ReactOS 0.4.15-dev-8102-g108db8f
lzx.c
Go to the documentation of this file.
1/***************************************************************************
2 * lzx.c - LZX decompression routines *
3 * ------------------- *
4 * *
5 * maintainer: Jed Wing <jedwin@ugcs.caltech.edu> *
6 * source: modified lzx.c from cabextract v0.5 *
7 * notes: This file was taken from cabextract v0.5, which was, *
8 * itself, a modified version of the lzx decompression code *
9 * from unlzx. *
10 * *
11 * platforms: In its current incarnation, this file has been tested on *
12 * two different Linux platforms (one, redhat-based, with a *
13 * 2.1.2 glibc and gcc 2.95.x, and the other, Debian, with *
14 * 2.2.4 glibc and both gcc 2.95.4 and gcc 3.0.2). Both were *
15 * Intel x86 compatible machines. *
16 ***************************************************************************/
17
18/***************************************************************************
19 *
20 * Copyright(C) Stuart Caie
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, write to the Free Software
34 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
35 *
36 ***************************************************************************/
37
38#include "lzx.h"
39#include <stdarg.h>
40#include <stdio.h>
41#include <stdlib.h>
42#include <string.h>
43
44#include "windef.h"
45#include "winbase.h"
46
47/* sized types */
48typedef unsigned char UBYTE; /* 8 bits exactly */
49typedef unsigned short UWORD; /* 16 bits (or more) */
50
51/* some constants defined by the LZX specification */
52#define LZX_MIN_MATCH (2)
53#define LZX_MAX_MATCH (257)
54#define LZX_NUM_CHARS (256)
55#define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
56#define LZX_BLOCKTYPE_VERBATIM (1)
57#define LZX_BLOCKTYPE_ALIGNED (2)
58#define LZX_BLOCKTYPE_UNCOMPRESSED (3)
59#define LZX_PRETREE_NUM_ELEMENTS (20)
60#define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
61#define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
62#define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
63
64/* LZX huffman defines: tweak tablebits as desired */
65#define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
66#define LZX_PRETREE_TABLEBITS (6)
67#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
68#define LZX_MAINTREE_TABLEBITS (12)
69#define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
70#define LZX_LENGTH_TABLEBITS (12)
71#define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
72#define LZX_ALIGNED_TABLEBITS (7)
73
74#define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
75
76#define LZX_DECLARE_TABLE(tbl) \
77 UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
78 UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
79
80struct LZXstate
81{
82 UBYTE *window; /* the actual decoding window */
83 ULONG window_size; /* window size (32Kb through 2Mb) */
84 ULONG actual_size; /* window size when it was first allocated */
85 ULONG window_posn; /* current offset within the window */
86 ULONG R0, R1, R2; /* for the LRU offset system */
87 UWORD main_elements; /* number of main tree elements */
88 int header_read; /* have we started decoding at all yet? */
89 UWORD block_type; /* type of this block */
90 ULONG block_length; /* uncompressed length of this block */
91 ULONG block_remaining; /* uncompressed bytes still left to decode */
92 ULONG frames_read; /* the number of CFDATA blocks processed */
93 LONG intel_filesize; /* magic header value used for transform */
94 LONG intel_curpos; /* current offset in transform space */
95 int intel_started; /* have we seen any translatable data yet? */
96
101};
102
103/* LZX decruncher */
104
105/* Microsoft's LZX document and their implementation of the
106 * com.ms.util.cab Java package do not concur.
107 *
108 * In the LZX document, there is a table showing the correlation between
109 * window size and the number of position slots. It states that the 1MB
110 * window = 40 slots and the 2MB window = 42 slots. In the implementation,
111 * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
112 * first slot whose position base is equal to or more than the required
113 * window size'. This would explain why other tables in the document refer
114 * to 50 slots rather than 42.
115 *
116 * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
117 * is not defined in the specification.
118 *
119 * The LZX document does not state the uncompressed block has an
120 * uncompressed length field. Where does this length field come from, so
121 * we can know how large the block is? The implementation has it as the 24
122 * bits following after the 3 blocktype bits, before the alignment
123 * padding.
124 *
125 * The LZX document states that aligned offset blocks have their aligned
126 * offset huffman tree AFTER the main and length trees. The implementation
127 * suggests that the aligned offset tree is BEFORE the main and length
128 * trees.
129 *
130 * The LZX document decoding algorithm states that, in an aligned offset
131 * block, if an extra_bits value is 1, 2 or 3, then that number of bits
132 * should be read and the result added to the match offset. This is
133 * correct for 1 and 2, but not 3, where just a huffman symbol (using the
134 * aligned tree) should be read.
135 *
136 * Regarding the E8 preprocessing, the LZX document states 'No translation
137 * may be performed on the last 6 bytes of the input block'. This is
138 * correct. However, the pseudocode provided checks for the *E8 leader*
139 * up to the last 6 bytes. If the leader appears between -10 and -7 bytes
140 * from the end, this would cause the next four bytes to be modified, at
141 * least one of which would be in the last 6 bytes, which is not allowed
142 * according to the spec.
143 *
144 * The specification states that the huffman trees must always contain at
145 * least one element. However, many CAB files contain blocks where the
146 * length tree is completely empty (because there are no matches), and
147 * this is expected to succeed.
148 */
149
150
151/* LZX uses what it calls 'position slots' to represent match offsets.
152 * What this means is that a small 'position slot' number and a small
153 * offset from that slot are encoded instead of one large offset for
154 * every match.
155 * - position_base is an index to the position slot bases
156 * - extra_bits states how many bits of offset-from-base data is needed.
157 */
158static const UBYTE extra_bits[51] = {
159 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
160 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14,
161 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
162 17, 17, 17
163};
164
165static const ULONG position_base[51] = {
166 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
167 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152,
168 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360, 786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936,
169 1835008, 1966080, 2097152
170};
171
172struct LZXstate *LZXinit(int wndsize)
173{
174 struct LZXstate *pState=NULL;
175 int i, posn_slots;
176
177 /* allocate state and associated window */
178 pState = HeapAlloc(GetProcessHeap(), 0, sizeof(struct LZXstate));
179 if (!(pState->window = HeapAlloc(GetProcessHeap(), 0, wndsize)))
180 {
181 HeapFree(GetProcessHeap(), 0, pState);
182 return NULL;
183 }
184 pState->actual_size = wndsize;
185 pState->window_size = wndsize;
186
187 /* calculate required position slots */
188 posn_slots = i = 0;
189 while (i < wndsize) i += 1 << extra_bits[posn_slots++];
190
191 /* initialize other state */
192 pState->R0 = pState->R1 = pState->R2 = 1;
193 pState->main_elements = LZX_NUM_CHARS + (posn_slots << 3);
194 pState->header_read = 0;
195 pState->frames_read = 0;
196 pState->block_remaining = 0;
198 pState->intel_curpos = 0;
199 pState->intel_started = 0;
200 pState->window_posn = 0;
201
202 /* initialise tables to 0 (because deltas will be applied to them) */
203 for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) pState->MAINTREE_len[i] = 0;
204 for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) pState->LENGTH_len[i] = 0;
205
206 return pState;
207}
208
209void LZXteardown(struct LZXstate *pState)
210{
211 if (pState)
212 {
213 HeapFree(GetProcessHeap(), 0, pState->window);
214 HeapFree(GetProcessHeap(), 0, pState);
215 }
216}
217
218int LZXreset(struct LZXstate *pState)
219{
220 int i;
221
222 pState->R0 = pState->R1 = pState->R2 = 1;
223 pState->header_read = 0;
224 pState->frames_read = 0;
225 pState->block_remaining = 0;
227 pState->intel_curpos = 0;
228 pState->intel_started = 0;
229 pState->window_posn = 0;
230
231 for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS + LZX_LENTABLE_SAFETY; i++) pState->MAINTREE_len[i] = 0;
232 for (i = 0; i < LZX_LENGTH_MAXSYMBOLS + LZX_LENTABLE_SAFETY; i++) pState->LENGTH_len[i] = 0;
233
234 return DECR_OK;
235}
236
237
238/* Bitstream reading macros:
239 *
240 * INIT_BITSTREAM should be used first to set up the system
241 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
242 *
243 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer
244 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
245 * REMOVE_BITS(n) removes N bits from the bit buffer
246 *
247 * These bit access routines work by using the area beyond the MSB and the
248 * LSB as a free source of zeroes. This avoids having to mask any bits.
249 * So we have to know the bit width of the bitbuffer variable. This is
250 * sizeof(ULONG) * 8, also defined as ULONG_BITS
251 */
252
253/* number of bits in ULONG. Note: This must be at multiple of 16, and at
254 * least 32 for the bitbuffer code to work (ie, it must be able to ensure
255 * up to 17 bits - that's adding 16 bits when there's one bit left, or
256 * adding 32 bits when there are no bits left. The code should work fine
257 * for machines where ULONG >= 32 bits.
258 */
259#define ULONG_BITS (sizeof(ULONG)<<3)
260
261#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
262
263#define ENSURE_BITS(n) \
264 while (bitsleft < (n)) { \
265 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (ULONG_BITS-16 - bitsleft); \
266 bitsleft += 16; inpos+=2; \
267 }
268
269#define PEEK_BITS(n) (bitbuf >> (ULONG_BITS - (n)))
270#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
271
272#define READ_BITS(v,n) do { \
273 ENSURE_BITS(n); \
274 (v) = PEEK_BITS(n); \
275 REMOVE_BITS(n); \
276} while (0)
277
278
279/* Huffman macros */
280
281#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
282#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
283#define SYMTABLE(tbl) (pState->tbl##_table)
284#define LENTABLE(tbl) (pState->tbl##_len)
285
286/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
287 * In reality, it just calls make_decode_table() with the appropriate
288 * values - they're all fixed by some #defines anyway, so there's no point
289 * writing each call out in full by hand.
290 */
291#define BUILD_TABLE(tbl) \
292 if (make_decode_table( \
293 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
294 )) { return DECR_ILLEGALDATA; }
295
296
297/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
298 * bitstream using the stated table and puts it in var.
299 */
300#define READ_HUFFSYM(tbl,var) do { \
301 ENSURE_BITS(16); \
302 hufftbl = SYMTABLE(tbl); \
303 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
304 j = 1 << (ULONG_BITS - TABLEBITS(tbl)); \
305 do { \
306 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
307 if (!j) { return DECR_ILLEGALDATA; } \
308 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
309 } \
310 j = LENTABLE(tbl)[(var) = i]; \
311 REMOVE_BITS(j); \
312} while (0)
313
314
315/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
316 * first to last in the given table. The code lengths are stored in their
317 * own special LZX way.
318 */
319#define READ_LENGTHS(tbl,first,last) do { \
320 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
321 if (lzx_read_lens(pState, LENTABLE(tbl),(first),(last),&lb)) { \
322 return DECR_ILLEGALDATA; \
323 } \
324 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
325} while (0)
326
327
328/* make_decode_table(nsyms, nbits, length[], table[])
329 *
330 * This function was coded by David Tritscher. It builds a fast huffman
331 * decoding table out of just a canonical huffman code lengths table.
332 *
333 * nsyms = total number of symbols in this huffman tree.
334 * nbits = any symbols with a code length of nbits or less can be decoded
335 * in one lookup of the table.
336 * length = A table to get code lengths from [0 to syms-1]
337 * table = The table to fill up with decoded symbols and pointers.
338 *
339 * Returns 0 for OK or 1 for error
340 */
341
342static int make_decode_table(ULONG nsyms, ULONG nbits, UBYTE *length, UWORD *table) {
343 register UWORD sym;
344 register ULONG leaf;
345 register UBYTE bit_num = 1;
346 ULONG fill;
347 ULONG pos = 0; /* the current position in the decode table */
348 ULONG table_mask = 1 << nbits;
349 ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */
350 ULONG next_symbol = bit_mask; /* base of allocation for long codes */
351
352 /* fill entries for codes short enough for a direct mapping */
353 while (bit_num <= nbits) {
354 for (sym = 0; sym < nsyms; sym++) {
355 if (length[sym] == bit_num) {
356 leaf = pos;
357
358 if((pos += bit_mask) > table_mask) return 1; /* table overrun */
359
360 /* fill all possible lookups of this symbol with the symbol itself */
361 fill = bit_mask;
362 while (fill-- > 0) table[leaf++] = sym;
363 }
364 }
365 bit_mask >>= 1;
366 bit_num++;
367 }
368
369 /* if there are any codes longer than nbits */
370 if (pos != table_mask) {
371 /* clear the remainder of the table */
372 for (sym = pos; sym < table_mask; sym++) table[sym] = 0;
373
374 /* give ourselves room for codes to grow by up to 16 more bits */
375 pos <<= 16;
376 table_mask <<= 16;
377 bit_mask = 1 << 15;
378
379 while (bit_num <= 16) {
380 for (sym = 0; sym < nsyms; sym++) {
381 if (length[sym] == bit_num) {
382 leaf = pos >> 16;
383 for (fill = 0; fill < bit_num - nbits; fill++) {
384 /* if this path hasn't been taken yet, 'allocate' two entries */
385 if (table[leaf] == 0) {
386 table[(next_symbol << 1)] = 0;
387 table[(next_symbol << 1) + 1] = 0;
388 table[leaf] = next_symbol++;
389 }
390 /* follow the path and select either left or right for next bit */
391 leaf = table[leaf] << 1;
392 if ((pos >> (15-fill)) & 1) leaf++;
393 }
394 table[leaf] = sym;
395
396 if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
397 }
398 }
399 bit_mask >>= 1;
400 bit_num++;
401 }
402 }
403
404 /* full table? */
405 if (pos == table_mask) return 0;
406
407 /* either erroneous table, or all elements are 0 - let's find out. */
408 for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
409 return 0;
410}
411
412struct lzx_bits {
414 int bl;
416};
417
418static int lzx_read_lens(struct LZXstate *pState, UBYTE *lens, ULONG first, ULONG last, struct lzx_bits *lb) {
419 ULONG i,j, x,y;
420 int z;
421
422 register ULONG bitbuf = lb->bb;
423 register int bitsleft = lb->bl;
424 UBYTE *inpos = lb->ip;
425 UWORD *hufftbl;
426
427 for (x = 0; x < 20; x++) {
428 READ_BITS(y, 4);
429 LENTABLE(PRETREE)[x] = y;
430 }
431 BUILD_TABLE(PRETREE);
432
433 for (x = first; x < last; ) {
434 READ_HUFFSYM(PRETREE, z);
435 if (z == 17) {
436 READ_BITS(y, 4); y += 4;
437 while (y--) lens[x++] = 0;
438 }
439 else if (z == 18) {
440 READ_BITS(y, 5); y += 20;
441 while (y--) lens[x++] = 0;
442 }
443 else if (z == 19) {
444 READ_BITS(y, 1); y += 4;
445 READ_HUFFSYM(PRETREE, z);
446 z = lens[x] - z; if (z < 0) z += 17;
447 while (y--) lens[x++] = z;
448 }
449 else {
450 z = lens[x] - z; if (z < 0) z += 17;
451 lens[x++] = z;
452 }
453 }
454
455 lb->bb = bitbuf;
456 lb->bl = bitsleft;
457 lb->ip = inpos;
458 return 0;
459}
460
461int LZXdecompress(struct LZXstate *pState, unsigned char *inpos, unsigned char *outpos, int inlen, int outlen) {
462 UBYTE *endinp = inpos + inlen;
463 UBYTE *window = pState->window;
464 UBYTE *runsrc, *rundest;
465 UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */
466
467 ULONG window_posn = pState->window_posn;
468 ULONG window_size = pState->window_size;
469 ULONG R0 = pState->R0;
470 ULONG R1 = pState->R1;
471 ULONG R2 = pState->R2;
472
473 register ULONG bitbuf;
474 register int bitsleft;
475 ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */
476 struct lzx_bits lb; /* used in READ_LENGTHS macro */
477
478 int togo = outlen, this_run, main_element, aligned_bits;
479 int match_length, length_footer, extra, verbatim_bits;
480 int copy_length;
481
483
484 /* read header if necessary */
485 if (!pState->header_read) {
486 i = j = 0;
487 READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); }
488 pState->intel_filesize = (i << 16) | j; /* or 0 if not encoded */
489 pState->header_read = 1;
490 }
491
492 /* main decoding loop */
493 while (togo > 0) {
494 /* last block finished, new block expected */
495 if (pState->block_remaining == 0) {
496 if (pState->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) {
497 if (pState->block_length & 1) inpos++; /* realign bitstream to word */
499 }
500
501 READ_BITS(pState->block_type, 3);
502 READ_BITS(i, 16);
503 READ_BITS(j, 8);
504 pState->block_remaining = pState->block_length = (i << 8) | j;
505
506 switch (pState->block_type) {
508 for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; }
510 /* rest of aligned header is same as verbatim */
511
513 READ_LENGTHS(MAINTREE, 0, 256);
514 READ_LENGTHS(MAINTREE, 256, pState->main_elements);
515 BUILD_TABLE(MAINTREE);
516 if (LENTABLE(MAINTREE)[0xE8] != 0) pState->intel_started = 1;
517
520 break;
521
523 pState->intel_started = 1; /* because we can't assume otherwise */
524 ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
525 if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */
526 R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
527 R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
528 R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
529 break;
530
531 default:
532 return DECR_ILLEGALDATA;
533 }
534 }
535
536 /* buffer exhaustion check */
537 if (inpos > endinp) {
538 /* it's possible to have a file where the next run is less than
539 * 16 bits in size. In this case, the READ_HUFFSYM() macro used
540 * in building the tables will exhaust the buffer, so we should
541 * allow for this, but not allow those accidentally read bits to
542 * be used (so we check that there are at least 16 bits
543 * remaining - in this boundary case they aren't really part of
544 * the compressed data)
545 */
546 if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA;
547 }
548
549 while ((this_run = pState->block_remaining) > 0 && togo > 0) {
550 if (this_run > togo) this_run = togo;
551 togo -= this_run;
552 pState->block_remaining -= this_run;
553
554 /* apply 2^x-1 mask */
555 window_posn &= window_size - 1;
556 /* runs can't straddle the window wraparound */
557 if ((window_posn + this_run) > window_size)
558 return DECR_DATAFORMAT;
559
560 switch (pState->block_type) {
561
563 while (this_run > 0) {
564 READ_HUFFSYM(MAINTREE, main_element);
565
566 if (main_element < LZX_NUM_CHARS) {
567 /* literal: 0 to LZX_NUM_CHARS-1 */
568 window[window_posn++] = main_element;
569 this_run--;
570 }
571 else {
572 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
573 main_element -= LZX_NUM_CHARS;
574
575 match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
576 if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
577 READ_HUFFSYM(LENGTH, length_footer);
578 match_length += length_footer;
579 }
580 match_length += LZX_MIN_MATCH;
581
582 match_offset = main_element >> 3;
583
584 if (match_offset > 2) {
585 /* not repeated offset */
586 if (match_offset != 3) {
587 extra = extra_bits[match_offset];
588 READ_BITS(verbatim_bits, extra);
589 match_offset = position_base[match_offset] - 2 + verbatim_bits;
590 }
591 else {
592 match_offset = 1;
593 }
594
595 /* update repeated offset LRU queue */
596 R2 = R1; R1 = R0; R0 = match_offset;
597 }
598 else if (match_offset == 0) {
599 match_offset = R0;
600 }
601 else if (match_offset == 1) {
602 match_offset = R1;
603 R1 = R0; R0 = match_offset;
604 }
605 else /* match_offset == 2 */ {
606 match_offset = R2;
607 R2 = R0; R0 = match_offset;
608 }
609
610 rundest = window + window_posn;
611 this_run -= match_length;
612
613 /* copy any wrapped around source data */
614 if (window_posn >= match_offset) {
615 /* no wrap */
616 runsrc = rundest - match_offset;
617 } else {
618 runsrc = rundest + (window_size - match_offset);
619 copy_length = match_offset - window_posn;
620 if (copy_length < match_length) {
621 match_length -= copy_length;
622 window_posn += copy_length;
623 while (copy_length-- > 0) *rundest++ = *runsrc++;
624 runsrc = window;
625 }
626 }
627 window_posn += match_length;
628
629 /* copy match data - no worries about destination wraps */
630 while (match_length-- > 0) *rundest++ = *runsrc++;
631
632 }
633 }
634 break;
635
637 while (this_run > 0) {
638 READ_HUFFSYM(MAINTREE, main_element);
639
640 if (main_element < LZX_NUM_CHARS) {
641 /* literal: 0 to LZX_NUM_CHARS-1 */
642 window[window_posn++] = main_element;
643 this_run--;
644 }
645 else {
646 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
647 main_element -= LZX_NUM_CHARS;
648
649 match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
650 if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
651 READ_HUFFSYM(LENGTH, length_footer);
652 match_length += length_footer;
653 }
654 match_length += LZX_MIN_MATCH;
655
656 match_offset = main_element >> 3;
657
658 if (match_offset > 2) {
659 /* not repeated offset */
660 extra = extra_bits[match_offset];
661 match_offset = position_base[match_offset] - 2;
662 if (extra > 3) {
663 /* verbatim and aligned bits */
664 extra -= 3;
665 READ_BITS(verbatim_bits, extra);
666 match_offset += (verbatim_bits << 3);
667 READ_HUFFSYM(ALIGNED, aligned_bits);
668 match_offset += aligned_bits;
669 }
670 else if (extra == 3) {
671 /* aligned bits only */
672 READ_HUFFSYM(ALIGNED, aligned_bits);
673 match_offset += aligned_bits;
674 }
675 else if (extra > 0) { /* extra==1, extra==2 */
676 /* verbatim bits only */
677 READ_BITS(verbatim_bits, extra);
678 match_offset += verbatim_bits;
679 }
680 else /* extra == 0 */ {
681 /* ??? */
682 match_offset = 1;
683 }
684
685 /* update repeated offset LRU queue */
686 R2 = R1; R1 = R0; R0 = match_offset;
687 }
688 else if (match_offset == 0) {
689 match_offset = R0;
690 }
691 else if (match_offset == 1) {
692 match_offset = R1;
693 R1 = R0; R0 = match_offset;
694 }
695 else /* match_offset == 2 */ {
696 match_offset = R2;
697 R2 = R0; R0 = match_offset;
698 }
699
700 rundest = window + window_posn;
701 this_run -= match_length;
702
703 /* copy any wrapped around source data */
704 if (window_posn >= match_offset) {
705 /* no wrap */
706 runsrc = rundest - match_offset;
707 } else {
708 runsrc = rundest + (window_size - match_offset);
709 copy_length = match_offset - window_posn;
710 if (copy_length < match_length) {
711 match_length -= copy_length;
712 window_posn += copy_length;
713 while (copy_length-- > 0) *rundest++ = *runsrc++;
714 runsrc = window;
715 }
716 }
717 window_posn += match_length;
718
719 /* copy match data - no worries about destination wraps */
720 while (match_length-- > 0) *rundest++ = *runsrc++;
721
722 }
723 }
724 break;
725
727 if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA;
728 memcpy(window + window_posn, inpos, (size_t) this_run);
729 inpos += this_run; window_posn += this_run;
730 break;
731
732 default:
733 return DECR_ILLEGALDATA; /* might as well */
734 }
735
736 }
737 }
738
739 if (togo != 0) return DECR_ILLEGALDATA;
740 memcpy(outpos, window + ((!window_posn) ? window_size : window_posn) - outlen, (size_t) outlen);
741
742 pState->window_posn = window_posn;
743 pState->R0 = R0;
744 pState->R1 = R1;
745 pState->R2 = R2;
746
747 /* intel E8 decoding */
748 if ((pState->frames_read++ < 32768) && pState->intel_filesize != 0) {
749 if (outlen <= 6 || !pState->intel_started) {
750 pState->intel_curpos += outlen;
751 }
752 else {
753 UBYTE *data = outpos;
754 UBYTE *dataend = data + outlen - 10;
755 LONG curpos = pState->intel_curpos;
756 LONG filesize = pState->intel_filesize;
757 LONG abs_off, rel_off;
758
759 pState->intel_curpos = curpos + outlen;
760
761 while (data < dataend) {
762 if (*data++ != 0xE8) { curpos++; continue; }
763 abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
764 if ((abs_off >= -curpos) && (abs_off < filesize)) {
765 rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
766 data[0] = (UBYTE) rel_off;
767 data[1] = (UBYTE) (rel_off >> 8);
768 data[2] = (UBYTE) (rel_off >> 16);
769 data[3] = (UBYTE) (rel_off >> 24);
770 }
771 data += 4;
772 curpos += 5;
773 }
774 }
775 }
776 return DECR_OK;
777}
778
779#ifdef LZX_CHM_TESTDRIVER
780int main(int c, char **v)
781{
782 FILE *fin, *fout;
783 struct LZXstate state;
784 UBYTE ibuf[16384];
785 UBYTE obuf[32768];
786 int ilen, olen;
787 int status;
788 int i;
789 int count=0;
790 int w = atoi(v[1]);
791 LZXinit(&state, 1 << w);
792 fout = fopen(v[2], "wb");
793 for (i=3; i<c; i++)
794 {
795 fin = fopen(v[i], "rb");
796 ilen = fread(ibuf, 1, 16384, fin);
797 status = LZXdecompress(&state, ibuf, obuf, ilen, 32768);
798 switch (status)
799 {
800 case DECR_OK:
801 printf("ok\n");
802 fwrite(obuf, 1, 32768, fout);
803 break;
804 case DECR_DATAFORMAT:
805 printf("bad format\n");
806 break;
807 case DECR_ILLEGALDATA:
808 printf("illegal data\n");
809 break;
810 case DECR_NOMEMORY:
811 printf("no memory\n");
812 break;
813 default:
814 break;
815 }
816 fclose(fin);
817 if (++count == 2)
818 {
819 count = 0;
820 LZXreset(&state);
821 }
822 }
823 fclose(fout);
824}
825#endif
_STLP_MOVE_TO_STD_NAMESPACE void fill(_ForwardIter __first, _ForwardIter __last, const _Tp &__val)
Definition: _algobase.h:449
static int state
Definition: maze.c:121
#define NULL
Definition: types.h:112
#define DECR_OK
Definition: mszip.h:79
#define DECR_ILLEGALDATA
Definition: mszip.h:81
#define DECR_DATAFORMAT
Definition: mszip.h:80
#define DECR_NOMEMORY
Definition: mszip.h:82
#define GetProcessHeap()
Definition: compat.h:736
#define HeapAlloc
Definition: compat.h:733
#define HeapFree(x, y, z)
Definition: compat.h:735
@ LENGTH
Definition: inflate.c:185
int main()
Definition: test.c:6
#define printf
Definition: freeldr.h:97
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
const GLdouble * v
Definition: gl.h:2040
GLint GLint GLint GLint GLint GLint y
Definition: gl.h:1548
GLuint GLuint GLsizei count
Definition: gl.h:1545
GLint GLenum GLsizei GLsizei GLsizei GLint GLsizei const GLvoid * data
Definition: gl.h:1950
const GLubyte * c
Definition: glext.h:8905
GLuint GLsizei GLsizei * length
Definition: glext.h:6040
const GLint * first
Definition: glext.h:5794
GLubyte GLubyte GLubyte GLubyte w
Definition: glext.h:6102
GLdouble GLdouble z
Definition: glext.h:5874
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint GLint GLint j
Definition: glfuncs.h:250
static char obuf[100]
Definition: i386-dis.c:1281
@ extra
Definition: id3.c:95
_Check_return_opt_ _CRTIMP size_t __cdecl fread(_Out_writes_bytes_(_ElementSize *_Count) void *_DstBuf, _In_ size_t _ElementSize, _In_ size_t _Count, _Inout_ FILE *_File)
_Check_return_ _CRTIMP FILE *__cdecl fopen(_In_z_ const char *_Filename, _In_z_ const char *_Mode)
_Check_return_opt_ _CRTIMP int __cdecl fclose(_Inout_ FILE *_File)
_Check_return_opt_ _CRTIMP size_t __cdecl fwrite(_In_reads_bytes_(_Size *_Count) const void *_Str, _In_ size_t _Size, _In_ size_t _Count, _Inout_ FILE *_File)
_Check_return_ int __cdecl atoi(_In_z_ const char *_Str)
void LZXteardown(struct LZXstate *pState)
Definition: lzx.c:209
#define LZX_NUM_CHARS
Definition: lzx.c:54
unsigned char UBYTE
Definition: lzx.c:48
int LZXdecompress(struct LZXstate *pState, unsigned char *inpos, unsigned char *outpos, int inlen, int outlen)
Definition: lzx.c:461
#define LZX_BLOCKTYPE_INVALID
Definition: lzx.c:55
#define READ_LENGTHS(tbl, first, last)
Definition: lzx.c:319
#define LZX_MAINTREE_MAXSYMBOLS
Definition: lzx.c:67
#define LZX_BLOCKTYPE_ALIGNED
Definition: lzx.c:57
#define LZX_NUM_SECONDARY_LENGTHS
Definition: lzx.c:62
#define READ_BITS(v, n)
Definition: lzx.c:272
#define LENTABLE(tbl)
Definition: lzx.c:284
#define LZX_BLOCKTYPE_VERBATIM
Definition: lzx.c:56
#define LZX_LENGTH_MAXSYMBOLS
Definition: lzx.c:69
#define LZX_NUM_PRIMARY_LENGTHS
Definition: lzx.c:61
#define READ_HUFFSYM(tbl, var)
Definition: lzx.c:300
#define LZX_BLOCKTYPE_UNCOMPRESSED
Definition: lzx.c:58
static const ULONG position_base[51]
Definition: lzx.c:165
struct LZXstate * LZXinit(int wndsize)
Definition: lzx.c:172
static int make_decode_table(ULONG nsyms, ULONG nbits, UBYTE *length, UWORD *table)
Definition: lzx.c:342
int LZXreset(struct LZXstate *pState)
Definition: lzx.c:218
#define INIT_BITSTREAM
Definition: lzx.c:261
#define BUILD_TABLE(tbl)
Definition: lzx.c:291
static int lzx_read_lens(struct LZXstate *pState, UBYTE *lens, ULONG first, ULONG last, struct lzx_bits *lb)
Definition: lzx.c:418
#define LZX_LENTABLE_SAFETY
Definition: lzx.c:74
unsigned short UWORD
Definition: lzx.c:49
#define LZX_MIN_MATCH
Definition: lzx.c:52
#define ENSURE_BITS(n)
Definition: lzx.c:263
static const UBYTE extra_bits[51]
Definition: lzx.c:158
#define c
Definition: ke_i.h:80
#define memcpy(s1, s2, n)
Definition: mkisofs.h:878
#define for
Definition: utility.h:88
static UINT UINT last
Definition: font.c:45
static IHTMLWindow2 * window
Definition: events.c:77
int k
Definition: mpi.c:3369
unsigned char UBYTE
Definition: lzx.c:48
unsigned short UWORD
Definition: lzx.c:49
#define ALIGNED(a)
Definition: optimize.h:190
long LONG
Definition: pedump.c:60
#define R1(v, w, x, y, z, i)
Definition: sha1.c:36
#define R2(v, w, x, y, z, i)
Definition: sha1.c:37
#define R0(v, w, x, y, z, i)
Definition: sha1.c:35
LZX_DECLARE_TABLE(MAINTREE)
ULONG block_remaining
Definition: lzx.c:91
int header_read
Definition: cabinet.h:219
UWORD main_elements
Definition: lzx.c:87
LONG intel_filesize
Definition: lzx.c:93
ULONG R0
Definition: lzx.c:86
LONG intel_curpos
Definition: lzx.c:94
LZX_DECLARE_TABLE(PRETREE)
UWORD block_type
Definition: lzx.c:89
cab_ULONG R2
Definition: cabinet.h:217
UBYTE * window
Definition: lzx.c:82
ULONG frames_read
Definition: lzx.c:92
int intel_started
Definition: cabinet.h:226
cab_ULONG R1
Definition: cabinet.h:217
cab_UBYTE * window
Definition: cabinet.h:213
ULONG actual_size
Definition: lzx.c:84
LZX_DECLARE_TABLE(ALIGNED)
ULONG window_size
Definition: lzx.c:83
ULONG block_length
Definition: lzx.c:90
LZX_DECLARE_TABLE(LENGTH)
ULONG window_posn
Definition: lzx.c:85
ULONG bb
Definition: lzx.c:413
cab_UBYTE * ip
Definition: cabinet.h:237
UBYTE * ip
Definition: lzx.c:415
int bl
Definition: cabinet.h:236
Definition: ps.c:97
uint32_t ULONG
Definition: typedefs.h:59