ReactOS 0.4.16-dev-981-g80eb313
ftcalc.c
Go to the documentation of this file.
1/****************************************************************************
2 *
3 * ftcalc.c
4 *
5 * Arithmetic computations (body).
6 *
7 * Copyright (C) 1996-2019 by
8 * David Turner, Robert Wilhelm, and Werner Lemberg.
9 *
10 * This file is part of the FreeType project, and may only be used,
11 * modified, and distributed under the terms of the FreeType project
12 * license, LICENSE.TXT. By continuing to use, modify, or distribute
13 * this file you indicate that you have read the license and
14 * understand and accept it fully.
15 *
16 */
17
18 /**************************************************************************
19 *
20 * Support for 1-complement arithmetic has been totally dropped in this
21 * release. You can still write your own code if you need it.
22 *
23 */
24
25 /**************************************************************************
26 *
27 * Implementing basic computation routines.
28 *
29 * FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(),
30 * and FT_FloorFix() are declared in freetype.h.
31 *
32 */
33
34
35#include <ft2build.h>
36#include FT_GLYPH_H
37#include FT_TRIGONOMETRY_H
38#include FT_INTERNAL_CALC_H
39#include FT_INTERNAL_DEBUG_H
40#include FT_INTERNAL_OBJECTS_H
41
42
43#ifdef FT_MULFIX_ASSEMBLER
44#undef FT_MulFix
45#endif
46
47/* we need to emulate a 64-bit data type if a real one isn't available */
48
49#ifndef FT_LONG64
50
51 typedef struct FT_Int64_
52 {
53 FT_UInt32 lo;
54 FT_UInt32 hi;
55
57
58#endif /* !FT_LONG64 */
59
60
61 /**************************************************************************
62 *
63 * The macro FT_COMPONENT is used in trace mode. It is an implicit
64 * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log
65 * messages during execution.
66 */
67#undef FT_COMPONENT
68#define FT_COMPONENT calc
69
70
71 /* transfer sign, leaving a positive number; */
72 /* we need an unsigned value to safely negate INT_MIN (or LONG_MIN) */
73#define FT_MOVE_SIGN( x, x_unsigned, s ) \
74 FT_BEGIN_STMNT \
75 if ( x < 0 ) \
76 { \
77 x_unsigned = 0U - (x_unsigned); \
78 s = -s; \
79 } \
80 FT_END_STMNT
81
82 /* The following three functions are available regardless of whether */
83 /* FT_LONG64 is defined. */
84
85 /* documentation is in freetype.h */
86
89 {
90 return ( ADD_LONG( a, 0x8000L - ( a < 0 ) ) ) & ~0xFFFFL;
91 }
92
93
94 /* documentation is in freetype.h */
95
98 {
99 return ( ADD_LONG( a, 0xFFFFL ) ) & ~0xFFFFL;
100 }
101
102
103 /* documentation is in freetype.h */
104
107 {
108 return a & ~0xFFFFL;
109 }
110
111#ifndef FT_MSB
112
114 FT_MSB( FT_UInt32 z )
115 {
116 FT_Int shift = 0;
117
118
119 /* determine msb bit index in `shift' */
120 if ( z & 0xFFFF0000UL )
121 {
122 z >>= 16;
123 shift += 16;
124 }
125 if ( z & 0x0000FF00UL )
126 {
127 z >>= 8;
128 shift += 8;
129 }
130 if ( z & 0x000000F0UL )
131 {
132 z >>= 4;
133 shift += 4;
134 }
135 if ( z & 0x0000000CUL )
136 {
137 z >>= 2;
138 shift += 2;
139 }
140 if ( z & 0x00000002UL )
141 {
142 /* z >>= 1; */
143 shift += 1;
144 }
145
146 return shift;
147 }
148
149#endif /* !FT_MSB */
150
151
152 /* documentation is in ftcalc.h */
153
156 FT_Fixed y )
157 {
158 FT_Vector v;
159
160
161 v.x = x;
162 v.y = y;
163
164 return FT_Vector_Length( &v );
165 }
166
167
168#ifdef FT_LONG64
169
170
171 /* documentation is in freetype.h */
172
174 FT_MulDiv( FT_Long a_,
175 FT_Long b_,
176 FT_Long c_ )
177 {
178 FT_Int s = 1;
179 FT_UInt64 a, b, c, d;
180 FT_Long d_;
181
182
183 a = (FT_UInt64)a_;
184 b = (FT_UInt64)b_;
185 c = (FT_UInt64)c_;
186
187 FT_MOVE_SIGN( a_, a, s );
188 FT_MOVE_SIGN( b_, b, s );
189 FT_MOVE_SIGN( c_, c, s );
190
191 d = c > 0 ? ( a * b + ( c >> 1 ) ) / c
192 : 0x7FFFFFFFUL;
193
194 d_ = (FT_Long)d;
195
196 return s < 0 ? NEG_LONG( d_ ) : d_;
197 }
198
199
200 /* documentation is in ftcalc.h */
201
204 FT_Long b_,
205 FT_Long c_ )
206 {
207 FT_Int s = 1;
208 FT_UInt64 a, b, c, d;
209 FT_Long d_;
210
211
212 a = (FT_UInt64)a_;
213 b = (FT_UInt64)b_;
214 c = (FT_UInt64)c_;
215
216 FT_MOVE_SIGN( a_, a, s );
217 FT_MOVE_SIGN( b_, b, s );
218 FT_MOVE_SIGN( c_, c, s );
219
220 d = c > 0 ? a * b / c
221 : 0x7FFFFFFFUL;
222
223 d_ = (FT_Long)d;
224
225 return s < 0 ? NEG_LONG( d_ ) : d_;
226 }
227
228
229 /* documentation is in freetype.h */
230
232 FT_MulFix( FT_Long a_,
233 FT_Long b_ )
234 {
235#ifdef FT_MULFIX_ASSEMBLER
236
237 return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ );
238
239#else
240
241 FT_Int64 ab = (FT_Int64)a_ * (FT_Int64)b_;
242
243 /* this requires arithmetic right shift of signed numbers */
244 return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 );
245
246#endif /* FT_MULFIX_ASSEMBLER */
247 }
248
249
250 /* documentation is in freetype.h */
251
253 FT_DivFix( FT_Long a_,
254 FT_Long b_ )
255 {
256 FT_Int s = 1;
257 FT_UInt64 a, b, q;
258 FT_Long q_;
259
260
261 a = (FT_UInt64)a_;
262 b = (FT_UInt64)b_;
263
264 FT_MOVE_SIGN( a_, a, s );
265 FT_MOVE_SIGN( b_, b, s );
266
267 q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b
268 : 0x7FFFFFFFUL;
269
270 q_ = (FT_Long)q;
271
272 return s < 0 ? NEG_LONG( q_ ) : q_;
273 }
274
275
276#else /* !FT_LONG64 */
277
278
279 static void
280 ft_multo64( FT_UInt32 x,
281 FT_UInt32 y,
282 FT_Int64 *z )
283 {
284 FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
285
286
287 lo1 = x & 0x0000FFFFU; hi1 = x >> 16;
288 lo2 = y & 0x0000FFFFU; hi2 = y >> 16;
289
290 lo = lo1 * lo2;
291 i1 = lo1 * hi2;
292 i2 = lo2 * hi1;
293 hi = hi1 * hi2;
294
295 /* Check carry overflow of i1 + i2 */
296 i1 += i2;
297 hi += (FT_UInt32)( i1 < i2 ) << 16;
298
299 hi += i1 >> 16;
300 i1 = i1 << 16;
301
302 /* Check carry overflow of i1 + lo */
303 lo += i1;
304 hi += ( lo < i1 );
305
306 z->lo = lo;
307 z->hi = hi;
308 }
309
310
311 static FT_UInt32
312 ft_div64by32( FT_UInt32 hi,
313 FT_UInt32 lo,
314 FT_UInt32 y )
315 {
316 FT_UInt32 r, q;
317 FT_Int i;
318
319
320 if ( hi >= y )
321 return (FT_UInt32)0x7FFFFFFFL;
322
323 /* We shift as many bits as we can into the high register, perform */
324 /* 32-bit division with modulo there, then work through the remaining */
325 /* bits with long division. This optimization is especially noticeable */
326 /* for smaller dividends that barely use the high register. */
327
328 i = 31 - FT_MSB( hi );
329 r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
330 q = r / y;
331 r -= q * y; /* remainder */
332
333 i = 32 - i; /* bits remaining in low register */
334 do
335 {
336 q <<= 1;
337 r = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
338
339 if ( r >= y )
340 {
341 r -= y;
342 q |= 1;
343 }
344 } while ( --i );
345
346 return q;
347 }
348
349
350 static void
352 FT_Int64* y,
353 FT_Int64 *z )
354 {
355 FT_UInt32 lo, hi;
356
357
358 lo = x->lo + y->lo;
359 hi = x->hi + y->hi + ( lo < x->lo );
360
361 z->lo = lo;
362 z->hi = hi;
363 }
364
365
366 /* The FT_MulDiv function has been optimized thanks to ideas from */
367 /* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */
368 /* a rather common case when everything fits within 32-bits. */
369 /* */
370 /* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
371 /* */
372 /* The product of two positive numbers never exceeds the square of */
373 /* its mean values. Therefore, we always avoid the overflow by */
374 /* imposing */
375 /* */
376 /* (a + b) / 2 <= sqrt(X - c/2) , */
377 /* */
378 /* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */
379 /* unsigned arithmetic. Now we replace `sqrt' with a linear function */
380 /* that is smaller or equal for all values of c in the interval */
381 /* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */
382 /* endpoints. Substituting the linear solution and explicit numbers */
383 /* we get */
384 /* */
385 /* a + b <= 131071.99 - c / 122291.84 . */
386 /* */
387 /* In practice, we should use a faster and even stronger inequality */
388 /* */
389 /* a + b <= 131071 - (c >> 16) */
390 /* */
391 /* or, alternatively, */
392 /* */
393 /* a + b <= 129894 - (c >> 17) . */
394 /* */
395 /* FT_MulFix, on the other hand, is optimized for a small value of */
396 /* the first argument, when the second argument can be much larger. */
397 /* This can be achieved by scaling the second argument and the limit */
398 /* in the above inequalities. For example, */
399 /* */
400 /* a + (b >> 8) <= (131071 >> 4) */
401 /* */
402 /* covers the practical range of use. The actual test below is a bit */
403 /* tighter to avoid the border case overflows. */
404 /* */
405 /* In the case of FT_DivFix, the exact overflow check */
406 /* */
407 /* a << 16 <= X - c/2 */
408 /* */
409 /* is scaled down by 2^16 and we use */
410 /* */
411 /* a <= 65535 - (c >> 17) . */
412
413 /* documentation is in freetype.h */
414
417 FT_Long b_,
418 FT_Long c_ )
419 {
420 FT_Int s = 1;
421 FT_UInt32 a, b, c;
422
423
424 /* XXX: this function does not allow 64-bit arguments */
425
426 a = (FT_UInt32)a_;
427 b = (FT_UInt32)b_;
428 c = (FT_UInt32)c_;
429
430 FT_MOVE_SIGN( a_, a, s );
431 FT_MOVE_SIGN( b_, b, s );
432 FT_MOVE_SIGN( c_, c, s );
433
434 if ( c == 0 )
435 a = 0x7FFFFFFFUL;
436
437 else if ( a + b <= 129894UL - ( c >> 17 ) )
438 a = ( a * b + ( c >> 1 ) ) / c;
439
440 else
441 {
442 FT_Int64 temp, temp2;
443
444
445 ft_multo64( a, b, &temp );
446
447 temp2.hi = 0;
448 temp2.lo = c >> 1;
449
450 FT_Add64( &temp, &temp2, &temp );
451
452 /* last attempt to ditch long division */
453 a = ( temp.hi == 0 ) ? temp.lo / c
454 : ft_div64by32( temp.hi, temp.lo, c );
455 }
456
457 a_ = (FT_Long)a;
458
459 return s < 0 ? NEG_LONG( a_ ) : a_;
460 }
461
462
465 FT_Long b_,
466 FT_Long c_ )
467 {
468 FT_Int s = 1;
469 FT_UInt32 a, b, c;
470
471
472 /* XXX: this function does not allow 64-bit arguments */
473
474 a = (FT_UInt32)a_;
475 b = (FT_UInt32)b_;
476 c = (FT_UInt32)c_;
477
478 FT_MOVE_SIGN( a_, a, s );
479 FT_MOVE_SIGN( b_, b, s );
480 FT_MOVE_SIGN( c_, c, s );
481
482 if ( c == 0 )
483 a = 0x7FFFFFFFUL;
484
485 else if ( a + b <= 131071UL )
486 a = a * b / c;
487
488 else
489 {
491
492
493 ft_multo64( a, b, &temp );
494
495 /* last attempt to ditch long division */
496 a = ( temp.hi == 0 ) ? temp.lo / c
497 : ft_div64by32( temp.hi, temp.lo, c );
498 }
499
500 a_ = (FT_Long)a;
501
502 return s < 0 ? NEG_LONG( a_ ) : a_;
503 }
504
505
506 /* documentation is in freetype.h */
507
510 FT_Long b_ )
511 {
512#ifdef FT_MULFIX_ASSEMBLER
513
514 return FT_MULFIX_ASSEMBLER( a_, b_ );
515
516#elif 0
517
518 /*
519 * This code is nonportable. See comment below.
520 *
521 * However, on a platform where right-shift of a signed quantity fills
522 * the leftmost bits by copying the sign bit, it might be faster.
523 */
524
525 FT_Long sa, sb;
526 FT_UInt32 a, b;
527
528
529 /*
530 * This is a clever way of converting a signed number `a' into its
531 * absolute value (stored back into `a') and its sign. The sign is
532 * stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
533 * was negative. (Similarly for `b' and `sb').
534 *
535 * Unfortunately, it doesn't work (at least not portably).
536 *
537 * It makes the assumption that right-shift on a negative signed value
538 * fills the leftmost bits by copying the sign bit. This is wrong.
539 * According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
540 * the result of right-shift of a negative signed value is
541 * implementation-defined. At least one implementation fills the
542 * leftmost bits with 0s (i.e., it is exactly the same as an unsigned
543 * right shift). This means that when `a' is negative, `sa' ends up
544 * with the value 1 rather than -1. After that, everything else goes
545 * wrong.
546 */
547 sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) );
548 a = ( a_ ^ sa ) - sa;
549 sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) );
550 b = ( b_ ^ sb ) - sb;
551
552 a = (FT_UInt32)a_;
553 b = (FT_UInt32)b_;
554
555 if ( a + ( b >> 8 ) <= 8190UL )
556 a = ( a * b + 0x8000U ) >> 16;
557 else
558 {
559 FT_UInt32 al = a & 0xFFFFUL;
560
561
562 a = ( a >> 16 ) * b + al * ( b >> 16 ) +
563 ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
564 }
565
566 sa ^= sb;
567 a = ( a ^ sa ) - sa;
568
569 return (FT_Long)a;
570
571#else /* 0 */
572
573 FT_Int s = 1;
574 FT_UInt32 a, b;
575
576
577 /* XXX: this function does not allow 64-bit arguments */
578
579 a = (FT_UInt32)a_;
580 b = (FT_UInt32)b_;
581
582 FT_MOVE_SIGN( a_, a, s );
583 FT_MOVE_SIGN( b_, b, s );
584
585 if ( a + ( b >> 8 ) <= 8190UL )
586 a = ( a * b + 0x8000UL ) >> 16;
587 else
588 {
589 FT_UInt32 al = a & 0xFFFFUL;
590
591
592 a = ( a >> 16 ) * b + al * ( b >> 16 ) +
593 ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
594 }
595
596 a_ = (FT_Long)a;
597
598 return s < 0 ? NEG_LONG( a_ ) : a_;
599
600#endif /* 0 */
601
602 }
603
604
605 /* documentation is in freetype.h */
606
609 FT_Long b_ )
610 {
611 FT_Int s = 1;
612 FT_UInt32 a, b, q;
613 FT_Long q_;
614
615
616 /* XXX: this function does not allow 64-bit arguments */
617
618 a = (FT_UInt32)a_;
619 b = (FT_UInt32)b_;
620
621 FT_MOVE_SIGN( a_, a, s );
622 FT_MOVE_SIGN( b_, b, s );
623
624 if ( b == 0 )
625 {
626 /* check for division by 0 */
627 q = 0x7FFFFFFFUL;
628 }
629 else if ( a <= 65535UL - ( b >> 17 ) )
630 {
631 /* compute result directly */
632 q = ( ( a << 16 ) + ( b >> 1 ) ) / b;
633 }
634 else
635 {
636 /* we need more bits; we have to do it by hand */
637 FT_Int64 temp, temp2;
638
639
640 temp.hi = a >> 16;
641 temp.lo = a << 16;
642 temp2.hi = 0;
643 temp2.lo = b >> 1;
644
645 FT_Add64( &temp, &temp2, &temp );
646 q = ft_div64by32( temp.hi, temp.lo, b );
647 }
648
649 q_ = (FT_Long)q;
650
651 return s < 0 ? NEG_LONG( q_ ) : q_;
652 }
653
654
655#endif /* !FT_LONG64 */
656
657
658 /* documentation is in ftglyph.h */
659
660 FT_EXPORT_DEF( void )
662 FT_Matrix *b )
663 {
664 FT_Fixed xx, xy, yx, yy;
665
666
667 if ( !a || !b )
668 return;
669
670 xx = ADD_LONG( FT_MulFix( a->xx, b->xx ),
671 FT_MulFix( a->xy, b->yx ) );
672 xy = ADD_LONG( FT_MulFix( a->xx, b->xy ),
673 FT_MulFix( a->xy, b->yy ) );
674 yx = ADD_LONG( FT_MulFix( a->yx, b->xx ),
675 FT_MulFix( a->yy, b->yx ) );
676 yy = ADD_LONG( FT_MulFix( a->yx, b->xy ),
677 FT_MulFix( a->yy, b->yy ) );
678
679 b->xx = xx;
680 b->xy = xy;
681 b->yx = yx;
682 b->yy = yy;
683 }
684
685
686 /* documentation is in ftglyph.h */
687
690 {
691 FT_Pos delta, xx, yy;
692
693
694 if ( !matrix )
695 return FT_THROW( Invalid_Argument );
696
697 /* compute discriminant */
698 delta = FT_MulFix( matrix->xx, matrix->yy ) -
699 FT_MulFix( matrix->xy, matrix->yx );
700
701 if ( !delta )
702 return FT_THROW( Invalid_Argument ); /* matrix can't be inverted */
703
704 matrix->xy = -FT_DivFix( matrix->xy, delta );
705 matrix->yx = -FT_DivFix( matrix->yx, delta );
706
707 xx = matrix->xx;
708 yy = matrix->yy;
709
710 matrix->xx = FT_DivFix( yy, delta );
711 matrix->yy = FT_DivFix( xx, delta );
712
713 return FT_Err_Ok;
714 }
715
716
717 /* documentation is in ftcalc.h */
718
719 FT_BASE_DEF( void )
721 FT_Matrix *b,
722 FT_Long scaling )
723 {
724 FT_Fixed xx, xy, yx, yy;
725
726 FT_Long val = 0x10000L * scaling;
727
728
729 if ( !a || !b )
730 return;
731
732 xx = ADD_LONG( FT_MulDiv( a->xx, b->xx, val ),
733 FT_MulDiv( a->xy, b->yx, val ) );
734 xy = ADD_LONG( FT_MulDiv( a->xx, b->xy, val ),
735 FT_MulDiv( a->xy, b->yy, val ) );
736 yx = ADD_LONG( FT_MulDiv( a->yx, b->xx, val ),
737 FT_MulDiv( a->yy, b->yx, val ) );
738 yy = ADD_LONG( FT_MulDiv( a->yx, b->xy, val ),
739 FT_MulDiv( a->yy, b->yy, val ) );
740
741 b->xx = xx;
742 b->xy = xy;
743 b->yx = yx;
744 b->yy = yy;
745 }
746
747
748 /* documentation is in ftcalc.h */
749
752 {
753 FT_Matrix m;
754 FT_Fixed val[4];
755 FT_Fixed nonzero_minval, maxval;
756 FT_Fixed temp1, temp2;
757 FT_UInt i;
758
759
760 if ( !matrix )
761 return 0;
762
763 val[0] = FT_ABS( matrix->xx );
764 val[1] = FT_ABS( matrix->xy );
765 val[2] = FT_ABS( matrix->yx );
766 val[3] = FT_ABS( matrix->yy );
767
768 /*
769 * To avoid overflow, we ensure that each value is not larger than
770 *
771 * int(sqrt(2^31 / 4)) = 23170 ;
772 *
773 * we also check that no value becomes zero if we have to scale.
774 */
775
776 maxval = 0;
777 nonzero_minval = FT_LONG_MAX;
778
779 for ( i = 0; i < 4; i++ )
780 {
781 if ( val[i] > maxval )
782 maxval = val[i];
783 if ( val[i] && val[i] < nonzero_minval )
784 nonzero_minval = val[i];
785 }
786
787 /* we only handle 32bit values */
788 if ( maxval > 0x7FFFFFFFL )
789 return 0;
790
791 if ( maxval > 23170 )
792 {
793 FT_Fixed scale = FT_DivFix( maxval, 23170 );
794
795
796 if ( !FT_DivFix( nonzero_minval, scale ) )
797 return 0; /* value range too large */
798
799 m.xx = FT_DivFix( matrix->xx, scale );
800 m.xy = FT_DivFix( matrix->xy, scale );
801 m.yx = FT_DivFix( matrix->yx, scale );
802 m.yy = FT_DivFix( matrix->yy, scale );
803 }
804 else
805 m = *matrix;
806
807 temp1 = FT_ABS( m.xx * m.yy - m.xy * m.yx );
808 temp2 = m.xx * m.xx + m.xy * m.xy + m.yx * m.yx + m.yy * m.yy;
809
810 if ( temp1 == 0 ||
811 temp2 / temp1 > 50 )
812 return 0;
813
814 return 1;
815 }
816
817
818 /* documentation is in ftcalc.h */
819
820 FT_BASE_DEF( void )
823 FT_Long scaling )
824 {
825 FT_Pos xz, yz;
826
827 FT_Long val = 0x10000L * scaling;
828
829
830 if ( !vector || !matrix )
831 return;
832
833 xz = ADD_LONG( FT_MulDiv( vector->x, matrix->xx, val ),
834 FT_MulDiv( vector->y, matrix->xy, val ) );
835 yz = ADD_LONG( FT_MulDiv( vector->x, matrix->yx, val ),
836 FT_MulDiv( vector->y, matrix->yy, val ) );
837
838 vector->x = xz;
839 vector->y = yz;
840 }
841
842
843 /* documentation is in ftcalc.h */
844
845 FT_BASE_DEF( FT_UInt32 )
847 {
848 FT_Int32 x_ = vector->x;
849 FT_Int32 y_ = vector->y;
850 FT_Int32 b, z;
851 FT_UInt32 x, y, u, v, l;
852 FT_Int sx = 1, sy = 1, shift;
853
854
855 x = (FT_UInt32)x_;
856 y = (FT_UInt32)y_;
857
858 FT_MOVE_SIGN( x_, x, sx );
859 FT_MOVE_SIGN( y_, y, sy );
860
861 /* trivial cases */
862 if ( x == 0 )
863 {
864 if ( y > 0 )
865 vector->y = sy * 0x10000;
866 return y;
867 }
868 else if ( y == 0 )
869 {
870 if ( x > 0 )
871 vector->x = sx * 0x10000;
872 return x;
873 }
874
875 /* Estimate length and prenormalize by shifting so that */
876 /* the new approximate length is between 2/3 and 4/3. */
877 /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps */
878 /* achieve this in 16.16 fixed-point representation. */
879 l = x > y ? x + ( y >> 1 )
880 : y + ( x >> 1 );
881
882 shift = 31 - FT_MSB( l );
883 shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) );
884
885 if ( shift > 0 )
886 {
887 x <<= shift;
888 y <<= shift;
889
890 /* re-estimate length for tiny vectors */
891 l = x > y ? x + ( y >> 1 )
892 : y + ( x >> 1 );
893 }
894 else
895 {
896 x >>= -shift;
897 y >>= -shift;
898 l >>= -shift;
899 }
900
901 /* lower linear approximation for reciprocal length minus one */
902 b = 0x10000 - (FT_Int32)l;
903
904 x_ = (FT_Int32)x;
905 y_ = (FT_Int32)y;
906
907 /* Newton's iterations */
908 do
909 {
910 u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) );
911 v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) );
912
913 /* Normalized squared length in the parentheses approaches 2^32. */
914 /* On two's complement systems, converting to signed gives the */
915 /* difference with 2^32 even if the expression wraps around. */
916 z = -(FT_Int32)( u * u + v * v ) / 0x200;
917 z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000;
918
919 b += z;
920
921 } while ( z > 0 );
922
923 vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u;
924 vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v;
925
926 /* Conversion to signed helps to recover from likely wrap around */
927 /* in calculating the prenormalized length, because it gives the */
928 /* correct difference with 2^32 on two's complement systems. */
929 l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 );
930 if ( shift > 0 )
931 l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift;
932 else
933 l <<= -shift;
934
935 return l;
936 }
937
938
939#if 0
940
941 /* documentation is in ftcalc.h */
942
943 FT_BASE_DEF( FT_Int32 )
944 FT_SqrtFixed( FT_Int32 x )
945 {
946 FT_UInt32 root, rem_hi, rem_lo, test_div;
948
949
950 root = 0;
951
952 if ( x > 0 )
953 {
954 rem_hi = 0;
955 rem_lo = (FT_UInt32)x;
956 count = 24;
957 do
958 {
959 rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 );
960 rem_lo <<= 2;
961 root <<= 1;
962 test_div = ( root << 1 ) + 1;
963
964 if ( rem_hi >= test_div )
965 {
966 rem_hi -= test_div;
967 root += 1;
968 }
969 } while ( --count );
970 }
971
972 return (FT_Int32)root;
973 }
974
975#endif /* 0 */
976
977
978 /* documentation is in ftcalc.h */
979
982 FT_Pos in_y,
983 FT_Pos out_x,
984 FT_Pos out_y )
985 {
986 /* we silently ignore overflow errors since such large values */
987 /* lead to even more (harmless) rendering errors later on */
988
989#ifdef FT_LONG64
990
991 FT_Int64 delta = SUB_INT64( MUL_INT64( in_x, out_y ),
992 MUL_INT64( in_y, out_x ) );
993
994
995 return ( delta > 0 ) - ( delta < 0 );
996
997#else
998
1000
1001
1002 if ( ADD_LONG( FT_ABS( in_x ), FT_ABS( out_y ) ) <= 131071L &&
1003 ADD_LONG( FT_ABS( in_y ), FT_ABS( out_x ) ) <= 131071L )
1004 {
1005 FT_Long z1 = MUL_LONG( in_x, out_y );
1006 FT_Long z2 = MUL_LONG( in_y, out_x );
1007
1008
1009 if ( z1 > z2 )
1010 result = +1;
1011 else if ( z1 < z2 )
1012 result = -1;
1013 else
1014 result = 0;
1015 }
1016 else /* products might overflow 32 bits */
1017 {
1018 FT_Int64 z1, z2;
1019
1020
1021 /* XXX: this function does not allow 64-bit arguments */
1022 ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 );
1023 ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 );
1024
1025 if ( z1.hi > z2.hi )
1026 result = +1;
1027 else if ( z1.hi < z2.hi )
1028 result = -1;
1029 else if ( z1.lo > z2.lo )
1030 result = +1;
1031 else if ( z1.lo < z2.lo )
1032 result = -1;
1033 else
1034 result = 0;
1035 }
1036
1037 /* XXX: only the sign of return value, +1/0/-1 must be used */
1038 return result;
1039
1040#endif
1041 }
1042
1043
1044 /* documentation is in ftcalc.h */
1045
1048 FT_Pos in_y,
1049 FT_Pos out_x,
1050 FT_Pos out_y )
1051 {
1052 FT_Pos ax = in_x + out_x;
1053 FT_Pos ay = in_y + out_y;
1054
1055 FT_Pos d_in, d_out, d_hypot;
1056
1057
1058 /* The idea of this function is to compare the length of the */
1059 /* hypotenuse with the `in' and `out' length. The `corner' */
1060 /* represented by `in' and `out' is flat if the hypotenuse's */
1061 /* length isn't too large. */
1062 /* */
1063 /* This approach has the advantage that the angle between */
1064 /* `in' and `out' is not checked. In case one of the two */
1065 /* vectors is `dominant', this is, much larger than the */
1066 /* other vector, we thus always have a flat corner. */
1067 /* */
1068 /* hypotenuse */
1069 /* x---------------------------x */
1070 /* \ / */
1071 /* \ / */
1072 /* in \ / out */
1073 /* \ / */
1074 /* o */
1075 /* Point */
1076
1077 d_in = FT_HYPOT( in_x, in_y );
1078 d_out = FT_HYPOT( out_x, out_y );
1079 d_hypot = FT_HYPOT( ax, ay );
1080
1081 /* now do a simple length comparison: */
1082 /* */
1083 /* d_in + d_out < 17/16 d_hypot */
1084
1085 return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 );
1086 }
1087
1088
1089/* END */
static struct sockaddr_in sa
Definition: adnsresfilter.c:69
struct _root root
r l[0]
Definition: byte_order.h:168
superblock * sb
Definition: btrfs.c:4261
return FT_Err_Ok
Definition: ftbbox.c:527
ft_corner_is_flat(FT_Pos in_x, FT_Pos in_y, FT_Pos out_x, FT_Pos out_y)
Definition: ftcalc.c:1047
FT_MSB(FT_UInt32 z)
Definition: ftcalc.c:114
FT_RoundFix(FT_Fixed a)
Definition: ftcalc.c:88
static void ft_multo64(FT_UInt32 x, FT_UInt32 y, FT_Int64 *z)
Definition: ftcalc.c:280
static void FT_Add64(FT_Int64 *x, FT_Int64 *y, FT_Int64 *z)
Definition: ftcalc.c:351
FT_MulFix(FT_Long a_, FT_Long b_)
Definition: ftcalc.c:509
FT_MulDiv(FT_Long a_, FT_Long b_, FT_Long c_)
Definition: ftcalc.c:416
FT_Vector_NormLen(FT_Vector *vector)
Definition: ftcalc.c:846
struct FT_Int64_ FT_Int64
FT_Vector_Transform_Scaled(FT_Vector *vector, const FT_Matrix *matrix, FT_Long scaling)
Definition: ftcalc.c:821
FT_CeilFix(FT_Fixed a)
Definition: ftcalc.c:97
FT_FloorFix(FT_Fixed a)
Definition: ftcalc.c:106
FT_MulDiv_No_Round(FT_Long a_, FT_Long b_, FT_Long c_)
Definition: ftcalc.c:464
FT_Matrix_Invert(FT_Matrix *matrix)
Definition: ftcalc.c:689
FT_DivFix(FT_Long a_, FT_Long b_)
Definition: ftcalc.c:608
#define FT_MOVE_SIGN(x, x_unsigned, s)
Definition: ftcalc.c:73
FT_Matrix_Multiply_Scaled(const FT_Matrix *a, FT_Matrix *b, FT_Long scaling)
Definition: ftcalc.c:720
FT_Matrix_Check(const FT_Matrix *matrix)
Definition: ftcalc.c:751
FT_Hypot(FT_Fixed x, FT_Fixed y)
Definition: ftcalc.c:155
FT_Matrix_Multiply(const FT_Matrix *a, FT_Matrix *b)
Definition: ftcalc.c:661
static FT_UInt32 ft_div64by32(FT_UInt32 hi, FT_UInt32 lo, FT_UInt32 y)
Definition: ftcalc.c:312
ft_corner_orientation(FT_Pos in_x, FT_Pos in_y, FT_Pos out_x, FT_Pos out_y)
Definition: ftcalc.c:981
#define NEG_LONG(a)
Definition: ftcalc.h:479
#define MUL_LONG(a, b)
Definition: ftcalc.h:477
#define ADD_LONG(a, b)
Definition: ftcalc.h:473
#define FT_EXPORT_DEF(x)
Definition: ftconfig.h:494
#define FT_BASE_DEF(x)
Definition: ftconfig.h:418
#define FT_THROW(e)
Definition: ftdebug.h:241
FT_BEGIN_HEADER typedef signed long FT_Pos
Definition: ftimage.h:58
#define FT_ABS(a)
Definition: ftobjs.h:73
#define FT_HYPOT(x, y)
Definition: ftobjs.h:80
#define FT_LONG_MAX
Definition: ftstdlib.h:67
FT_Vector_Length(FT_Vector *vec)
Definition: fttrigon.c:418
FT_BEGIN_HEADER typedef unsigned char FT_Bool
Definition: fttypes.h:108
signed long FT_Fixed
Definition: fttypes.h:287
int FT_Error
Definition: fttypes.h:299
signed long FT_Long
Definition: fttypes.h:242
unsigned int FT_UInt
Definition: fttypes.h:231
signed int FT_Int
Definition: fttypes.h:220
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
const GLdouble * v
Definition: gl.h:2040
GLuint GLuint GLsizei count
Definition: gl.h:1545
GLdouble s
Definition: gl.h:2039
GLint GLint GLint GLint GLint GLint y
Definition: gl.h:1548
GLdouble GLdouble GLdouble r
Definition: gl.h:2055
GLdouble GLdouble GLdouble GLdouble q
Definition: gl.h:2063
GLenum GLenum GLenum GLenum GLenum scale
Definition: glext.h:9032
const GLubyte * c
Definition: glext.h:8905
GLboolean GLboolean GLboolean b
Definition: glext.h:6204
GLuint GLenum matrix
Definition: glext.h:9407
GLuint GLfloat * val
Definition: glext.h:7180
GLuint64EXT * result
Definition: glext.h:11304
GLboolean GLboolean GLboolean GLboolean a
Definition: glext.h:6204
GLdouble GLdouble z
Definition: glext.h:5874
const GLfloat * m
Definition: glext.h:10848
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble const GLfloat const GLdouble const GLfloat GLint i
Definition: glfuncs.h:248
GLsizei GLenum const GLvoid GLsizei GLenum GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLint GLint GLint GLshort GLshort GLshort GLubyte GLubyte GLubyte GLuint GLuint GLuint GLushort GLushort GLushort GLbyte GLbyte GLbyte GLbyte GLdouble GLdouble GLdouble GLdouble GLfloat GLfloat GLfloat GLfloat GLint GLint GLint GLint GLshort GLshort GLshort GLshort GLubyte GLubyte GLubyte GLubyte GLuint GLuint GLuint GLuint GLushort GLushort GLushort GLushort GLboolean const GLdouble const GLfloat const GLint const GLshort const GLbyte const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLdouble const GLfloat const GLfloat const GLint const GLint const GLshort const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort const GLdouble const GLfloat const GLint const GLshort GLenum GLenum GLenum GLfloat GLenum GLint GLenum GLenum GLenum GLfloat GLenum GLenum GLint GLenum GLfloat GLenum GLint GLint GLushort GLenum GLenum GLfloat GLenum GLenum GLint GLfloat const GLubyte GLenum GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLint GLint GLsizei GLsizei GLint GLenum GLenum const GLvoid GLenum GLenum const GLfloat GLenum GLenum const GLint GLenum GLenum const GLdouble GLenum GLenum const GLfloat GLenum GLenum const GLint GLsizei GLuint GLfloat GLuint GLbitfield GLfloat GLint GLuint GLboolean GLenum GLfloat GLenum GLbitfield GLenum GLfloat GLfloat GLint GLint const GLfloat GLenum GLfloat GLfloat GLint GLint GLfloat GLfloat GLint GLint const GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat GLint GLfloat GLfloat const GLdouble * u
Definition: glfuncs.h:240
#define d
Definition: ke_i.h:81
#define a
Definition: ke_i.h:78
#define c
Definition: ke_i.h:80
#define b
Definition: ke_i.h:79
UCHAR ab[sizeof("Hello World!") -1]
Definition: fdi.c:106
#define shift
Definition: input.c:1755
int xx
Definition: npserver.c:29
static calc_node_t temp
Definition: rpn_ieee.c:38
FT_UInt32 lo
Definition: ftcalc.c:53
FT_UInt32 hi
Definition: ftcalc.c:54
ecx edi movl ebx edx edi decl ecx esi eax jecxz decl eax andl eax esi movl edx movl TEMP incl eax andl eax ecx incl ebx testl eax jnz xchgl ecx incl TEMP esp ecx subl ebx pushl ecx ecx edx ecx shrl ecx mm0 mm4 mm0 mm4 mm1 mm5 mm1 mm5 mm2 mm6 mm2 mm6 mm3 mm7 mm3 mm7 paddd mm0 paddd mm4 paddd mm0 paddd mm4 paddd mm0 paddd mm4 movq mm1 movq mm5 psrlq mm1 psrlq mm5 paddd mm0 paddd mm4 psrad mm0 psrad mm4 packssdw mm0 packssdw mm4 mm1 punpckldq mm0 pand mm1 pand mm0 por mm1 movq edi esi edx edi decl ecx jnz popl ecx andl ecx jecxz mm0 mm0 mm1 mm1 mm2 mm2 mm3 mm3 paddd mm0 paddd mm0 paddd mm0 movq mm1 psrlq mm1 paddd mm0 psrad mm0 packssdw mm0 movd eax movw ax
Definition: synth_sse3d.h:180
#define const
Definition: zconf.h:233