ReactOS 0.4.16-dev-36-g301675c
sinhf.c File Reference
#include "libm.h"
#include "libm_util.h"
#include "libm_inlines.h"
#include "libm_errno.h"
Include dependency graph for sinhf.c:

Go to the source code of this file.

Macros

#define USE_SPLITEXP
 
#define USE_SCALEDOUBLE_1
 
#define USE_INFINITY_WITH_FLAGS
 
#define USE_VALF_WITH_FLAGS
 
#define USE_HANDLE_ERRORF
 

Functions

float sinhf (float fx)
 

Macro Definition Documentation

◆ USE_HANDLE_ERRORF

#define USE_HANDLE_ERRORF

Definition at line 34 of file sinhf.c.

◆ USE_INFINITY_WITH_FLAGS

#define USE_INFINITY_WITH_FLAGS

Definition at line 32 of file sinhf.c.

◆ USE_SCALEDOUBLE_1

#define USE_SCALEDOUBLE_1

Definition at line 31 of file sinhf.c.

◆ USE_SPLITEXP

#define USE_SPLITEXP

Definition at line 30 of file sinhf.c.

◆ USE_VALF_WITH_FLAGS

#define USE_VALF_WITH_FLAGS

Definition at line 33 of file sinhf.c.

Function Documentation

◆ sinhf()

float sinhf ( float  fx)

Definition at line 51 of file sinhf.c.

52{
53 /*
54 After dealing with special cases the computation is split into
55 regions as follows:
56
57 abs(x) >= max_sinh_arg:
58 sinh(x) = sign(x)*Inf
59
60 abs(x) >= small_threshold:
61 sinh(x) = sign(x)*exp(abs(x))/2 computed using the
62 splitexp and scaleDouble functions as for exp_amd().
63
64 abs(x) < small_threshold:
65 compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0)))
66 sinh(x) is then sign(x)*z. */
67
68 static const double
69 /* The max argument of sinhf, but stored as a double */
70 max_sinh_arg = 8.94159862922329438106e+01, /* 0x40565a9f84f82e63 */
71 thirtytwo_by_log2 = 4.61662413084468283841e+01, /* 0x40471547652b82fe */
72 log2_by_32_lead = 2.16608493356034159660e-02, /* 0x3f962e42fe000000 */
73 log2_by_32_tail = 5.68948749532545630390e-11, /* 0x3dcf473de6af278e */
74 small_threshold = 8*BASEDIGITS_DP64*0.30102999566398119521373889;
75 /* (8*BASEDIGITS_DP64*log10of2) ' exp(-x) insignificant c.f. exp(x) */
76
77 /* Tabulated values of sinh(i) and cosh(i) for i = 0,...,36. */
78
79 static const double sinh_lead[37] = {
80 0.00000000000000000000e+00, /* 0x0000000000000000 */
81 1.17520119364380137839e+00, /* 0x3ff2cd9fc44eb982 */
82 3.62686040784701857476e+00, /* 0x400d03cf63b6e19f */
83 1.00178749274099008204e+01, /* 0x40240926e70949ad */
84 2.72899171971277496596e+01, /* 0x403b4a3803703630 */
85 7.42032105777887522891e+01, /* 0x40528d0166f07374 */
86 2.01713157370279219549e+02, /* 0x406936d22f67c805 */
87 5.48316123273246489589e+02, /* 0x408122876ba380c9 */
88 1.49047882578955000099e+03, /* 0x409749ea514eca65 */
89 4.05154190208278987484e+03, /* 0x40afa7157430966f */
90 1.10132328747033916443e+04, /* 0x40c5829dced69991 */
91 2.99370708492480553105e+04, /* 0x40dd3c4488cb48d6 */
92 8.13773957064298447222e+04, /* 0x40f3de1654d043f0 */
93 2.21206696003330085659e+05, /* 0x410b00b5916a31a5 */
94 6.01302142081972560845e+05, /* 0x412259ac48bef7e3 */
95 1.63450868623590236530e+06, /* 0x4138f0ccafad27f6 */
96 4.44305526025387924165e+06, /* 0x4150f2ebd0a7ffe3 */
97 1.20774763767876271158e+07, /* 0x416709348c0ea4ed */
98 3.28299845686652474105e+07, /* 0x417f4f22091940bb */
99 8.92411504815936237574e+07, /* 0x419546d8f9ed26e1 */
100 2.42582597704895108938e+08, /* 0x41aceb088b68e803 */
101 6.59407867241607308388e+08, /* 0x41c3a6e1fd9eecfd */
102 1.79245642306579566002e+09, /* 0x41dab5adb9c435ff */
103 4.87240172312445068359e+09, /* 0x41f226af33b1fdc0 */
104 1.32445610649217357635e+10, /* 0x4208ab7fb5475fb7 */
105 3.60024496686929321289e+10, /* 0x4220c3d3920962c8 */
106 9.78648047144193725586e+10, /* 0x4236c932696a6b5c */
107 2.66024120300899291992e+11, /* 0x424ef822f7f6731c */
108 7.23128532145737548828e+11, /* 0x42650bba3796379a */
109 1.96566714857202099609e+12, /* 0x427c9aae4631c056 */
110 5.34323729076223046875e+12, /* 0x429370470aec28ec */
111 1.45244248326237109375e+13, /* 0x42aa6b765d8cdf6c */
112 3.94814800913403437500e+13, /* 0x42c1f43fcc4b662c */
113 1.07321789892958031250e+14, /* 0x42d866f34a725782 */
114 2.91730871263727437500e+14, /* 0x42f0953e2f3a1ef7 */
115 7.93006726156715250000e+14, /* 0x430689e221bc8d5a */
116 2.15561577355759750000e+15}; /* 0x431ea215a1d20d76 */
117
118 static const double cosh_lead[37] = {
119 1.00000000000000000000e+00, /* 0x3ff0000000000000 */
120 1.54308063481524371241e+00, /* 0x3ff8b07551d9f550 */
121 3.76219569108363138810e+00, /* 0x400e18fa0df2d9bc */
122 1.00676619957777653269e+01, /* 0x402422a497d6185e */
123 2.73082328360164865444e+01, /* 0x403b4ee858de3e80 */
124 7.42099485247878334349e+01, /* 0x40528d6fcbeff3a9 */
125 2.01715636122455890700e+02, /* 0x406936e67db9b919 */
126 5.48317035155212010977e+02, /* 0x4081228949ba3a8b */
127 1.49047916125217807348e+03, /* 0x409749eaa93f4e76 */
128 4.05154202549259389343e+03, /* 0x40afa715845d8894 */
129 1.10132329201033226127e+04, /* 0x40c5829dd053712d */
130 2.99370708659497577173e+04, /* 0x40dd3c4489115627 */
131 8.13773957125740562333e+04, /* 0x40f3de1654d6b543 */
132 2.21206696005590405548e+05, /* 0x410b00b5916b6105 */
133 6.01302142082804115489e+05, /* 0x412259ac48bf13ca */
134 1.63450868623620807193e+06, /* 0x4138f0ccafad2d17 */
135 4.44305526025399193168e+06, /* 0x4150f2ebd0a8005c */
136 1.20774763767876680940e+07, /* 0x416709348c0ea503 */
137 3.28299845686652623117e+07, /* 0x417f4f22091940bf */
138 8.92411504815936237574e+07, /* 0x419546d8f9ed26e1 */
139 2.42582597704895138741e+08, /* 0x41aceb088b68e804 */
140 6.59407867241607308388e+08, /* 0x41c3a6e1fd9eecfd */
141 1.79245642306579566002e+09, /* 0x41dab5adb9c435ff */
142 4.87240172312445068359e+09, /* 0x41f226af33b1fdc0 */
143 1.32445610649217357635e+10, /* 0x4208ab7fb5475fb7 */
144 3.60024496686929321289e+10, /* 0x4220c3d3920962c8 */
145 9.78648047144193725586e+10, /* 0x4236c932696a6b5c */
146 2.66024120300899291992e+11, /* 0x424ef822f7f6731c */
147 7.23128532145737548828e+11, /* 0x42650bba3796379a */
148 1.96566714857202099609e+12, /* 0x427c9aae4631c056 */
149 5.34323729076223046875e+12, /* 0x429370470aec28ec */
150 1.45244248326237109375e+13, /* 0x42aa6b765d8cdf6c */
151 3.94814800913403437500e+13, /* 0x42c1f43fcc4b662c */
152 1.07321789892958031250e+14, /* 0x42d866f34a725782 */
153 2.91730871263727437500e+14, /* 0x42f0953e2f3a1ef7 */
154 7.93006726156715250000e+14, /* 0x430689e221bc8d5a */
155 2.15561577355759750000e+15}; /* 0x431ea215a1d20d76 */
156
157 unsigned long long ux, aux, xneg;
158 double x = fx, y, z, z1, z2;
159 int m;
160
161 /* Special cases */
162
163 GET_BITS_DP64(x, ux);
164 aux = ux & ~SIGNBIT_DP64;
165 if (aux < 0x3f10000000000000) /* |x| small enough that sinh(x) = x */
166 {
167 if (aux == 0)
168 /* with no inexact */
169 return fx;
170 else
171 return valf_with_flags(fx, AMD_F_INEXACT);
172 }
173 else if (aux >= 0x7ff0000000000000) /* |x| is NaN or Inf */
174 {
175 if (aux > 0x7ff0000000000000)
176 {
177 /* x is NaN */
178 unsigned int uhx;
179 GET_BITS_SP32(fx, uhx);
180 return _handle_errorf("sinhf", OP_SINH, uhx|0x00400000, _DOMAIN,
181 0, EDOM, fx, 0.0F, 1);
182 }
183 else
184 return fx + fx;
185 }
186
187 xneg = (aux != ux);
188
189 y = x;
190 if (xneg) y = -x;
191
192 if (y >= max_sinh_arg)
193 {
194 /* Return infinity with overflow flag. */
195 if (xneg)
196 return _handle_errorf("sinhf", OP_SINH, NINFBITPATT_SP32, _OVERFLOW,
197 AMD_F_OVERFLOW, ERANGE, fx, 0.0F, 1);
198 else
199 return _handle_errorf("sinhf", OP_SINH, PINFBITPATT_SP32, _OVERFLOW,
200 AMD_F_OVERFLOW, ERANGE, fx, 0.0F, 1);
201 }
202 else if (y >= small_threshold)
203 {
204 /* In this range y is large enough so that
205 the negative exponential is negligible,
206 so sinh(y) is approximated by sign(x)*exp(y)/2. The
207 code below is an inlined version of that from
208 exp() with two changes (it operates on
209 y instead of x, and the division by 2 is
210 done by reducing m by 1). */
211
212 splitexp(y, 1.0, thirtytwo_by_log2, log2_by_32_lead,
213 log2_by_32_tail, &m, &z1, &z2);
214 m -= 1;
215 /* scaleDouble_1 is always safe because the argument x was
216 float, rather than double */
217 z = scaleDouble_1((z1+z2),m);
218 }
219 else
220 {
221 /* In this range we find the integer part y0 of y
222 and the increment dy = y - y0. We then compute
223
224 z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy)
225
226 where sinh(y0) and cosh(y0) are tabulated above. */
227
228 int ind;
229 double dy, dy2, sdy, cdy;
230
231 ind = (int)y;
232 dy = y - ind;
233
234 dy2 = dy*dy;
235
236 sdy = dy + dy*dy2*(0.166666666666666667013899e0 +
237 (0.833333333333329931873097e-2 +
238 (0.198412698413242405162014e-3 +
239 (0.275573191913636406057211e-5 +
240 (0.250521176994133472333666e-7 +
241 (0.160576793121939886190847e-9 +
242 0.7746188980094184251527126e-12*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
243
244 cdy = 1 + dy2*(0.500000000000000005911074e0 +
245 (0.416666666666660876512776e-1 +
246 (0.138888888889814854814536e-2 +
247 (0.248015872460622433115785e-4 +
248 (0.275573350756016588011357e-6 +
249 (0.208744349831471353536305e-8 +
250 0.1163921388172173692062032e-10*dy2)*dy2)*dy2)*dy2)*dy2)*dy2);
251
252 z = sinh_lead[ind]*cdy + cosh_lead[ind]*sdy;
253 }
254
255 if (xneg) z = - z;
256 return (float)z;
257}
float __cdecl _handle_errorf(char *fname, int opcode, unsigned long long value, int type, int flags, int error, float arg1, float arg2, int nargs)
Definition: _handle_error.c:56
#define ERANGE
Definition: acclib.h:92
unsigned int(__cdecl typeof(jpeg_read_scanlines))(struct jpeg_decompress_struct *
Definition: typeof.h:31
#define EDOM
Definition: errno.h:39
GLint GLint GLint GLint GLint x
Definition: gl.h:1548
GLint GLint GLint GLint GLint GLint y
Definition: gl.h:1548
GLdouble GLdouble z
Definition: glext.h:5874
const GLfloat * m
Definition: glext.h:10848
#define _DOMAIN
Definition: math.h:39
#define _OVERFLOW
Definition: math.h:41
#define AMD_F_INEXACT
Definition: libm_new.h:82
#define AMD_F_OVERFLOW
Definition: libm_new.h:83
#define GET_BITS_SP32(x, ux)
Definition: libm_util.h:105
#define GET_BITS_DP64(x, ux)
Definition: libm_util.h:118
#define PINFBITPATT_SP32
Definition: libm_util.h:77
#define NINFBITPATT_SP32
Definition: libm_util.h:78
#define BASEDIGITS_DP64
Definition: libm_util.h:63
GLint dy
Definition: linetemp.h:97
static const WCHAR aux[]
GLfixed fx
Definition: tritemp.h:484