ReactOS 0.4.16-dev-125-g798ea90
avlsupp.c File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  _TABLE_ENTRY_HEADER
 

Typedefs

typedef struct _TABLE_ENTRY_HEADER TABLE_ENTRY_HEADER
 
typedef struct _TABLE_ENTRY_HEADERPTABLE_ENTRY_HEADER
 
typedef enum _RTL_AVL_BALANCE_FACTOR RTL_AVL_BALANCE_FACTOR
 

Enumerations

enum  _RTL_AVL_BALANCE_FACTOR { RtlUnbalancedAvlTree = -2 , RtlLeftHeavyAvlTree , RtlBalancedAvlTree , RtlRightHeavyAvlTree }
 

Functions

 C_ASSERT (RtlBalancedAvlTree==0)
 
FORCEINLINE TABLE_SEARCH_RESULT RtlpFindAvlTableNodeOrParent (IN PRTL_AVL_TABLE Table, IN PVOID Buffer, OUT PRTL_BALANCED_LINKS *NodeOrParent)
 
FORCEINLINE VOID RtlpPromoteAvlTreeNode (IN PRTL_BALANCED_LINKS Node)
 
FORCEINLINE BOOLEAN RtlpRebalanceAvlTreeNode (IN PRTL_BALANCED_LINKS Node)
 
FORCEINLINE VOID RtlpInsertAvlTreeNode (IN PRTL_AVL_TABLE Table, IN PRTL_BALANCED_LINKS NewNode, IN OUT PVOID NodeOrParent, IN OUT TABLE_SEARCH_RESULT SearchResult)
 
FORCEINLINE VOID RtlpDeleteAvlTreeNode (IN PRTL_AVL_TABLE Table, IN PRTL_BALANCED_LINKS Node)
 

Typedef Documentation

◆ PTABLE_ENTRY_HEADER

◆ RTL_AVL_BALANCE_FACTOR

◆ TABLE_ENTRY_HEADER

Enumeration Type Documentation

◆ _RTL_AVL_BALANCE_FACTOR

Enumerator
RtlUnbalancedAvlTree 
RtlLeftHeavyAvlTree 
RtlBalancedAvlTree 
RtlRightHeavyAvlTree 

Definition at line 18 of file avlsupp.c.

19{
enum _RTL_AVL_BALANCE_FACTOR RTL_AVL_BALANCE_FACTOR
@ RtlRightHeavyAvlTree
Definition: avlsupp.c:23
@ RtlLeftHeavyAvlTree
Definition: avlsupp.c:21
@ RtlUnbalancedAvlTree
Definition: avlsupp.c:20
@ RtlBalancedAvlTree
Definition: avlsupp.c:22

Function Documentation

◆ C_ASSERT()

C_ASSERT ( RtlBalancedAvlTree  = =0)

◆ RtlpDeleteAvlTreeNode()

FORCEINLINE VOID RtlpDeleteAvlTreeNode ( IN PRTL_AVL_TABLE  Table,
IN PRTL_BALANCED_LINKS  Node 
)

Definition at line 295 of file avlsupp.c.

297{
298 PRTL_BALANCED_LINKS DeleteNode = NULL, ParentNode;
299 PRTL_BALANCED_LINKS *Node1, *Node2;
301
302 /* Take one of the children if possible */
304
305 /* Otherwise, check if one side is longer */
307 {
308 /* Pick the successor which will be the longest side in this case */
311 }
312 else if (!DeleteNode)
313 {
314 /* Pick the predecessor which will be the longest side in this case */
317 }
318
319 /* Get the parent node */
320 ParentNode = RtlParentAvl(DeleteNode);
321 DPRINT("Parent: %p\n", ParentNode);
322
323 /* Pick which now to use based on whether or not we have a left child */
324 Node1 = RtlLeftChildAvl(DeleteNode) ? &DeleteNode->LeftChild : &DeleteNode->RightChild;
325 DPRINT("Node 1: %p %p\n", Node1, *Node1);
326
327 /* Pick which node to swap based on if we're already a left child or not */
328 Node2 = RtlIsLeftChildAvl(DeleteNode) ? &ParentNode->LeftChild : &ParentNode->RightChild;
329 DPRINT("Node 2: %p %p\n", Node2, *Node2);
330
331 /* Pick the correct balance depending on which side will get heavier */
333 DPRINT("Balance: %lx\n", Balance);
334
335 /* Swap the children nodes, making one side heavier */
336 *Node2 = *Node1;
337
338 /* If the node has a child now, update its parent */
339 if (*Node1) RtlSetParent(*Node1, ParentNode);
340
341 /* Assume balanced root for loop optimization */
342 RtlSetBalance(&Table->BalancedRoot, RtlBalancedAvlTree);
343
344 /* Loop up the tree by parents */
345 while (TRUE)
346 {
347 /* Check if the tree's balance increased */
348 if (RtlBalance(ParentNode) == Balance)
349 {
350 /* Now the tree is balanced */
352 }
353 else if (RtlBalance(ParentNode) == RtlBalancedAvlTree)
354 {
355 /* The tree has now become less balanced, since it was balanced */
356 RtlSetBalance(ParentNode, -Balance);
357
358 /* Deal with the loop optimization to detect loss of a tree level */
359 if (RtlBalance(&Table->BalancedRoot) != RtlBalancedAvlTree) Table->DepthOfTree--;
360 break;
361 }
362 else
363 {
364 /* The tree has become unbalanced, so a rebalance is needed */
365 if (RtlpRebalanceAvlTreeNode(ParentNode)) break;
366
367 /* Get the new parent after the balance */
368 ParentNode = RtlParentAvl(ParentNode);
369 }
370
371 /* Choose which balance factor to use based on which side we're on */
372 Balance = RtlIsRightChild(ParentNode) ?
374
375 /* Iterate up the tree */
376 ParentNode = RtlParentAvl(ParentNode);
377 }
378
379 /* Check if this isn't the node we ended up deleting directly */
380 if (Node == DeleteNode) return;
381
382 /* Copy the deleted node itself */
384
385 /* Pick the right node to unlink */
386 Node1 = RtlIsLeftChildAvl(Node) ?
387 &(RtlParentAvl(DeleteNode))->LeftChild : &(RtlParentAvl(DeleteNode))->RightChild;
388 *Node1 = DeleteNode;
389
390 /* Reparent as appropriate */
393}
static __inline VOID DeleteNode(NODE *node)
Definition: text.h:48
#define NULL
Definition: types.h:112
#define TRUE
Definition: types.h:120
union node Node
Definition: types.h:1255
ASMGENDATA Table[]
Definition: genincdata.c:61
#define RtlSetParent
Definition: miavl.h:41
#define RtlpCopyAvlNodeData
Definition: miavl.h:39
#define RtlSetBalance
Definition: miavl.h:42
#define RtlBalance
Definition: miavl.h:43
#define RtlRightChildAvl
Definition: miavl.h:45
#define RtlParentAvl
Definition: miavl.h:44
#define RtlLeftChildAvl
Definition: miavl.h:46
#define RtlpRebalanceAvlTreeNode
Definition: miavl.h:34
#define RtlIsLeftChildAvl
Definition: miavl.h:47
#define DPRINT
Definition: sndvol32.h:73
Definition: dlist.c:348
static const UCHAR Balance[]
Definition: usbehci.c:97
#define RtlIsRightChild(Links)
char CHAR
Definition: xmlstorage.h:175

◆ RtlpFindAvlTableNodeOrParent()

FORCEINLINE TABLE_SEARCH_RESULT RtlpFindAvlTableNodeOrParent ( IN PRTL_AVL_TABLE  Table,
IN PVOID  Buffer,
OUT PRTL_BALANCED_LINKS NodeOrParent 
)

Definition at line 32 of file avlsupp.c.

35{
36 PRTL_BALANCED_LINKS CurrentNode, ChildNode;
38
39 /* Quick check to see if the table is empty */
40 if (!Table->NumberGenericTableElements) return TableEmptyTree;
41
42 /* Set the current node */
43 CurrentNode = RtlRightChildAvl(&Table->BalancedRoot);
44
45 /* Start compare loop */
46 while (TRUE)
47 {
48 /* Compare which side is greater */
50 Buffer,
51 &((PTABLE_ENTRY_HEADER)CurrentNode)->
52 UserData);
54 {
55 /* We're less, check if this is the left child */
56 ChildNode = RtlLeftChildAvl(CurrentNode);
57 if (ChildNode)
58 {
59 /* Continue searching from this node */
60 CurrentNode = ChildNode;
61 }
62 else
63 {
64 /* Otherwise, the element isn't in this tree */
65 *NodeOrParent = CurrentNode;
66 return TableInsertAsLeft;
67 }
68 }
69 else if (Result == GenericGreaterThan)
70 {
71 /* We're more, check if this is the right child */
72 ChildNode = RtlRightChildAvl(CurrentNode);
73 if (ChildNode)
74 {
75 /* Continue searching from this node */
76 CurrentNode = ChildNode;
77 }
78 else
79 {
80 /* Otherwise, the element isn't in this tree */
81 *NodeOrParent = CurrentNode;
82 return TableInsertAsRight;
83 }
84 }
85 else
86 {
87 /* We should've found the node */
89
90 /* Return node found */
91 *NodeOrParent = CurrentNode;
92 return TableFoundNode;
93 }
94 }
95}
Definition: bufpool.h:45
#define RtlpAvlCompareRoutine
Definition: miavl.h:40
#define ASSERT(a)
Definition: mode.c:44
Definition: avlsupp.c:13
_At_(*)(_In_ PWSK_CLIENT Client, _In_opt_ PUNICODE_STRING NodeName, _In_opt_ PUNICODE_STRING ServiceName, _In_opt_ ULONG NameSpace, _In_opt_ GUID *Provider, _In_opt_ PADDRINFOEXW Hints, _Outptr_ PADDRINFOEXW *Result, _In_opt_ PEPROCESS OwningProcess, _In_opt_ PETHREAD OwningThread, _Inout_ PIRP Irp Result)(Mem)) NTSTATUS(WSKAPI *PFN_WSK_GET_ADDRESS_INFO
Definition: wsk.h:409
@ GenericLessThan
Definition: rtltypes.h:389
@ GenericEqual
Definition: rtltypes.h:391
@ GenericGreaterThan
Definition: rtltypes.h:390
enum _RTL_GENERIC_COMPARE_RESULTS RTL_GENERIC_COMPARE_RESULTS

◆ RtlpInsertAvlTreeNode()

FORCEINLINE VOID RtlpInsertAvlTreeNode ( IN PRTL_AVL_TABLE  Table,
IN PRTL_BALANCED_LINKS  NewNode,
IN OUT PVOID  NodeOrParent,
IN OUT TABLE_SEARCH_RESULT  SearchResult 
)

Definition at line 208 of file avlsupp.c.

212{
214
215 /* Initialize the new inserted element */
216 MI_ASSERT(SearchResult != TableFoundNode);
217 NewNode->LeftChild = NewNode->RightChild = NULL;
219
220 /* Increase element count */
221 Table->NumberGenericTableElements++;
222
223 /* Check where we should insert the entry */
224 if (SearchResult == TableEmptyTree)
225 {
226 /* This is the new root node */
227 RtlInsertAsRightChildAvl(&Table->BalancedRoot, NewNode);
228
229 /* On AVL trees, we also update the depth */
230 ASSERT(Table->DepthOfTree == 0);
231 Table->DepthOfTree = 1;
232 return;
233 }
234 else if (SearchResult == TableInsertAsLeft)
235 {
236 /* Insert it left */
237 RtlInsertAsLeftChildAvl(NodeOrParent, NewNode);
238 }
239 else
240 {
241 /* Right node */
242 RtlInsertAsRightChildAvl(NodeOrParent, NewNode);
243 }
244
245 /* Little cheat to save on loop processing, taken from Timo */
246 RtlSetBalance(&Table->BalancedRoot, RtlLeftHeavyAvlTree);
247
248 /*
249 * This implements A6-A7 from Knuth based on http://coding.derkeiler.com
250 * /pdf/Archive/C_CPP/comp.lang.c/2004-01/1812.pdf, however the algorithm
251 * is slightly modified to follow the tree based on the Parent Node such
252 * as the Windows algorithm does it, instead of following the nodes down.
253 */
254 while (TRUE)
255 {
256 /* Calculate which side to balance on */
258
259 /* Check if the parent node was balanced */
260 if (RtlBalance(NodeOrParent) == RtlBalancedAvlTree)
261 {
262 /* It's not balanced anymore (heavy on one side) */
263 RtlSetBalance(NodeOrParent, Balance);
264
265 /* Move up */
266 NewNode = NodeOrParent;
267 NodeOrParent = RtlParentAvl(NodeOrParent);
268 }
269 else if (RtlBalance(NodeOrParent) != Balance)
270 {
271 /* The parent's balance is opposite, so the tree is balanced now */
272 RtlSetBalance(NodeOrParent, RtlBalancedAvlTree);
273
274 /* Check if this is the root (the cheat applied earlier gets us here) */
275 if (RtlBalance(&Table->BalancedRoot) == RtlBalancedAvlTree)
276 {
277 /* The depth has thus increased */
278 Table->DepthOfTree++;
279 }
280
281 /* We reached the root or a balanced node, so we're done */
282 break;
283 }
284 else
285 {
286 /* The tree is now unbalanced, so AVL rebalancing must happen */
287 RtlpRebalanceAvlTreeNode(NodeOrParent);
288 break;
289 }
290 }
291}
#define RtlInsertAsRightChildAvl
Definition: miavl.h:50
#define RtlInsertAsLeftChildAvl
Definition: miavl.h:49
#define MI_ASSERT(x)
Definition: miavl.h:29

◆ RtlpPromoteAvlTreeNode()

FORCEINLINE VOID RtlpPromoteAvlTreeNode ( IN PRTL_BALANCED_LINKS  Node)

Definition at line 99 of file avlsupp.c.

100{
101 PRTL_BALANCED_LINKS ParentNode, SuperParentNode;
102 PRTL_BALANCED_LINKS *SwapNode1, *SwapNode2;
103
104 /* Grab parents up to 2 levels high */
105 ParentNode = RtlParentAvl(Node);
106 SuperParentNode = RtlParentAvl(ParentNode);
107
108 /* Pick which nodes will be rotated */
109 SwapNode1 = RtlIsLeftChildAvl(Node) ? &ParentNode->LeftChild : &ParentNode->RightChild;
110 SwapNode2 = RtlIsLeftChildAvl(Node) ? &Node->RightChild : &Node->LeftChild;
111
112 /* Do the rotate, and update the parent and super-parent as needed */
113 *SwapNode1 = *SwapNode2;
114 if (*SwapNode1) RtlSetParent(*SwapNode1, ParentNode);
115 *SwapNode2 = ParentNode;
116 RtlSetParent(ParentNode, Node);
117
118 /* Now update the super-parent child link, and make it parent of the node*/
119 SwapNode1 = (RtlLeftChildAvl(SuperParentNode) == ParentNode) ?
120 &SuperParentNode->LeftChild: &SuperParentNode->RightChild;
121 *SwapNode1 = Node;
122 RtlSetParent(Node, SuperParentNode);
123}

◆ RtlpRebalanceAvlTreeNode()

FORCEINLINE BOOLEAN RtlpRebalanceAvlTreeNode ( IN PRTL_BALANCED_LINKS  Node)

Definition at line 127 of file avlsupp.c.

128{
129 PRTL_BALANCED_LINKS ChildNode, SubChildNode;
132
133 /* Get the balance, and figure out which child node to go down on */
135 ChildNode = (Balance == RtlRightHeavyAvlTree) ?
137
138 /* The child and node have the same balance, promote the child upwards */
139 if (RtlBalance(ChildNode) == Balance)
140 {
141 /* This performs the rotation described in Knuth A8-A10 for Case 1 */
142 RtlpPromoteAvlTreeNode(ChildNode);
143
144 /* The nodes are now balanced */
147 return FALSE;
148 }
149
150 /* The child has the opposite balance, a double promotion of the child's child must happen */
151 if (RtlBalance(ChildNode) == -Balance)
152 {
153 /* Pick which sub-child to use based on the balance */
154 SubChildNode = (Balance == RtlRightHeavyAvlTree) ?
155 RtlLeftChildAvl(ChildNode) : RtlRightChildAvl(ChildNode);
156
157 /* Do the double-rotation described in Knuth A8-A10 for Case 2 */
158 RtlpPromoteAvlTreeNode(SubChildNode);
159 RtlpPromoteAvlTreeNode(SubChildNode);
160
161 /* Was the sub-child sharing the same balance as the node? */
162 if (RtlBalance(SubChildNode) == Balance)
163 {
164 /* Then the subchild is now balanced, and the node's weight is inversed */
167 }
168 else if (RtlBalance(SubChildNode) == -Balance)
169 {
170 /*
171 * In this case, the sub-child weight was the inverse of the node, so
172 * the child now shares the node's balance original weight, while the
173 * node becomes balanced.
174 */
175 RtlSetBalance(ChildNode, Balance);
177 }
178 else
179 {
180 /*
181 * Otherwise, the sub-child was unbalanced, so both the child and node
182 * now become balanced.
183 */
186 }
187
188 /* In all cases, the sub-child is now balanced */
189 RtlSetBalance(SubChildNode, RtlBalancedAvlTree);
190 return FALSE;
191 }
192
193 /*
194 * The case that remains is that the child was already balanced, so this is
195 * This is the rotation required for Case 3 in Knuth A8-A10
196 */
197 RtlpPromoteAvlTreeNode(ChildNode);
198
199 /* Now the child has the opposite weight of the node */
200 RtlSetBalance(ChildNode, -Balance);
201
202 /* This only happens on deletion, so we return TRUE to terminate the delete */
203 return TRUE;
204}
#define FALSE
Definition: types.h:117
#define RtlpPromoteAvlTreeNode
Definition: miavl.h:33