Definition: jmemmgr.c:173
#define METHODDEF(type)
Definition: jmorecfg.h:287
_Check_return_ char *__cdecl getenv(_In_z_ const char *_VarName)
jpeg_mem_init(j_common_ptr cinfo)
Definition: jmemansi.c:158
struct define * next
Definition: compiler.c:65
jpeg_free_small(j_common_ptr cinfo, void *object, size_t sizeofobject)
Definition: jmemansi.c:42
#define long
Definition: qsort.c:33
realize_virt_arrays(j_common_ptr cinfo)
Definition: jmemmgr.c:582
static const size_t extra_pool_slop[JPOOL_NUMPOOLS]
Definition: jmemmgr.c:248
alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows)
Definition: jmemmgr.c:443
backing_store_info b_s_info
Definition: jmemmgr.c:164
Definition: mem.c:156
Definition: name.c:38
request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess)
Definition: jmemmgr.c:522
#define JPOOL_PERMANENT
Definition: jpeglib.h:807
unsigned int JDIMENSION
Definition: jmorecfg.h:229
FILE * stderr
#define MAX_ALLOC_CHUNK
Definition: jmemsys.h:78
static void test_mac(void)
Definition: rsaenh.c:1849
#define FAR
Definition: zlib.h:34
#define MIN_SLOP
Definition: jmemmgr.c:254
GLuint64EXT * result
Definition: glext.h:11304
struct large_pool_struct::@176 hdr
JDIMENSION samplesperrow
Definition: jmemmgr.c:154
struct jvirt_sarray_control * jvirt_sarray_ptr
Definition: jpeglib.h:811
char *getenv JPP((const char *name))
JDIMENSION first_undef_row
Definition: jmemmgr.c:175
access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
Definition: jmemmgr.c:838
#define FMEMZERO(target, size)
Definition: jpegint.h:368